DonNTU   Masters' portal

Abstract

Content

Introduction

The reliability and efficiency of the complex drainage depends safety, efficiency and regularity of mine [1, 2]. One of the ways to increase the reliability and efficiency of the drainage system is the use of monitoring and control as separate water-drainage installations and complex drainage systems in general. In the development of this issue important contribution made by such scientists as V. Geyer, V. Gruba, G. Tymoshenko, F. Papayani, V. Bessarabia, R. Fedyun and others.

1. Theme urgency

Statistical research on the reliability and efficiency the complex functioning of the mine dewatering showed presence of a significant number of failures in the mine dewatering plants [4]. Probability of failure of a drainage installation is pretty low, and after 2000 hours of operation is 0,15 to 0,3 for the principal and district units, and after 3000 h, respectively 0,03 and 0,08. This is due to several reasons, the main ones being excessive wear of pumps and pipeline network because of severe operating conditions pumping corrosive and contaminated water, the pumps in the non-rational modes and emergencies. Also, mine dewatering plants are energy-intensive installations, the power of which is an average of 20%, and the deep and flooded fields up to 40% of the capacity of all power consumers of the mine, which requires a complex drainage systems capable of operating in low-power mode of operation. One of the ways to increase the reliability and efficiency of the complex is the management of the mine dewatering sump installations technical means of automation. Existing automation does not fully solve the problem of exploitation of water drainage systems are made to the "obsolete" hardware components. Therefore, the development of monitoring and control of the complex drainage of the mine is a hot topic.

2. Goal and tasks of the research

Purpose – to reduce operating costs for the mine dewatering operation by providing energy-intensive dewatering plants in rational modes and exception of emergencies through the development and application of monitoring systems and the management of a complex mine drainage. The scientific challenge is to determine and study the mathematical model of energy-intensive modes of dewatering plants in rational modes, based on the rationale that the monitoring parameters, the control algorithm and circuit solutions for system monitoring and control of the complex drainage of the mine.

3. Designing system of monitoring and control by mine pumping complex

Dewatering of the mine complex has a complex structure consisting of a main and district dewatering plants. Figure 1 shows a typical structure of a complex of mine drainage.

A typical block diagram of a complex drainage pits

Figure 1 - A typical block diagram of a complex drainage pits
(animation: 7 shots, 7 cycles of repetition, 97.4 kilobytes)
(Blue line indicates the water level in the sump, and the arrows - direction of pumping water)

Design and operation of dewatering systems shall be in accordance with the requirements of the Rules of safety in coal mines [1].

The water is pumped to a sump installations from one horizon to the other and then to the surface of the mine by step scheme. Organization of pumping water drainage installation is possible in two ways: according to the flow of water in the drip pan, or the water level in the sump. [2] One of the advantages of the method according to the pumping of water inflow in the header is to reduce the capacity of the water separator, which we believe should be used in the management of the main drainage installation. When pumping the water to the water level in the sump switch off the drainage system is effected when a specified fixed levels.

One of the features of the functioning of the drainage installation is the volatility of its operational parameters. This is due to severe operating conditions, particularly pumping corrosive and contaminated mine water. By operating parameters dewatering plants include:
– in flow of water in the drip pan;
– water level in the sump;
– pressure in the discharge and suction line;
– temperature of the motor and pump bearings;
– vacuum in the intake manifold;
– power consumed by the motor;
– speed sensor vibration pump and motor.

System Requirements monitoring and control of the complex drainage of the mine are as follows:
1) To ensure trouble-free automatic start and stop dewatering plants according to the accepted method of dewatering management;
2) automatic control of the main operational parameters and protection from accidents while working as a drainage installation and dewatering of the mine complex;
3) provision of the complex drainage in low-power mode;
4) provision of automatic regulation of feeding the main drainage installation to stabilize the water level in the sump;
5) The prediction of the water level and rate of change of change in each bilge sump installation;
6) exchange data in real time between low-level devices and control system operator work station, as well as processing the information received, the display of information in human-readable form;
7) Maintain a database of real-time information on current dewatering plants, its archiving and report generation on the process of the mine drainage, etc.

