На правах рукописи

Кирсанова Светлана Викторовна

Синтез и физико-химические свойства кристаллических материалов для сенсорных устройств в системе Li₂MoO₄ – Li₂WO₄

Специальность 05.27.06 – Технология и оборудование для производства полупроводников и приборов электронной техники

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва - 2010

Работа выполнена в Российском химико-технологическом университете им. Д.И. Менделеева

Научный руководитель:	кандидат технических наук, доцент
	Баринова Ольга Павловна
Официальные оппоненты:	доктор химических наук, профессор Тихонов Анатолий Петрович
	кандидат химических наук, старший научный сотрудник Кочурихин Владимир Владимирович
Ведущая организация:	ФГУП «НИФХИ им. Л.Я. Карпова»

Защита состоится 7 июня 2010 г. в 12 часов на заседании диссертационного совета Д 212. 204. 12 в РХТУ им. Д. И. Менделеева (125047, г. Москва, Миусская пл., д. 9).

С диссертацией можно ознакомиться в Информационно-библиотечном центре РХТУ им. Д.И. Менделеева.

Автореферат диссертации разослан «___»____ 2010 г.

Ученый секретарь диссертационного совета Д 212.204.12

Макаров Н.А.

Общая характеристика работы

<u>Актуальность работы.</u> Кристаллические материалы на основе молибдатов и вольфраматов разных катионов перспективны благодаря сочетанию широкого спектра функциональных свойств и технологичности. В настоящее время они эффективно используются в качестве сенсоров влажности (Li₂MoO₄, MnWO₄, CaMoO₄, ZnMoO₄ и др.), сцинтилляционных детекторов ионизирующих излучений для томографии (CdWO₄, ZnWO₄), оптических элементов BKP-лазеров (CaMoO₄, SrWO₄, BaWO₄), а также криогенных фонон-сцинтилляционных детекторов (CaMoO₄, PbMoO₄). Система Li₂MoO₄-Li₂WO₄ представляет особый интерес для получения материалов с комплексом функциональных свойств, пригодных для использования в качестве сенсоров влажности или сцинтилляционных детекторов для поиска двойного безнейтринного бета-распада нуклидов ¹⁰⁰Mo. Однако к настоящему времени синтез фаз в системе Li₂MoO₄-Li₂WO₄ и их свойства исследованы недостаточно полно. Поэтому **актуальным** является исследование процессов синтеза фаз со структурой фенакита в системе Li₂MoO₄-Li₂WO₄ и возможности улучшения их физико-химических свойств.

Работа выполнялась по тематическому плану инновационного госбюджетного НИР Федерального агентства по образованию РФ совместно с Министерством по атомной энергетике РФ по проекту «Разработка системы раннего обнаружения утечки водяных паров (канал влажность/температура в производственных помещениях атомных электростанций, обеспеченной поддержкой TSP-IP протокола».

<u>Цель работы</u>. Исследование процесса синтеза и физико-химических свойств кристаллических материалов со структурой фенакита в системе Li₂MoO₄-Li₂WO₄ для создания сенсорных устройств.

Для достижения поставленной цели решались следующие задачи:

- исследование особенностей и разработка методики синтеза кристаллических фаз со структурой фенакита в системе Li₂MoO₄-Li₂WO₄;
- выращивание кристаллов со структурой фенакита в системе Li₂MoO₄-Li₂WO_{4;}
- исследование роста кристаллов Li₂MoO₄ из водных растворов и их морфологических особенностей;
- исследование электрофизических, термохимических, влагочувствительных, люминесцентных и сцинтилляционных свойств кристаллических материалов в системе

Li₂MoO₄-Li₂WO₄;

 исследование возможностей применения кристаллических материалов в системе Li₂MoO₄-Li₂WO₄ в качестве сенсоров влажности и криогенных фононсцинтилляционных детекторов.

Научная новизна работы:

- выявлен двухстадийный механизм образования кристаллических фаз со структурой фенакита в системе Li₂MoO₄-Li₂WO₄ при синтезе из трехкомпонентной системы (Li₂CO₃, MoO₃, WO₃);
- показана возможность выращивания методом Чохральского кристаллов состава Li₂Mo_{0,15}W_{0,85}O₄ и Li₂Mo_{0,05}W_{0,95}O₄;
- установлено огранение кристаллов Li₂MoO₄ в водных растворах преимущественно гранями гексагональной призмы и ромбоэдра, что соответствует центральному виду симметрии тригональной сингонии. Показано наличие анизотропии скоростей роста граней ромбоэдра и гексагональной призмы;
- установлено, что керамические материалы на основе фаз состава Li₂Mo_xW_{1-x}O₄ являются диэлектриками и обладают влагочувствительными свойствами;
- получены спектры собственной люминесценции и спектры возбуждения люминесценции при низких температурах кристаллов Li₂MoO₄ (10 K, 85 K, 295 K), Li₂Mo_{0,08}W_{0,92}O₄ (10 K), спектры отражения кристаллов Li₂MoO₄ (295 K), температурная зависимость интенсивности люминесценции кристалла Li₂MoO₄ (90 K÷450 K);
- показано для кристалла Li₂MoO₄ наличие сцинтилляционных свойств с хорошим разделением α- и γ- событий в области криогенных температур (10 мК).

