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Abstract—In this paper we present new modeling and analysis technique

for characterizing the steady state performance of a TCP flow. We invert

the loss process in our model, by treating loss events arriving at the source

as a Poisson stream rather than packets going out on the network with some

loss probability . This enables us to model the window size behavior as a

Poisson Counter driven Stochastic Differential Equation and perform anal-

ysis. We use the data collected in [1] to validate our modeling and analysis

technique. Results indicate that our model is able to capture the behavior

of TCP throughput quite accurately. Our technique enables simple fluid

analysis of TCP and other TCP-like congestion control mechanism.

I. INTRODUCTION

The Transmission Control Protocol (TCP) [2] carries a sig-

nificant amount of today’s Internet traffic. Applications like

WWW (HTTP), email (SMTP), file transfer (FTP), remote ac-

cess (Telnet) etc. use TCP as a means of reliable transport.

The ubiquity of TCP necessitates that applications, which use

some other transport protocol but share the same link, remain

“TCP-friendly” in the sense that they should get a similar share

of bandwidth as TCP connections under the same conditions of

loss, round trip delay etc. Additionally, the stability of TCP is

prompting designers of congestion control mechanisms for Mul-

ticast applications to remain TCP-friendly. Examples of these

are given in [3], [4], [5]. Hence there is a great interest in analyz-

ing the performance of TCP and TCP-like algorithms to quantify

this notion of “TCP-friendliness”. There have been a number of

studies of TCP behavior, both via simulation as well as analysis

[1], [6], [7], [8], [9]. Aside from that, there is interest in the

formal analysis of TCP to study the effects of modifications like

RED [10] and study the performance of TCP-like algorithms for

other congestion control mechanisms. In this paper, we develop

and analyze a new model for the TCP Congestion Avoidance al-

gorithm. Our models differs from other models principally in

the way the losses are modeled. Traditional modeling of losses

in TCP analysis have been done from a source-centric point of

view. Those models assume that packets go out on the network

with some loss probability which may be constant or depend

upon factors like current window size etc. In our model, the

network is the source of losses (congestion) and sources receive

these signals (loss indications) as a Poisson process with some

rate . We then model the window size of TCP as a fluid, hav-

ing continuous increments as opposed to discrete ones. This

model lends itself to a formulation of the window size behav-
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ior as a Poisson Counter driven Stochastic Differential Equation

[11] (PCSDE). We analyze the PCSDE and obtain closed form

solutions for TCP throughput. We consider the effects of differ-

ent kinds of losses, viz. Timeout losses (TO) and Triple Dupli-

cate Ack (TD) losses. Our closed form solution also explicitly

accounts for the maximum window size limitation for TCP con-

nections, which is an important parameter in characterizing the

performance of TCP. We compare our results to other known re-

sults and formulae for TCP throughput. The remainder of the

paper is organized as follows. We describe our model in Section

2, briefly reviewing the properties of Poisson Counters neces-

sary for the development of the next section. We then cast the

window size behavior as a Stochastic Differential Equation. In

Section 3 we analyze our model and obtain closed form solution

for TCP throughput by solving the SDE. We compare predic-

tions of our formula with measurements done in [1] as well as

formulas derived there in Section 4. We see that our formula

does quite well, in regions of moderate to high throughput giv-

ing results comparable to and in some cases better than results

derived in [1]. Finally in Section 5 we present our conclusions.

II. MODELING

A. Loss modeling

TCP implements the additive increase multiplicative decrease

scheme to achieve a fair division of available bandwidth in a net-

work amongst competing sources (users). It is a window based

method in which, at any time, window size number of data pack-

ets are allowed in the network. This window size is additively in-

creased roughly every round trip time (RTT) until congestion is

detected whereupon it is multiplicatively decreased. The detec-

tion of congestion in the current implementations of TCP is im-

plicit, i.e. congestion is only detected by the loss of packets. All

flavors of TCP (TAHOE, VEGAS, RENO, SACK, FACK etc.)

are successive refinements of the original attempt to implement

ideal additive increase multiplicative decrease behavior. There

have been proposals to make the congestion indication more ex-

plicit using some marking schemes [10], [12]. Recent analyses

of TCP [1], [7], [8], [9] has been done from a source centric

point of view. The assumption is that a source sends out packets

in the network with an associated loss probability , which could

be identical for each packet (Bernoulli trials) or dependent on

states like current window size etc. As earlier stated, we model

the losses in a completely different and network centric way. We

try to model losses keeping in mind one of the goals of TCP ,
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which is congestion avoidance. We assume that the network is

a source of congestion, which the TCP flow tries to detect using

losses. We assume that this “detection arrival” or loss-arrival is

a Poisson process. The difference in the two loss models is ex-

emplified by Figures 1 and 2. Figure 1 shows the source centric

loss model, in which packets leave the source and go out on the

network with an associated loss probability , which may be

constant or variable depending on factors like current window

size etc. In contrast, in our network centric loss model, loss in-

dications arrive at the source from the network at a certain rate

(in the form of duplicate ACKs or gaps in sequence numbers).