According to the analysis of the pump control modes to reduce power consumption by setting the main bilge hours of peak load on the grid shaft of the control mode the mode of the pump shaft speed.

The structure of the proposed system monitoring and management of the complex is a two-level mine drainage. The first level is made performance monitoring dewatering plants, manages the real physical variables of individual dewatering plants. At the second level, there is a choice of operating modes and coordination between sub-systems monitoring and management of primary and district dewatering plants on the basis of accepted global quality indicators and mathematical models of the elements of the first level [11]. Network Wiring in the monitoring and management of the complex drainage of the mine as shown in figure 6, clarifies the relationship between the upper level of the system, which are operator workstations (RDF) Chief Manager, Chief Power and chief engineer of the mine, with the lower level. The signals of the operating parameters of the process pumping go to the workstation operators dewatering plants, where they are processed and formed the control commands to actuators drainage installation. Also, the values of the basic parameters of controlled via an industrial line communications (PLC), arrive in top-level analysis, stored in memory for decision-making and global management teams.

Figure 2 –	 Network Wiring in the monitoring and management of a complex mine drainage

Figure 2 – Network Wiring in the monitoring and management of a complex mine drainage

In Figure 2, we use the notation: UDHS – allows monitoring and supervisory control of the complex mine drainage; MC GMDI – allows monitoring and control of the main drainage installation; MC MDI – allows monitoring and control of the district drainage installation, FL – Industrial line of saints: RSO – operator workstation; BMS – block monitoring of electrical parameters of the drainage installation; SAR – automatic speed control of the main shaft of the drive motor sump installation.The block diagram of the subsystem monitoring and management of the main drainage installation is shown in Figure 3, where we have set: PZ – drive latches, BMVU – block monitoring of the main drainage installation; RFP – priming pump, CT – multi-media hub; LE – level sensor in the receiving pit, PE – pressure in the collecting reservoir; PE1 – pressure in the discharge line, PE2 – gauge vacuum in the intake manifold, SE1 – speed sensor vibration pump SE2 – speed sensor vibration motor, TE1, TE2 – Temperature sensor pump bearings, TE3, TE4 – temperature sensor motor bearings; UKM – monitoring device power consumption.

Figure 3 –	 Block diagram of the subsystem monitoring and management of the mine drainage installation

Figure 3 – Block diagram of the subsystem monitoring and management of the mine drainage installation

Conclusion

To reduce the accident rate and energy consumption, as well as the organization of the dewatering plants in energy-saving mode, analyzed the modes of operation of the complex dewatering of the mine, there are ways and means of control parameters dewatering plants, and methods of automatic control mode of installing a sump dewatering of the mine complex. An analysis of the formulated requirements for the system monitoring and control of the complex drainage of the mine, conducted a study of computer process control unit according to the main bilge water flow into water collector installation and the district drainage installation in power-saving mode, the developed circuit techniques for system monitoring and management of a complex mine drainage .