Практическая значимость работы:

- разработана методика получения кристаллических фаз со структурой фенакита в системе Li₂MoO₄-Li₂WO₄ при синтезе из трехкомпонентной системы (Li₂CO₃, MoO₃, WO₃);
- показана перспективность применения кристаллов Li₂MoO₄ в качестве криогенного (10 мК) фонон-сцинтилляционного детектора для поиска двойного безнейтринного бета-распада нуклидов ¹⁰⁰Мо;

 разработаны сенсоры влажности на основе влагочувствительных материалов, полученных в системе Li₂MoO₄-Li₂WO₄, и испытаны в макетных условиях систем контроля влажности воздуха и технологических газовых сред.

На защиту выносятся:

- Методика синтеза фенакитоподобных кристаллических фаз состава Li₂Mo_xW_{1-x}O₄ из трехкомпонентной системы;
- Выявление возможности выращивания кристаллов состава Li₂Mo_xW_{1-x}O₄ со структурой фенакита с высоким содержанием W⁶⁺;
- Результаты корреляции морфологии кристаллов Li₂MoO₄, выращенных из водных растворов и вида симметрии;
- Результаты исследований термохимических, электрофизических, влагочувствительных, люминесцентных и сцинтилляционных свойств фаз в системе Li₂MoO₄-Li₂WO₄;
- Результаты исследований возможности применения фаз в системе Li₂MoO₄-Li₂WO₄ в качестве сенсорных устройств.

Апробация работы. Результаты диссертационной работы докладывались на следующих конференциях: Международной конференции по росту и физике кристаллов (Москва, 1998), Международной конференции «Передовые технологии на пороге XXI века ICAT'98» (Москва, 1998), конференции молодых ученых «Успехи в химии и химической технологии» (Москва, 1998, 2001, 2002, 2003), VI Международной конференции «Безопасность АЭС и подготовка кадров» (Обнинск, 1999), Всесоюзной конференции «Функциональные материалы и структуры для сенсорных устройств» (Москва, 1999), НПК «Научно-инновационное сотрудничество» (Москва, 2002, 2005), НПК «Наука и технология силикатных материалов – настоящее и будущее» (Москва, 2003), Национальной конференции по росту кристаллов (Москва, 2004, 2006, 2008), 8th International Conference on Inorganic Scintillators and Their Use in Scientific and Industrial Applications SCINT-2005 (Украина, Алушта, 2005), Международной конференции «Рост монокристаллов и тепло-массоперенос» (Обнинск, 2005), XVIII Менделеевский съезд по общей и прикладной химии (Москва, 2007), 6-е ежегодное заседание ILIAS (Германия, Дрезден, 2009), VII International Conference on Luminescent

Detectors and Transformers of Ionizing Radiation LumDeTr-2009 (Польша, Краков, 2009).

Публикации. По материалам диссертации опубликовано 22 научных работы, в том числе 2 статьи в рецензируемых научных журналах, 2 статьи в зарубежных научных журналах, тезисы 6 докладов на международных конференциях.

<u>Личный вклад автора.</u> Автором лично проведены исследования особенностей фазообразования в системе Li₂MoO₄-Li₂WO₄ и разработана методика синтеза фенакитоподобных фаз из трехкомпонентной системы; синтезирована шихта для выращивания кристаллов; методами Белюстина-Степановой и испарения растворителя получены кристаллы Li₂MoO₄; проведено микроскопическое исследование морфологии кристаллов Li₂MoO₄ и моделирование форм огранения в программе FACES; подобран температурно-временной режим обжига керамики основе фаз состава на Li₂Mo_xW_{1-x}O₄ и исследованы их электрофизические и влагочувствительные свойства. Автор лично исследовал возможность их применения в качестве сенсоров влажности в медицине при исследованиях сердечной деятельности, в системе раннего обнаружения утечек водяных паров в производственных помещениях АЭС, системе контроля влажности теплоносителя при сушке керамических изделий. Автор активно участвовал в постановке задач при исследовании люминесцентных, сцинтилляционных свойств фаз состава Li₂Mo_xW_{1-x}O₄ и возможности применения кристаллов Li₂MoO₄ в качестве криогенного фонон-сцинтилляционного детектора для регистрации редких явлений. Систематизация, обработка и анализ полученных результатов проведены автором лично.

<u>Структура и объем работы.</u> Диссертационная работа изложена на 150 страницах машинописного текста, включая 62 рисунка, 21 таблицу, и состоит из введения, 5-ти глав, выводов, списка литературы из 149 наименований.

Основное содержание работы.

Во введении обоснована актуальность диссертационной работы, определены цели и задачи исследования, сформулированы научная новизна и практическая значимость работы.

<u>В первой главе</u> представлен обзор литературы, посвященный проблемам фазообразования в системе Li₂MoO₄-Li₂WO₄, сведения о кристаллической структуре Li₂MoO₄, Li₂WO₄ и фаз в системе Li₂MoO₄-Li₂WO₄, результаты исследования их основных физико-химических свойств. Рассмотрено применение молибдатов и вольфраматов разных катионов (в т.ч. Li₂MoO₄ и Li₂WO₄). Отмечено отсутствие единого мнения по симметрии Li₂MoO₄, по кристаллической структуре фаз в системе Li₂MoO₄-Li₂WO₄. Исследование физико-химических свойств фаз в системе Li₂MoO₄-Li₂WO₄ и Li₂MoO₄ и Li₂WO₄. Отмечено наличие влагочувствительных свойств кристаллов Li₂MoO₄, и наличие люминесцентных свойств Li₂WO₄:U⁶⁺.

