
1

Adaptive Tuning of Drop-Tail Buffers for Reducing
Queueing Delays
Rade Stanojević, Robert N. Shorten

The Hamilton Institute, National University of Ireland, Maynooth

Abstract— Internet router buffers are used to accommodate
packets that arrive in bursts and to maintain high utilization of
the egress link. Such buffers can lead to large queueing delays.
We propose a simple algorithm, Active Drop-Tail (ADT), which
regulates the queue size, based on prevailing traffic conditions,
to a minimum size that still allows for a desired (high) level of
utilization. Packet levelns-2simulations are provided to show that
Adaptive Drop-Tail achieves significantly smaller queues than
current approaches at the expense of 1-2% of the link utilization.

Index Terms— Router buffers, Drop-Tail queues, queueing
delays, TCP.

I. I NTRODUCTION

T RADITIONALLY, router buffers have been provisioned
according to the delay-bandwidth product (DBP) rule:

namely, one chooses the buffer size asq = B×T , whereB is
the rate of the link served by the router, andT is the “typical” 1

round trip time (RTT) experienced by connections utilizing the
buffer. This amount of buffering allows for 100% utilization
of the egress link under all traffic conditions. Following this
rule, most router buffers are designed to have 100-250ms
of buffering. This, together with the TCP mechanism of
congestion avoidance, ensures high link utilization. In the
last few years, several studies related to buffer sizing at a
congested router have occurred [1], [2], [3], [4]. For example,
it is claimed in [2] that the amount of buffer space needed for
high utilization of a link is highly dependent on the number
of active flows on the link. Namely, they claim that, ifN is
the number of active TCP flows, the buffer space required for
99% utilization of the link capacity isBAKM = B×T√

N
.

Having small buffers is attractive as it reduces the amount
of memory, required physical space, energy consumption, and
price of the router. From our point of view, however, the main
advantage of having small buffers is the reduction in queueing
delays and jitter. In the current Internet the average number
of hops on a random path is about 13 [5]. For a single flow
with that many hops it is possible to expect several congested
links on the path. Thus buffering of several hundredsms at
each router would imply very large queueing delays.

The 1√
N

bound in [2] depends on the number of active users
accessing a bottleneck link and the distribution of RTTs. Since,
for any congested link, these quantities vary and are difficult
to estimate, a network operator must provide as much buffer

1In [1], it is suggested that in order to ensure full utilization of the link one
should useB × Th of buffering, whereTh is the harmonic mean of round
trip times for all bottlenecked connections passing through the link. In this
paper we use the term “typical” RTT for harmonic meanTh

space as is necessary for the least possible number of active
users in order to keep utilization high at all times. Assuming
that a router uses a drop-tail queue of sufficient size to ensure
high utilization in the low number of users regime, queueing
delays will be much larger than necessary in regimes with
a large number of users. Motivated by this observation we
develop a simple algorithm, called Active Drop-Tail (ADT),
which keeps the available buffer space as small as possible
while maintaining a certain level of utilization. Thus, for a
large number of users the available queue size will be low,
and for a low number of users will be as large as necessary
to achieve high utilization.

II. A CTIVE DROP-TAIL ALGORITHM

We propose a discrete-time queue management algorithm,
called Active Drop-Tail (ADT), that tries to “find” the smallest
queue size that allows the outgoing link to operate at a given
desired utilizationu. ADT has two stages: (i) estimating
the (average) throughput of the link and (ii) adjusting the
available buffer space once per sampling period based on this
measurement. In order to estimate the throughput, at each
sampling time we first compute the current throughput as the
number of bytes enqueued normalized by the length of the
sampling interval. We then compute a weighted average of the
throughput. We will control the available buffer space based
on this weighted average.

ADT maintains an internal variableqADT that corresponds
to the number of packets that can be accommodated in the
buffer. The basic idea is to modify2 qADT based on the
estimated average throughput. If the average throughput is
less than the desired utilization,qADT is increased to allow
more buffering, yielding higher utilization. On the other
hand, if the average throughput is greater than the desired
utilization, we decreaseqADT to regulate utilization to the
desired level. For the purposes of adjustingqADT we use
a Multiplicative Increase - Multiplicative Decrease (MIMD)
strategy. While other control strategies are possible, our
simulations show that a simple MIMD approach works well
to reduce the queue size needed to maintain a certain level
of utilization. Assuming that network conditions do not
vary quickly3, the MIMD parameter should be chosen to
allow qADT to be halved/doubled in a few seconds up to

2The idea of adapting available buffer space has been exploited in [6], but
in a very different context.

3Measurements [7] show that, on typical 150Mbps+ links, basic IP param-
eters (such as the number of active connections, proportion of TCP traffic,
aggregate IP traffic, etc.) do not change dramatically in short time periods.

2

one minute. ADT deals with arriving packets in the same
fashion as drop-tail withqADT as the queue limit, i.e. if, at
the moment of packet arrival, the queue has size less than
qADT − 1, then packets the packet is enqueued. Otherwise
it is dropped4. Pseudo-code describing the ADT algorithm
is given in the table below. The parameters of ADT are as
follows. ρ is an averageing parameter in(0, 1) and is used to
calculate the weighted average of the throughput.c > 1 is the
MIMD parameter for controllingqADT . SamplePeriod and
u are the sampling period and desired utilization respectively.