Specifically we model this arrival process as a Poisson process.

The basic reasoning behind our model is as follows: a typi-

cal TCP connection on the Internet traverses a number of hops

before reaching the final destination. At each hop (router), the

packet is enqueued or dropped if the buffer is full. This over-

flow process is the congestion in the network which TCP tries to

detect. If the buffer overflow process at each queue is stationary

and orderly, then the overall congestion process is a sum of these

individual stationary, orderly processes. As the number of hops

(with losses) increases, the congestion process starts approach-

ing a Poisson process by Khinchine’s theorem [13]. Another

factor contributing to the Poisson like behavior is that the losses

seen by a single flow would be a sampling of the buffer over-

flow process, much like probabilistic thinning. As the number

of flows at each router starts increasing, then by Kallenberg’s

theorem [14] the thinned process starts approaching a Poisson

process. Therefore the loss process seen by a single flow at a

router is itself Poisson like already, making the aggregated loss

process seen by the flow closer to Poisson according to Khin-

chine’s theorem. We emphasize that our loss model is com-

pletely different from all other models analyzed elsewhere. This

loss model is central to the analysis carried out in this paper. At

the end of the paper we present statistical verification of our loss

model in an appendix.

B. Traffic model

We model the traffic as a fluid. The increase in window size is

considered continuous instead of step increase. It increases by 1

every round trip time (RTT) and hence the continuous increase

is represented as . We assume idealized behavior, i.e.

we model the losses as Poisson streams. We have two differ-

ent kinds of losses, triple duplicate ack (TD) losses and time

out losses (TO). The window size goes on increasing linearly

with every RTT until a loss occurs. For a TD loss the window

size is reduced to half it’s current value whereas for a TO loss

the window size is reduced to 1. In addition, for a TO loss the

sender does an exponential backoff for a time T0, 2T0....64T0

depending upon the number of successive TO losses detected.

We model the different kinds of losses as Poisson arrivals with

individual rates etc. Each process is represented

by a Poisson counter where is the arrival rate of the un-

derlying Poisson process.

C. Poisson Counter Driven Stochastic Differential Equations

We briefly review the properties of the Poisson counter [11] for

the purpose of this paper. Consider a Poisson process with

rate . We have

at Poisson arrival

elsewhere

where is the arrival rate of the Poisson process. If we have a

stochastic differential equation of the form

(1)

then using Ito’s rule we can write the differential equation for

(we’ll drop the part for simplicity) in the following

form

(2)

The terms after the first one account for the jump in the function

introduced by the jumps in due to the counters .

Finally, the independence of jumps property states that

D. Differential equation for the window size

Let be the window size. Then,

(3)

The first term reflects the additive increase part of TCP, the sec-

ond term reflects the multiplicative decrease and the third term

reflects the timeout behavior. For simplicity we consider only

single timeout losses. We have not modeled the slow start be-

havior of TCP since for typical window sizes seen in real traces,

the slow start part of the process takes only a few round trip

times and hence we neglect it for our analysis. It is possible



to model the slowstart behavior in a differential equation of the

following form. If is the slowstart threshold, then

where

is an indicator function reflecting whether the window size is

below the slowstart threshold or above it. However this com-

plicates analysis and doesn’t significantly affect the results (via

examination of real measurements) and therefore we chose not

to include it in our model.

III. ANALYSIS

To calculate the expected value of , we take expectations in

the above differential equation, (for now we assume only TD

and TO losses of the first order).

Interchanging the operations of differentiation and expectation,

we get

Solving the above for , we get

Taking the steady state solution ( ), we get

We’ll take into account the timeout backoff taken by TCP in a

later section. The throughput ( ) of the connection is obtained

by dividing the expected window size by RTT.