Во второй главе описаны использованные в работе методы анализа и экспериментальные методики. Твердофазный синтез фаз проводили в циркониевых тиглях в муфельной печи по разработанной методике. Дифференциально-термический анализ (ДТА) проводили на дериватографе системы "Paulic-Paulic-Erdei" фирмы МОМ (Венгрия) в интервале температур 20-800 ОС при скорости нагревания и охлаждения 10 К/мин. Рентгенофазовый анализ (РФА) проводили на установке ДРОН-3М (СиКа, Ni фильтр) со скоростью съемки 10 град/мин. Кристаллы выращивали методом Чохральского на установке «Кристалл-603», методами испарения растворителя по А.В. Шубникову и Белюстина-Степановой. Плотность кристаллов измеряли гидростатическую (электронные аналитические весы AND-GR-200). Кристаллооптические исследования проводили на поляризационном МИН-8 и металлографическом Altami микроскопов. Влагочувствительные свойства исследовали с помощью динамического генератора влажного газа «Родник-2М» в атмосфере азота в диапазоне от 10 до 95 % относительной влажности при температуре 22 С +- 2 С, величину отклика влагочувствительного материала регистрировали LCR-метром Р5030. Электрофизические свойства (сопротивление и емкость) измеряли с помощью LCR-метра Р5030 в интервале температур от 295 до 923 К в режиме нагрева и охлаждения при 100 и 1000 Гц. Методом ВУФ-спектроскопии исследовали спектры отражения, спектры возбуждения и спектры излучения кристаллов на установке Superlumi, расположенной в канале синхротронного излучения накопителя DORIS III (DESY, Гамбург, Германия) в интервале энергий 3,5 – 25 эВ при температурах 10 К и 295 К. Исследования изотопного состава, радиационной чистоты и сцинтилляционных свойств кристаллов Li₂MoO₄ проводились на установке CUORE R&D со сверхнизкофоновым Ge-детектором (Gran Sasso National Laboratory, Италия).

<u>В третьей главе</u> рассмотрены особенности синтеза, выращивания крупных кристаллов и получения спеченных материалов фаз со структурой фенакита в системе Li₂MoO₄ – Li₂WO₄; исследования морфологии кристаллов Li₂MoO₄ в водных растворах.

Для оценки возможности использования отечественных реактивов Li₂MoO₄ и Li₂WO₄ марки «ч» для синтеза фаз в системе Li₂MoO₄-Li₂WO₄ был проведен анализ методами РФА и ДТА. Анализ показал, что Li₂MoO₄ обладал преимущественно структурой фенакита, а Li₂WO₄ представлял собой Li₂WO₄·4/7H₂O с присутствием неидентифицированной примеси, что существенно затрудняло получение фаз со структурой фенакита. Поэтому синтез фенакитоподобных фаз в системе Li₂MoO₄-Li₂WO₄ в работе проводили из трехкомпонентной стехиометрической системы (MoO₃. WO₃, Li_2CO_3). Исследование и сопоставление данных дифференциальнотермического анализа (ДТА) нагрева смесей концентрационного ряда стехиометрических составов в системе Li₂MoO₄-Li₂WO₄ показало, что синтез фаз состава Li₂Mo_xW₁. _xO₄ проходит в две стадии, которым соответствуют температуры t₁ и t₂, причем увеличение содержания W^{6+} в смеси приводит к возрастанию температур t_1 и t_2 . На кривых нагрева смесей также наблюдали еще один пик, который был отнесен к температуре плавления. Температуры плавления фаз состава Li₂Mo_xW_{1-x}O₄ также возрастали с увеличением содержания W^{6+.} Концентрационные зависимости температур стадий синтеза (t₁, t₂) и плавления смесей хорошо описывались линейными уравнениями (рис.1). На кривых охлаждения наблюдали только один пик, соответствующий температуре кристаллизации исследуемых фаз. При проведении синтеза в корундовых тиглях обнаружено взаимодействие фаз с высоким содержанием молибдена (VI) с материалом тигля $(Al_2O_3),$ приводящее к образованию оранжево-красного LiAl(MoO₄)₂. Поэтому дальнейший синтез проводили в циркониевых тиглях, так как образование соединения Li₂Zr(MoO₄)₃ возможно только при сплавлении.

Для получения фаз со структурой фенакита в системе $Li_2MoO_4-Li_2WO_4$ на основе полученных результатов была разработана методика синтеза из трехкомпонентной стехиометрической системы (MoO₃. WO₃, и Li_2CO_3), температурно-временной режим синтеза приведен на рис.2. Температуры плавления в концентрационном ряду синтезированных по разработанной методике фаз в системе $Li_2MoO_4-Li_2WO_4$ линейно

возрастали от содержания W^{6+} (рис.1). Полученные кристаллические фазы состава $Li_2Mo_xW_{1-x}O_4$ идентифицируются в структурном типе фенакита $R\bar{3}$ (148). Установлено, что, несмотря на наличие у кристаллического Li_2WO_4 полиморфного перехода фенакит—шпинель, введение более 5 моль.% Mo^{6+} приводит к стабилизации фенакитной структуры кристаллических фаз в системе Li_2MoO_4 - Li_2WO_4 .