ON EVERY PACKET ARRIVAL:
IF (now − LastUpdate) > SamplePeriod

. CURTHR := NmbBEnq(now)−NmbBEnq(LastUpdate)
now−LastUpdate

. THR := ρ CURTHR + (1-ρ)THR

. IF (THR
ServiceRate < u)

. qADT := qADT · c

. OTHERWISE

. qADT := qADT

c
. END

. qADT := min(qADT , SizeOfBuffer)

. LastUpdate := now
END

In the above tableNmbBEnq(t) denotes the number of
enqueued bytes in the interval[0, t], and now is the current
sample time. The parameterρ is used to filter possible transient
effects, such as a flash crowd or a sudden decrease in arrival
traffic, and should be chosen such that weighted averaging
is performed over several congestion epochs5. While in most
cases congestion epochs last less than a few seconds, some
extreme situations (e.g., high bandwidth-low number of users)
might require a lower choice ofρ. Such situations can be easily
identified and dealt with by adaptingρ online: due to space
restrictions we do not describe the adaptation ofρ here other
than to note that it can be done in a straightforward manner.

Comment 1: In the case of a noncongested link, as long
as the average arrival rate is less than the desired utilization
u, the ADT algorithm will keepqADT at SizeOfBuffer;
i.e. at the actual buffer size. However, in noncongested links
queueing delays are negligible, and there is no need for ADT.

Comment 2: ADT is designed for loss based TCP. Delay-
based TCP proposals, like Vegas or FAST, require a certain
level of queueing delay as a congestion signal. Adaptation of
available buffer space in such circumstances is not beneficial.

III. E VALUATION

In this section we presentns2 packet level simulation
results on the performance of ADT6. Throughout this section
we use the following set of ADT parameters:ρ = 0.1,
SamplePeriod = 0.3sec, c = 1.01, and desired utilization
u = 0.99.

4We assume that the buffer is configured in packets. However one can easily
change the algorithm to trackqADT and queue size in bytes instead packets.

5A congestion epoch is the time between two consecutive packet losses.
6ns2 software used in these simulations can be found at

http://www.hamilton.ie/person/rade/ADT/.

0 50 100 150
0

200

400

600

Dr
op

−T
ail

0 50 100 150
0

200

400

600

AD
T

0 50 100 150
0

200

400

600

AR
ED

Time(sec)

Fig. 1. Queue sizes for Drop-Tail, ADT-0.99, and Adaptive RED

A. ADT, Drop-Tail, and Adaptive RED : Our first ns2
simulations are for 1000 TCP users with RTTs uniformly
distributed in the interval 40 to 440ms, and a packet size
1500B, all competing through a single bottleneck link with
capacity200Mb/sec. Figure 1 shows the queue occupancy
for a Drop-Tail (DT) queue with a buffer size of 500 packets
(30msec of buffering), an ADT queue, and an Adaptive
RED [8] queue. The following table contains the average
utilization (AU), loss rate (LR), average queueing delay
(aQd), Jain’s fairness index (JFI)[9] and average goodput
(AG) for each of these three disciplines. In order to show
how ADT adapts the available buffer space in the case of a
congested reverse path we performed a simulation with 1000
TCP connections in both directions competing over ADT
queues.

. AU(%) LR(%) aQd(ms) JFI AG(%)
DT 99.99 4.73 23.78 0.58 98.75

ADT 99.03 4.87 6.66 0.56 97.72
ARED 100.00 4.90 17.99 0.79 98.92

ADT(R) 99.04 4.73 17.14 0.70 94.54

As we can see from the previous table, the utilization of
Drop-Tail and Adaptive RED is 100% while the utilization
of ADT is 99.03%. The loss rates of all three queueing
disciplines are similar and are mainly driven by the congestion
control algorithms of the users. A stated secondary goal of
most RED-like schemes is to keep queueing delays small.
However, having designed ADT specifically to minimize
queueing delay, we see that the average queueing delay of
ADT, in this example, is three times less than that of Adaptive
RED. We note that even with reverse path traffic and heavy
congestion in both directions (i.e., ACK accumulation and
larger bursts) ADT is able to adapt the available queue size
in order to achieve the desired utilization (although because
of ACK losses goodput is significantly reduced).

B. Queue size, number of users, and loss rate :Here
we investigate the relationship between queue size, number
of users, and loss rate. In order to compare our results with
the 1√

N
bound from [2] we considerN TCP flows with

RTTs uniformly distributed in[80, 100]ms7 with a packet
size of 1500B. All flows compete via a bottleneck link of

7In deriving their 1√
N

bound the authors of [2] assume uniform RTTs.
For this reason we chose the RTTs in the range[80, 100]ms, to emulate the
condition of “almost the same” RTT.