Until now we have not considered any limitation on the maxi-

mum window size. It is, in fact a very important parameter and

affects the solution considerably. To account for the maximum

window size, we modify (3) by multiplying the first term by an

indicator function, i.e.,

where

This ensures that the window size doesn’t grow once it has

reached . Again, taking expectations we get

Interchanging the operations of differentiation and integration,

we get

Using the same principles as before, we get the expected win-

dow size as

(4)

Using (2), we can get an equation for and by a similar

procedure as above we obtain

The unknown factor here is . To solve for

we look at the process

If Figure 3 represents the evolution of window size, then the

evolution of is represented by Figure 4. Since the loss ar-

rivals are modeled as Poisson, corresponds to the well known

Virtual Waiting Time in an queue. This enables

an alternative analysis of the process giving us a sufficient num-

ber of equations to account for all of the unknowns. We proceed

with the analysis in the following manner: The average work in

system is defined as the limit
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Every arrival brings in work which depends on the current work-

load in our system. The arrival of a TD loss brings in work

equal to whereas the arrival of a TO loss brings in

amount of work, where is the current work-

load. The corresponding quantities in the window size domain

are and respectively. Now let’s assume that

when a customer arrives in this hypothetical queue it is served

to completion without interruption once it enters service. Let’s

look at the behavior for a two customer case in Figure 5. While

an earlier customer is being serviced, the next ( ) customer

arrives. The arrival point on the time axis is marked by point .

The amount of work that the customer brings is the equal to the

length of the line segment , which we denote by . The prior

customer gets serviced by the point marked on the time axis.

Thus the delay seen by the customer is the length of the line

segment , which we denote by . Simple geometric consid-

erations show that the contribution of the customer to the total

area of the curve is the trapezoid , with the triangle

a

c
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b
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d

Fig. 5. Contribution to by each customer
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Fig. 6. Workload brought by each customer

contributing the part when the customer is in service. We’ll

denote that by . Then looking at Figure 6 the total amount

of work contributed by this customer is . While in

queue, the customer contributes to the system while when

in service it contributes the remainder of i.e. to the sys-

tem. Thus the total contribution of the customer to the area of

the curve is given by the trapezoid in Figure 6. The rectangle

is the contribution of a customer while it is waiting for service,

whereas the triangle is the contribution when it is in service.

Let be the service rate ( in our case). Thus, if

arrivals have occurred in the interval , then

an error term

with the error term occurring because of customers left unser-

viced by . Dividing by and taking the limit we obtain

an expression

(5)

where

and

The work brought by the customer depends on the type of loss

arrival, as well as the current workload of the system. For nota-

tional convenience, let’s denote by and by Now,

is given by

, the delay the customer sees before service is ,

where was the window size at the time of arrival. Thus

is given by



Combining (5) with expressions for and just ob-

tained, we get

(6)

We already have equations for and in terms of

and combining that with (6), we solve for

to obtain

Substituting the value of back into the equa-

tion (4), we get the value of throughput as a function of

and .

A. The timeout backoff

We can modify the preceding analysis to take into account the

backoff taken by TCP after a timeout occurs. The effect of

the backoff is that the window size doesn’t grow for a period

of seconds, after which it starts growing at the normal rate.

Thus, we need to suppress the term for a period of sec-

onds after a timeout occurs. We can achieve that by multiplying

the indicator function with another indicator function

which is for a period following a timeout and is else-

where. Thus, we have an event and another event

representing the max-window size and timeout sup-

pressions of respectively. The complements of the two indi-

cator functions represent mutually exclusive events. Hence, the

expectation operation would give the probability of the union of

the two events, i.e.

We can carry out the entire analysis in the same manner replac-

ing with . The only

change required is in the step to calculate the virtual waiting

time. Every timeout arrival will bring in an additional workload

of with a waiting time of as explained by Figure 7.

The dashed line indicates the additional waiting time before

the window starts growing again. Solving all the equations with

the additional term, yields

(7)
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Fig. 7. Additional workload introduced by the timeout backoff
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Fig. 8. Window size evolution with silence (backoff) periods

The presence of timeout backoff necessitates two corrections

to be applied to the throughput formula to get correct results.

If we look at Figure 8, the shaded portion refers to the backoff

or “silence” mode. During that time TCP is not transmitting

and we need to correct for that. The expression we obtained

for is for the entire time axis, we need an expression for

where is the average value over the active periods of

TCP. We obtain that by the following: Let be the total area of

the curve and the total “active” area. Let be the total time

TCP transmitted and the arrival rate of the TO losses (we use

as an estimate of the average time spent in the timeout

backoff mode). The height of the inactive area is . Then

This is the average value transmitted per . To get the num-

ber of rounds, we again have to look at the active period of TCP.

Thus, we have, as our final throughput formula

where



and is given by (8).