Рис.1. Концентрационные зависимости температур этапов синтеза, плавления смесей и синтезированных фаз в системе Li₂MoO₄–Li₂WO₄

На основе синтезированных фаз состава $Li_2Mo_xW_{1-x}O_4$ были получены керамика и кристаллы. Методом прессования с последующим обжигом в течение 4-х часов при температуре 600°С получали керамические материалы на основе фаз состава $Li_2Mo_xW_{1-x}O_4$, которые обладали достаточной прочностью для нанесения электродов и проведения исследований электрофизических и влагочувствительных свойств.

Методом выращивания из расплавов (метод Чохральского) были выращены кристаллы состава Li_2MoO_4 , $Li_2Mo_{0.12}W_{0.88}O_4$ (шихта $Li_2Mo_{0.15}W_{0.85}O_4),$ $Li_2Mo_{0.08}W_{0.92}O_4$ (шихта $Li_2Mo_{0.05}W_{0.95}O_4$) Химический состав определяли фотометрическим методом анализа. Все кристаллы были прозрачными, неокрашенными, с небольшими расплавными включениями (рис.3). Кристаллы с высоким содержанием W^{6+} состава $Li_2Mo_{0,08}W_{0,92}O_4$ и $Li_2Mo_{0,12}W_{0,88}O_4$ имели структурный тип фенакита $R\bar{3}$. Рентгеновская плотность выращенных кристаллов незначительно (1,4 %-3,2 %) превышала гидростатическую, что свидетельствует о наличии дефектов или примесей в кристаллах. Зависимость гидростатических плотностей выращенных кристаллов $(3,03 \text{ r/cm}^3)$, $\text{Li}_2\text{Mo}_{0.15}\text{W}_{0.85}\text{O}_4$ $(4,27 \text{ r/cm}^3)$, $\text{Li}_2\text{Mo}_{0.05}\text{W}_{0.95}\text{O}_4$ Li₂MoO₄ составов (4,39 г/см³) от содержания W⁶⁺ хорошо описывается линейной зависимостью с коэффициентом корреляции 1,0, что, наряду с данными РФА, свидетельствует об образовании ряда твердых растворов со структурой фенакита в системе Li₂MoO₄-Li₂WO₄.

Возможность легирования фаз состава Li₂Mo_xW_{1-x}O₄ с сохранением структуры фенакита была рассмотрена на примере состава кристалла Li₂Mo_{0,06}W_{0,94}O₄ (шихта Li₂Mo_{0,05}W_{0,95}O₄). Методом Чохральского были выращены легированные Co²⁺ кристаллы: кристалл 1 (шихта с содержанием 1,0 моль.% Co²⁺) -прозрачный, голубого цвета; кристалл 2 (шихта с содержанием 2,5 моль.% Co²⁺) - непрозрачный, синезеленого цвета. По данным фотометрического и атомно-адсорбционного методов анализа вошло менее 0,05 масс.% Co²⁺. Гидростатические плотности кобальтсодержащих кристаллов близки. Сопоставление данных РФА Li₂MoO₄ и кобальтсодержащих кристаллов показало, что последние обладают кристаллической структурой фенакита R $\overline{3}$.

Li₂MoO₄ Li₂Mo_{0,12}W_{0,88}O₄ Li₂Mo_{0,08}W_{0,92}O₄ Рис.3. Кристаллы, выращенные методом Чохральского

Для установления морфологических особенностей огранения и корреляции формы кристалла с симметрией его кристаллической решетки были выращены методом испарения из водных растворов кристаллы Li_2MoO_4 . При кристаллизации из растворов преобладающей являлась комбинированная форма огранения, состоящая из граней гексагональной призмы и ромбоэдра, характерной для центрального вида симметрии тригональной сингонии (рис.4). Отмечены случаи образования кристаллов ромбоэдрического габитуса и двойниковых сростков. В условиях быстрой кристаллизации наблюдали двойники, которые со временем срастались в сферические образования радиально-лучевого строения, а также округлые или сильно искажённые формы роста: листовые, чешуйчатые, шаровидные. Соотношение габитуса в условиях медленной кристаллизации в среднем составляло 2:1, в условиях быстрой кристаллизации от 5:1 до 15:1, что указывает на высокую скорость роста вдоль главного направления. Крупные и прозрачные кристаллы Li_2MoO_4 , выращенные методом испарения растворителя и методом Белюстина-Степановой имели огранение гранями ромбоэдра и гексагональной призмы, как и кристаллы, наблюдаемые при исследованиях под микроскопом. Кристаллы Li₂MoO₄, полученные разными методами, имели близкие значения параметров решетки, рентгеновской и гидростатической плотности. Граней простых форм, характерных для примитивного вида симметрии, не наблюдали. При сопоставлении форм выращенных из водных растворов кристаллов Li₂MoO₄ с природными кристаллами фенакита Be₂SiO₄ установлена близость их гранных форм. Моделирование форм огранения кристалла Li₂MoO₄ в программе FACES, проведенное с учетом доминантных природных форм фенакита и результатов данных РФА кристалла Li₂MoO₄ показало, что наиболее вероятны для кристаллов $\{101\}$, $\{502\}$ (рис.4).