References

  1. НПАОП 10.0-1.01-10. Правила безопасности в угольных шахтах. Приказ Государственного комитета Украины по промышленной безопасности, охране труда и горному надзору № 62 от 23.03.2010. – 150 с.
  2. Гейер В. Г., Тимошенко Г. М. Шахтные вентиляторные и водоотливные установки / В. Г. Гейер, Г. М. Тимошенко – М.: Недра , 1987. – 229 с.
  3. Папаяни Ф. А., Трейнер Н. Б.,Никитин В. И., Чернышев Ю. И., Оверко В. М. Центробежные насосы и трубопроводные сети в горной промышленности: Справочное пособие / Ф. А. Папаяни, Н. Б. Трейнер, В. И. Никитин, Ю. И. Чернышев, В. М. Оверко. Под общ. ред. Ф. А. Папаяни и Н. Б. Трейнера. – Донецк: ООО "Східний видавничий дім", 2011. – 334 с.
  4. Тимохин Ю. В., Адам О. В., Антонов Э. И., Кошкальда Л. И., Паламарчук Н. В. Надежность высокооборотных насосов. Сборник научных трудов / Ю. В. Тимохин, О. В. Адам, Э. И. Антонов, Л. И. Кошкальда, Н. В. Паламарчук – Горная механика. Выпуск 1, часть 2., Донецк, 1991. – с. 81-87.
  5. Тимошенко Г.М. Научные основы проектирования и эксплуатации насосных установок в переходных режимах / Г. М. Тимошенко – К., Д., Вища школа, 1986. – 127 с.
  6. Маренич К. Н., Товстик Ю. В., Турупалов В. В. Автоматизированный электропривод машин и установок шахт и рудников: учебное пособие для студентов вузов / К. Н. Маренич, Ю. В. Товстик, В. В. Турупалов и др. – Донецк: ДВПЗ "ДонНТУ", 2012. –254 с.
  7. Курносов В.Г., Силаев В. И. Научные основы автоматизации в угольной промышленности: опыт и перспективы развития: монография / В. Г. Курносов, В. И. Силаев. – Междунар. институт независимых педагогических исследований МИНПИ – ЮНЕСКО, ОАО "Автоматгормаш им. В. А. Антипова". – Донецк: издательство "Вебер" (Донецкое отделение), 2009. – 422 с.
  8. Данильчук Г. И., Шевчук С. П., Василенко П. К. Автоматизация электропотребления водоотливных установок / Г. И. Данильчук, С. П. Шевчук, П. К. Василенко. – К.: Техника, 1981. – 102 с.
  9. Барашко О. Г. Автоматизированые системы управления энергопотреблением / О. Г. Барашко – Минск, 2011. – 322 с.
  10. Бессараб В. И., Федюн Р. В., Попов В. А. Управление шахтной водоотливной установкой в аварийных и аномальных режимах работы / В. И. Бессараб, Р. В. Федюн, В. А. Попов – Наукові праці ДонНТУ, випуск 106. [Электронный ресурс] – Режим доступа: http://ea.donntu.ru:8080/jspui/bitstream/123456789/6262/1/bessarab.pdf
  11. Червинский В. В., Бессараб В. И., Червинская Н. В. Многоуровневая система управления комплексом водоотлива горнодобывающего предприятия/ В. В. Червинский, В. И. Бессараб, Н. В. Червинская. [Электронный ресурс] – Режим доступа: http://masters.donntu.ru/2012/fkita/moath/library/article6.pdf
  12. Губка Ю. О., Оголобченко А. С. Исследование способа управления автоматизированным ступенчатым водоотливом с учетом периодов максимальных нагрузок в системе электроснабжения шахты / Ю. О. Губка, А. С. Оголобченко – Х Международная научно-техническая конференция аспирантов и студентов "Автоматизация технологических объектов и процессов. Поиск молодых" – Донецк, 2010.
  13. Мед А. П., Оголобченко А. С. Обоснование структуры подсистемы контроля параметров электроснабжения насосных установок главного водоотлива шахты / А. П. Мед, А. С. Оголобченко – ХІІ Международная научно-техническая конференция аспирантов и студентов "Автоматизация технологических объектов и процессов. Поиск молодых" – Донецк, 2012.
  14. ОАО "Научно-производственное объединение "Красный Металлист" [Электронный ресурс] – Режим доступа: http://www.kemz.konotop.net
  15. Частное акционерное общество "Донецкая инжиниринговая группа" [Электронный ресурс] – Режим доступа: http://www.deg.com.ua
  16. ООО "Научно-производственное предприятие РУДПРОМАВТОМАТИКА" [Электронный ресурс] – Режим доступа: http://rudpromavtomatika.uaprom.net
  17. Федюн Р. В. Принципы построения цифровых систем управления многоступенчатыми водоотливными установками угольных шахт / Р. В. Федюн – Сборник научных трудов НГА Украины № 11, том 2. Днепропетровск: РИК НГА Украины, 2001. – c. 22-26.