B. Special cases and comparison with other models

Traditional analysis of TCP has been done using a packet loss

model [1], [7], [8], [9]. Some involve considering timeouts

while others don’t. We can transform our formula to ones in-

volving a packet loss probability by invoking the following ar-

gument. Let be the loss probability, the expected throughput

and and the arrival rates in our loss model. Then

TCP has frequently been analyzed under the assumption of no

timeouts ( in our model) 1. Under that assumption, we

have the following relations:

Most analyses of TCP are done with the assumption that there

is no limit on the window size. That can be accommodated in

the above formula by letting . Then the above formula

reduces to

which is identical (up-to an empirical multiplicative constant)

derived in [8] and [7]. If we use delayed ACKS, then our mul-

tiplicative constant reduces by a factor of consistent with

results shown elsewhere.

IV. RESULTS

We used the datasets collected in [1] to verify our results. In

particular, we used the 100 second traces collected in that paper

as well as the estimated values of and as given in the

paper. To get an estimate of and , we simply used the

number of loss arrivals of each kind in a a particular 100 second

interval and divided that by 100 to get an average arrival rate.

We compare the throughput predicted by our formula with that

of the actual throughput (as well as throughput predicted by the

formula given in [1] (we use only the exact formula derived in

this assumption is likely to be more valid with the implementation of TCP
SACK
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that paper as it performs significantly better than others). We

took the 100 traces for each experiment and plotted the actual

throughput in descending order, i.e. the leftmost point of the

curve represents the trace which gave the maximum through-

put in a 100 second interval of the experiment and the rightmost

gave the lowest throughput. For each of those points, we also

plot the throughput predicted by the two formulas at the same

location. As can be seen, our formula does quite well in re-

gions of moderately low to high throughput. In the case of very

low throughput however our formula doesn’t do as well. The

reason for that being that in that regime TCP goes into multiple

timeouts. Thus firstly our assumption of only a single timeout

becomes invalid as is also our estimate of (since only very

few packets get transmitted, there are correspondingly only very

few loss indications, thereby artificially introducing a low loss

arrival rate). In addition, those areas correspond to loss rates of

nearly 60-80 % , which make our assumption of Poisson loss

arrivals unrealistic.

V. CONCLUSION

In this paper we have developed a new model for TCP and TCP-

like protocols. The key to our analysis is a completely different

loss model. The loss model enables us to cast the TCP window

size behavior as a Stochastic Differential Equation and obtain

closed form solution for it’s throughput via simple analysis. Al-

though we ignore details like fast recovery, fast retransmit, slow

start and make a fluid (continuous) approximation of the win-

dow size, our formula is able to predict real life measurements

with a great deal of accuracy indicating the power of our model.

Asymptotically our results reduce to results derived elsewhere.

Our model reflects reality when a single flow doesn’t signifi-

cantly affect loss rates, as in the case of dedicated buffers. The

simplicity of analysis and the accuracy of results suggests that

our model could be a useful tool in doing fluid analysis of trans-

port protocols. We are currently investigating application of our

techniques in analyzing multicast congestion protocols.
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APPENDIX

I. STATISTICAL TESTS

To test for Poisson arrivals, we have to test two different things:

(a) independent inter-arrival times and (b) exponentially dis-

tributed inter-arrival times. Note that (b) by itself is not enough,

as arrivals could happen deterministically to give an empirical

distribution function which looks exponential. We use the test of

renewal hypothesis suggested by Lewis and Robinson [15]. To

test for exponentiality we use the Anderson-Darling [16] test.

A few sample plots for the data collected in [1] are presented

(Figures 17-20). We treat the two types of loss indications sep-
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Fig. 18. Manic to Ganef

arately, i.e. triple duplicate and time out losses are analyzed

separately. We analyze 100 traces of length 100 seconds each

for the plots presented. The renewal statistic is plotted on the y-

axis whereas the exponentiality statistic is plotted on the x-axis

along with 95 % confidence lines for both. Points to the left of

and below the dashed lines satisfy the two criterion. As can be

seen, the assumption of Poisson arrivals is not very unrealistic.

The assumption about independent loss arrivals sees to be much

more valid than the exponential distribution assumption. The

renewal test was passed consistently by over 90% of the traces.

The exponentiality test ranged in the 60-80% success range for

most cases. Interestingly, even when the exponential distribu-

tion assumption fails badly, as in Figure 20, if we look at the

throughput plots for that corresponding trace, our formula does

quite well in predicting the performance, indicating the robust-

ness of the technique. As the number of hops and (more impor-

tantly) the number of users sharing lossy links becomes higher

and higher, we expect our model to come closer and closer to

reality.
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