морфология при медленной кристаллизации: характерная форма роста, двойник, ромбоэдр

Рис.4. Морфология кристаллов Li₂MoO₄ при медленной и быстрой кристаллизации,

моделирование формы идеального кристалла

Исследование временных зависимостей скоростей роста Li_2MoO_4 (4 кристалла) в условиях медленной скорости испарения растворителя показало, что скорости роста кристаллов как вдоль, так и перпендикулярно главной оси уменьшаются по гиперболической зависимости (рис.5). Скорость роста ромбоэдра (перпендикулярно главной оси) в 10 раз выше, чем скорость роста гексагональной призмы (вдоль главной оси). Доля вклада объёма призмы и ромбоэдра в общий объём составила 90 % и 10 % соответственно. Общий объём, объём ромбоэдра и гексагональной призмы монотонно увеличиваются, что свидетельствует о сохранении при росте форм ромбоэдр и гексагональная призма (рис.5).

Рис. 5. Временная зависимость линейной скорости, объемов простых форм огранения $(V_{\text{призмы}}, V_{\text{ромбоэдра}})$ и общего объема кристаллов Li₂MoO₄ (V_{об})

<u>В четвертой главе</u> приведены результаты исследований электрофизических и влагочувствительных свойств материалов состава Li₂Mo_xW_{1-x}O₄, рассмотрены возможности создания на их основе сенсоров влажности и применение в составе систем контроля.

Рис. 6. Температурная зависимость сопротивления керамики состава Li₂Mo_xW_{1-x}O₄ на примере Li₂Mo_{0,50}W_{0,50}O₄ (1 и 2 – нагрев и охлаждение соответственно)

Температурные зависимости проводимости и сопротивления фаз концентрационного ряда состава Li₂Mo_xW_{1-x}O₄ (100 Гц и 1000 Гц) имели одинаковую форму и монотонный характер с областями примесного сопротивления I (T≤425 K) и собственного сопротивления II (425 K≤ T ≤ 923 K). В области I установлено влияние паров воды на электро-

физические свойства фаз Li₂Mo_xW_{1-x}O₄ (рис.6). В области II температурные зависимости проводимости хорошо описываются уравнением Аррениуса с коэффициентом корреляции не менее 0,95. Увеличение концентрации W⁶⁺ снижает величину энергии активации проводимости. При нагреве и охлаждении наблюдали небольшой гистерезис в сопротивлении образцов. Отмечено, что диэлектрическая проницаемость в области I растет незначительно до 8÷12. По результатам измерений керамику на основе фенакитоподобных фаз состава Li₂Mo_xW_{1-x}O₄ можно отнести к диэлектрическим материалам.

Таблица 1.

Коэффициенты уравнения Аррениуса вида $ln \sigma = a - b \cdot 1/T$

и энергии активации собственной проводимости ΔE_a на частотах 1000 Гц и 100 Гц

										1		
Состав	100 Гц		100 Гц			1000 Гц			1000 Гц			
	нагрев			охлаждение			нагрев			охлаждение		
	a	b	ΔE_a	a	b	ΔE_a	a	b	ΔE_a	а	b	ΔE_a
Li ₂ MoO ₄	10,79	16,78	1,45	10,56	16,42	1,44	10,72	16,68	1,41	10,36	16,23	1,40
Li ₂ Mo _{0,90} W _{0,10} O ₄	12,84	15,16	1,31	10,75	14,10	1,33	11,95	14,47	1,21	10,17	13,48	1,16
Li ₂ Mo _{0,80} W _{0,20} O ₄	13,43	17,68	1,52	10,64	14,76	1,27	13,15	17,41	1,50	10,61	14,73	1,27
Li ₂ Mo _{0,50} W _{0,50} O ₄	10,19	13,65	1,18	11,83	14,14	1,22	9,22	12,92	1,11	11,22	13,69	1,18
Li ₂ Mo _{0,40} W _{0,60} O ₄	6,37	11,80	1,02	7,09	11,99	1,03	5,32	10,93	0,94	5,71	10,85	0,93
Li ₂ Mo _{0,25} W _{0,75} O ₄	10,82	13,74	1,18	11,09	13,65	1,18	9,89	13,08	1,13	10,32	13,17	1,13
Li ₂ Mo _{0,20} W _{0,80} O ₄	11,07	14,48	1,25	10,71	13,94	1,20	10,32	13,87	1,19	10,05	13,43	1,16
Li ₂ Mo _{0,05} W _{0,95} O ₄	11,01	14,80	1,27	11,47	14,50	1,25	10,04	14,07	1,21	11,15	14,24	1,23

для керамики состава $Li_2Mo_xW_{1-x}O_4$

Для изучения влагочувствительных свойств были получены сенсоры влажности: на керамику состава $Li_2Mo_xW_{1-x}O_4$ наносили методом трафаретной печати с последующим вжиганием при 590°С электроды (серебросодержащая паста) и припаивали токовыводы. Статические характеристики сенсоров влажности всего концентрационного ряда, измеренные по сопротивлению и емкости, имели монотонный характер и одинаковую форму, что выгодно отличает их от известных керамических сенсоров, работающих на основе сорбции паров воды в порах керамики. В концентрационном ряду влагочувствительных материалов состава $Li_2Mo_xW_{1-x}O_4$ с увеличением содержания W^{6+} установлено расширение диапазона измеряемой относительной влажности, но снижение влагочувствительности и быстродействия (табл.2). Исследование динамической характеристики при изменении от 99 % отн. вл. до 20 % отн. вл. (процесс десорбции) показало, что ее можно для всего концентрационного ряда описать переходной функцией инерционного звена первого порядка. По комплексу характеристик разработанные влагочувствительные материалы состава $Li_2Mo_xW_{1-x}O_4$ могут быть перспективными для изготовления сенсоров влажности широкого диапазона влагосодержаний (табл.2).