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

Number of TCP flowsNe
ed

ed
 b

uf
fe

r s
pa

ce
, i

n
pa

ck
et

s
Average q

ADT
Bound (1): B

AKM
 = RTT× C/sqrt(N)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

Number of TCP flows

Lo
ss

 ra
te

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.94

0.96

0.98

1

Number of TCP flows

Ut
iliz

at
io

n

Fig. 2. AverageqADT (top), loss rates (middle), and utilization (bottom).

0 500 1000 1500 2000 2500 3000
0

200

400

600

Time in sec

Nu
mb

er
of

ac
tiv

e u
se

rs

0 500 1000 1500 2000 2500 3000
0

200

400

600

Time in sec

Qu
eu

e o
cc

up
an

cy

0 500 1000 1500 2000 2500 3000
0.95

0.96

0.97

0.98

0.99

Time in sec

Ut
iliz

ati
on

Fig. 3. Utilization andqADT with changing number of active TCP users.

200Mb/sec with an ADT queue. We varyN from 4 to 2000
and evaluate loss rate and averageqADT . In Figure 2 (top)
we compare the average queue size for a fixed number of
users with the estimate given in [2]. We observed close fit to
the theoretical bound from [2]. As we can see from Figure 2
(middle) the loss rate increases slowly withN . This is a
consequence of the time-out mechanism of TCP.

C. ADT and a varying number of users : We now
allow the number of users to vary with time8. We consider a
bottleneck link with capacity100Mb/s where the number of
active TCP users varies from 10 to 500 and back to 10 again,
with one user becoming active or inactive every two seconds
as depicted in Figure 3 (top). The RTT’s are randomly chosen
uniformly from the interval 10 to 300ms. As we can see in
Figure 3 (middle and bottom),qADT falls below 40 packets
for large numbers of users, while for a small number of active
users the required queue size is over 400 packets.

D. Selection of parameters : ADT is highly robust
to the choice of its parameters. To illustrate this we ran
a set of N TCP connections, over a100Mb/s link and
varied the ADT parameters as follows:SampleT ime in
range[100, 1000]msec; c ∈ {1.002, 1.01, 1.05}. We fixed the
weighted average factorρ = 0.1. We evaluated two cases,
low number of users:N = 20, and high number of users:
N = 200. Recall, that the performance goal of ADT is to
regulate utilization at a prescribed level; in our caseu = 0.99.

8As we deal with slowly varying environments, in our simulation we vary
the number of active users in a continuous manner rather than abruptly.

100 200 300 400 500 600 700 800 900 1000
0.97

0.975

0.98

0.985

0.99

0.995

1

SampleTime, in miliseconds

Ut
iliz

ati
on

N = 20, c =1.002
N = 20, c =1.01
N = 20, c =1.05
N = 200, c =1.002
N = 200, c =1.01
N = 200, c =1.05

Fig. 4. Average utilization for different choices of parameters.

The ability of ADT to achieve this objective for different
choices of parameters is depicted in Figure 4.

IV. CONCLUSIONS

In this letter we have presented a simple algorithm, ADT,
for keeping queueing delays small, while maintaining a certain
desired utilization. Via packet level simulations, we have
shown that, for networks serving a large number of TCP
flows, by allowing a 1-2% underutilization of a bottleneck link,
we can realise smaller average queueing delays than in other
queueing disciplines. We point out that this algorithm is easy to
implement in current routers, requiring a minimum amount of
processing power. Finally, we note that ADT strives to adjust
the available buffer space to accommodate bursts through the
network buffers irrespective of their generating mechanisms.

REFERENCES

[1] A. Dhamdhere, H. Jiang, C. Dovrolis. “Buffer sizing for congested
internet links”. Proceedings of IEEE INFOCOM, Miami, FL, March 2005.

[2] G. Appenzeller, I. Keslassy, N. McKeown. “Sizing router buffers”.
Proceedings of ACM SIGCOMM ’04, Portland, Oregon, USA, 2004.

[3] D. Wischik and N. McKeown. “Part I: Buffer sizes for core routers”.
ACM SIGCOMM Computer Communications Review, 2005.

[4] K. Avrachenkov, U. Ayesta, A. Piunovskiy. “Optimal choice of the buffer
size in the Internet routers”. Proceedings of the IEEE CDC, pp. 1143-
1148, Seville, Spain, 2005.

[5] Traffic measurements. [Online]. Available:
http://www.caida.org/tools/measurement/skitter/RSSAC/

[6] J. Sun, K.T. Ko, G. Chen, S. Chan, M. Zukerman. “Adaptive Drop-Tail:
A simple and efficient active queue management algorithm”. Proceedings
of International Teletraffic Congress, Berlin, Germany, 2003.

[7] Online: http://pma.nlanr.net/Special/.
[8] S. Floyd, R. Gummadi, S. Shenker. “Adaptive RED: An algorithm for

increasing the robustness of RED’s active queue management”. August
2001, online: http://www.icir.org/floyd/papers/adaptiveRed.pdf.

[9] R. Jain. ”The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing”. John Wiley and Sons, INC., 1991.