Таблица 2.

Параметр	Состав $L_2 Mo_x W_{1-x} O_4$							
		X = 0,70	X = 0,50	X = 0,40	X = 0,30	X = 0,20	X = 0.05	
Диапазон рабочих температур, °С		-10 ÷ 25	-10÷30	-10÷40	-10÷45	-10 ÷ 50	-10 ÷ 60	
Диапазон измерения относи- тельной влажности, %		5 - 75	5 - 80	5 - 80	5 - 80	5 - 85	5 - 95	
Динамический диапа-	R _H	$8,70 \cdot 10^{6}$	$1,87 \cdot 10^9$	$1,23 \cdot 10^9$	$2,00.10^9$	$2,00.10^9$	$1,23 \cdot 10^9$	
зон сопротивления, Ом:	R _ĸ	$1,18 \cdot 10^4$	$2,15 \cdot 10^3$	$2,34 \cdot 10^3$	$7,23 \cdot 10^3$	$5,34 \cdot 10^3$	$2,46 \cdot 10^3$	
Чувствительность по сопротивлению	lgR/ % отн. вл	0,248	0,138	0,124	0,115	0,104	0,090	
Быстродействие, с		8	9	15	30	40	60	

Основные параметры влагочувствительных керамических материалов

Исследование возможности применения полученных сенсоров влажности в медицине (изучения влияния психоэмоционального состояния человека на сердечнососудистую систему), для атомной промышленности (при макетных испытаниях в системе раннего обнаружения утечек водяных паров), в силикатной промышленности (в системе контроля влажности теплоносителя при сушке керамики) показало их эффективность.

<u>В пятой главе</u> приведены исследования люминесцентных и сцинтилляционных свойств кристаллов Li_2MoO_4 и $Li_2Mo_{0,08}W_{0,92}O_4$, показана возможность применения Li_2MoO_4 в качестве криогенного фонон-сцинтилляционного детектора.

Люминесценция кристаллического Li₂MoO₄ обнаружена при облучении пучком ускоренных электронов при температурах 10 K, 85 K и 295 K. Форма спектров зависит от температуры: интенсивность люминесценции повышается с понижением температуры (рис.7). Изменение величины энергии возбуждения не влияет на форму спектра. Люминесценция Li₂Mo_{0,08}W_{0,92}O₄ была зарегистрирована только при 10 K, форма спектра зависела от энергии возбуждения. Время затухания люминесценции для Li₂MoO₄ и Li₂Mo_{0,08}W_{0,92}O₄ составляет более 1 мкс. Сопоставление впервые измеренных спектров отражения Li₂MoO₄ в интервале энергий 3,5 – 25 эВ с литературными данными спектров отражения CaMoO₄, SrMoO₄, BaMoO₄, MgMoO₄ показало общие особенности в диапазоне энергий до 15 эВ и различия в области более высоких энер-

гий, обусловленные электронными переходами с катионных уровней. По-видимому, это связано с тем, что кристаллическая структура рассмотренных молибдатов характеризуется изолированными тетраэдрами $MoO_4^{2^-}$. В спектрах возбуждения люминесценции Li_2MoO_4 также отмечены соответствия, что позволяет сделать вывод о перспективности использования молибдата лития в качестве модельного при исследованиях электронной структуры молибдатов с изолированными тетраэдрами $MoO_4^{2^-}$.

Обнаруженная в работе низкотемпературная люминесценция позволила рассмотреть возможность применения Li₂MoO₄ в качестве криогенных сцинтилляционных болометров для поиска двойного безнейтринного бета-распада благодаря высокому содержанию молибдена в Li₂MoO₄, возможности выращивания крупных кристаллов расплавными растворными И методами, отсутствию внутреннего радиационного фона. Световой отклик кристалла Li₂MoO₄ при криогенных температурах (≈10 мК) составил 7 % относительно светового сигнала кристалла CdMoO₄, использовавшегося для сравнения. Достигнуто хорошее разделение α- и γ- событий, которое свидетельствует о наличии сцин-

тилляционных свойств у молибдата лития и перспективности его применения в качестве криогенного фонон-сцинтилляционного детектора.

Выводы:

- 1. Разработана методика синтеза кристаллических фаз со структурой фенакита в системе Li_2MoO_4 - Li_2WO_4 из трехкомпонентной системы. Установлен двухстадийный механизм протекания синтеза. Отмечена тенденция возрастания температур синтеза с возрастанием содержания W^{6+} ;
- 2. Установлено, что, несмотря на наличие у кристаллического Li₂WO₄ полиморф-

ного перехода фенакит—шпинель, введение более 5 моль.% Mo^{6+} приводит к стабилизации фенакитной структуры кристаллических фаз в системе Li_2MoO_4 - Li_2WO_4 . Определены температуры плавления фаз, величины которых возрастают с увеличением концентрации W^{6+} ;

- 3. Методами выращивания из растворов и из расплавов получены кристаллы состава $Li_2Mo_xW_{1-x}O_4$ (x = 0,08;0,12;1,00) и кристаллы $Li_2Mo_{0,06}W_{0,94}O_4$, легированные ионами Co^{2+} , установлена их принадлежность к структурному типу фенакита $R\bar{3}$;
- Установлено огранение кристаллов Li₂MoO₄ в водных растворах преимущественно гранями гексагональной призмы и ромбоэдра и наличие анизотропии их скоростей роста, сохранение при росте простых форм ромбоэдр и гексагональная призма;
- Установлен монотонный характер температурных зависимостей электрофизических свойств (сопротивления, проводимости, диэлектрической проницаемости) в концентрационном ряду керамики на основе фаз состава Li₂Mo_xW_{1-x}O₄; по комплексу электрофизических характеристик керамику можно отнести к диэлектрическим материалам;
- 6. Выявлено наличие влагочувствительных свойств керамики на основе фаз состава Li₂Mo_xW_{1-x}O₄, отмечен монотонный характер статических и динамических характеристик сенсоров влажности (по емкости и сопротивлению). Увеличение содержания W⁶⁺ в составе керамики расширяет диапазон измеряемой относительной влажности. Влагочувствительные материалы в системе Li₂MoO₄-Li₂WO₄ по комплексу характеристик могут быть перспективными для изготовления сенсоров влажности широкого диапазона изменения влажности;
- 7. Разработан сенсор влажности на основе керамических материалов состава Li₂Mo_xW_{1-x}O₄, канал влажности на его основе, который успешно опробован в компьютеризированных системах в медицине (изучения влияния психоэмоционального состояния человека на сердечно-сосудистую систему), для атомной промышленности (при макетных испытаниях в системе раннего обнаружения утечек водяных паров), в силикатной промышленности (в системе контроля влажности теплоносителя при сушке керамики);
- 8. Установлено наличие люминесцентных свойств кристаллов Li₂Mo_{0,08}W_{0,92}O₄,

Li₂MoO₄,при температурах 10 K, 85 K и 295 K, подтвержденное спектрами собственной люминесценции. Показано, что на формирование электронной структуры Li₂MoO₄ практически не оказывают влияние электронные состояния катиона Li⁺, что делает перспективным использование кристаллов Li₂MoO₄ в качестве модельных объектов при исследовании влияния природы катиона на электронную структуру молибдатов;

 Установлено наличие сцинтилляционных свойств кристалла Li₂MoO₄ и показана перспективность его применения в качестве криогенного (10 мК) фононсцинтилляционного детектора для поиска двойного безнейтринного бета-распада.

Основные результаты диссертационной работы изложены:

- 1. Баринова, О.П. Исследование оптических свойств и низкотемпературной люминесценции монокристаллов в системе Li₂MoO₄-Li₂WO₄/O.П. Баринова, **С.В. Кирсанова**, В.Н. Колобанов и др.//Перспективные материалы, 2008.-№4.– С.34-43.
- 2. Баринова, О.П. Влагочувствительная керамика системы Li₂MoO₄-Li₂WO₄/ О.П. Баринова, С.В. Кирсанова // Стекло и керамика, 2008. № 10. С. 40-43.
- 3. *Баринова, О.П.* Выращивание и исследование свойств кристаллов Li₂MoO₄ со структурой фенакита/О.П. Баринова, А.А. Майер, **С.В. Кирсанова**//Межд. Конф. по росту и физике кристаллов: Тез. докл. Москва, 1998 г. с. 40.
- 4 *Баринова, О.П.* Твердотельные сенсоры влажности для контроля влагосодержания технологических сред при переработке и транспортировке нефти и газа/ О.П. Баринова, **С.В. Кирсанова**, С.В. Корнилов// Передовые технологии на пороге XXI века ICAT'98: Тез. докл. Межд. конф. Ч. 1. –Москва, 1998. С. 94 95.
- 5. Баринова, О.П. Сенсоры влагосодержания для индикации микропримесей воды в авиамаслах и топливах/О.П. Баринова, С.В. Кирсанова, С.В. Корнилов// Передовые технологии на пороге XXI века ICAT'98: Тез. докл. Межд. конф. Ч. 2. Москва, 1998. С. 456 457.
- Кирсанова, С.В. Применение сенсоров влажности для мониторинга интенсивности потовыделения/С.В Кирсанова, О.П. Баринова, А.А. Майер, А.В. Вабниц, В.М. Хаютин//ХІІ Межд. конф. «МКХТ-1998»: Сб. науч. тр. - Москва, 1998.-т. XII. -С.87.
- Баринова, С.В. Твердотельные быстродействующие сенсоры влажности/ О.П. Баринова, С.В. Кирсанова, С.В. Корнилов// VI Межд. Конф. «Безопасность АЭС и подготовка кадров»: Тез. докл. – Обнинск, 1999. – С. 95 – 96.

- Баринова, О.П. Применение сенсоров влажности в системе контроля локального потовыделения человека/О.П. Баринова, С.В Кирсанова, А.В. Вабниц, В.В. Ермишкин// Всесоюз. конф. «Функциональные материалы и структуры для сенсорных устройств»: Тез. докл.– Москва, 1999. – С. 47 – 48.
- 9. Баринова, О.П. Синтез и исследование спектров поглощения и люминесценции фенакитоподобных фаз в системе Li₂MoO₄ Li₂WO₄, легированных Co²⁺/O.П. Баринова, **С.В. Кирсанова**// XV Межд. конф. «МКХТ-2001»: Сб. науч. тр. Москва, 2001.- т. XV, № 3. С. 54 55.
- 10. Никитушкин, А.А. Измерительная система раннего обнаружения утечек водяных паров в производственных помещениях атомных электростанций /А.А. Никитушкин, О.П. Баринова, С.В. Кирсанова//Научная сессия МИФИ-2002 «Научноинновационное сотрудничество» ч.1: Тез.док. конф - Москва, 2002. - С.87-88
- 11 Баринова, О.П. Изучение характеристик сенсоров влажности СВ-В-6 применительно к условиям АЭС/ О.П. Баринова, С.В. Кирсанова, В.С.Гальцов, В.Г. Мальцев и др. //Научная сессия МИФИ-2002 «Научно-инновационное сотрудничество», ч.1: Тез.док.конф."- Москва,2002.- С.88-89
- 12 Баринова, О.П. Применение автоматизированной системы контроля влажности теплоносителя при сушке керамики / О.П. Баринова, С.А. Першиков, В.Е. Жбанко, С.В. Кирсанова//XVII Межд. конф. «МКХТ-2003»: Сб. науч. тр –Москва, 2003 С.16 22.
- 13 Баринова, О.П. Система контроля влажности газовых сред для промышленности строительных материалов/ О.П. Баринова, С.А. Першиков, В.Е. Жбанко, А.А. Никитушкин, С.В. Кирсанова// Межд. НПК «Наука и технология силикатных материалов настоящее и будущее»: Тез. докл. Москва, 2003 т. V.- С.167-171.
- 14 Баринова, О.П. Выращивание и исследование свойств монокристаллов в системе Li₂MoO₄ Li₂WO₄/О.П. Баринова, С.В. Кирсанова, В.А. Нефедов, О.А. Василенко// XI Нац. Конф. по росту кристаллов «НКРК-2004»: Тез. Докл. Москва , 2004 С. 184.
- 15 Kitaeva, I.V. Investigation of Molybdate Single Crystals with Light Cations / I.V.Kitaeva, V.N. Kolobanov, V.V. Mikhailin, D.A. Spassky, O.P. Barinova, S.V.Kirsanova and etc.// Proc. of the 8th Int. Conf. on Inorg. Scint. and Their Use in Scientific and Industrial Applications, September 19-23.–Ukraine, Alushta, 2005.-P. 44-47.
- 16 Баринова, О.П. Исследование люминесцентных характеристик монокристаллов Li₂Mo_xW_{1-x}O₄ / О.П. Баринова, С.В. Кирсанова, В.А. Нефедов, Д.А.Спасский и др.// 5^{ой} Межд. Конф. «Рост монокристаллов и тепломассоперенос» (ICSC-05): Тез. докл. – Обнинск, 2005. – С.398-402.
- 17 *Баринова, О.П.* Сцинтилляционные свойства монокристаллических материалов в системе Li₂MoO₄-Li₂WO₄/O.П. Баринова, **С.В. Кирсанова**, Т.В.Титова и др.// XII Нац. конф. по росту кристаллов «НКРК-2006»: Тез. докл.– Москва, 2006. С. .280.

- 18 Баринова, О.П. Монокристалл Li₂MoO₄ возможный криогенный сцинтилляционный болометр для исследования двойного β-распада изотопа ¹⁰⁰Mo/ О.П. Баринова, С.В. Кирсанова, С. Пирро и др.// XII Нац. конф. по росту кристаллов «НКРК-2006»: Тез. докл. – Москва, 2006. – С.281
- 19 Акимова, Е.М. Изучение монокристаллов молибдата лития в качестве материала для криогенных сцинтилляционных болометров/ Е.М. Акимова, О.П. Баринова, Ф.А. Даневич, С.В. Кирсанова и др. // XVIII Менделеевского съезда по общей и прикладной химии: Тез. докл.. - М.: Граница, 2007. - т.2. – С.79.
- 20 *Баринова, О.П.* Морфологические особенности кристаллизации молибдата лития из водных растворов/ О.П. Баринова, **С.В. Кирсанова** // XIII Нац. конф. по росту кристаллов «НКРК-2008»: Тез. Докл. Москва, 2008. С.226.
- 21 Barinova, O.P. Intrinsic radiopurity of a Li₂MoO₄ crystal/ O.P. Barinova, F.Cappella, R. Cerulli, F.A. Danevich, S.V. Kirsanova and etc.// Nuclear Instruments and Methods, 2009. V. A607, № 3. P. 573-575.
- Barinova, O.P. First test of Li₂MoO₄ crystal as cryogenic scintillating bolometer/ O.P. Barinova, F.A. Danevich, V.Ya. Degoda, S.V.Kirsanova and etc.// Nuclear Instruments and Methods, 2010. – V. A613, № 1. – P. 54-57.