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Stabilization of Networked Control Systems with Data Packet

Dropout and Transmission Delays: Continuous-Time Case�
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The problem of data packet dropout and transmission
delays induced by communication channel in networked
control systems (NCSs) is studied in this paper. We
model the continuous-time NCSs with data packet
dropout and transmission delays as ordinary linear
systems with time-varying input delays. By using the
Lyapunov–Razumikhin function techniques, delay-
dependent condition on the stabilization of NCSs is
obtained in terms of linear matrix inequalities (LMIs).
Stabilizing state feedback controllers can then be
constructed by using the feasible solutions of some
LMIs. The admissible upper bounds of data packet loss
and delays can be computed by using the quasi-convex
optimization algorithm. Numerical examples illustrate
the effectiveness of the proposed approach.
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1. Introduction

Networks have received increasing attention in recent
years due to the popularization and advantages
of using network cables in control systems [12,19].
Systems where feedback control loops are closed

through a real-time network are often referred to as
networked control systems (NCSs). The system
elements are typically spatially isolated from one
another, operating in an asynchronous manner and
communicating over a wide area via both wired and
wireless links. Advantages of NCSs include low cost,
high reliability, less wiring and easy maintenance, etc.
Typical examples are distributed industrial control/
automation, intelligent traffic systems, satellite clus-
ters and group maneuvers, mobile sensor arrays,
multiple autonomous mobile robots, large-scale
decentralized flexible manufacturing systems, forma-
tion of unmanned air vehicles, multi-agent systems,
and advanced aircraft and spacecraft networks, etc.
However, the insertion of communication networks in
the feedback control loop complicates the application
of standard results in analysis and design of NCSs
because many ideal assumptions made in the tradi-
tional control theory can not be applied to NCSs
directly (see, e.g. [17–19] and the references therein).
One of the key issues arising in NCSs is the unre-

liable transmission paths because of limited band-
width and large amount of data packet transmitted
over single channel. Data packet dropout often occurs
while exchanging data among devices such as sensors,
actuators, and controllers, and this can degrade per-
formance and destabilize the system. An augmented
state space method is developed to deal with
the problem of data packet dropout [19]. The
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performance of real-time NCSs with data dropout is
discussed in [10]. Using an uncertainty threshold
principle, Azimi-Sadjadi [1] presents a general frame-
work for stability analysis of NCSs. However, the
research mentioned above is concerned primarily with
analysis issues rather than control design.
Since the network is tied with control systems,

network-induced delays are inherent to NCSs and
thus always affect the performance of NCSs. So far,
various methodologies have been proposed to deal
with the problem of network delays. An augmented
state vector method is proposed in [16] to control a
linear system over a periodic delay network. Queuing
mechanisms are developed in [4,11], which utilize
some deterministic or probabilistic information of
NCSs for control purpose. Random delays are dis-
cussed in [14] via an optimal stochastic control
methodology, see also [3,9] and the references therein
for related works. However, no method has been given
in the references mentioned above on how to estimate
the maximum allowable value of the network-induced
delays that preserves the stability of NCSs.
Because data packet dropout and transmission

delays might be potential sources to the instability and
poor performance of NCSs, this paper considers sta-
bilization of such NCSs. The NCSs with data packet
dropout and transmission delays are modelled as
linear systems with time-varying input delay, which
might be subject to fast time-varying. In the literature,
there are two main approaches to dealing with linear
systems with time-varying delay: one is the
Lyapunov–Krasovskii functional method and the
other is the Lyapunov–Razumikhin function method.
Usually, Lyapunov–Krasovskii functional method
requires the varying delay to satisfy _��ðtÞ < 1, where
�ðtÞ is the delay function. Unfortunately, the delay
�ðtÞmodelled fromNCSs in this paper does not satisfy
this condition. For the Lyapunov–Razumikhin
function method, though there are some results on the
design of state feedback controller to stabilize a linear
system with time-varying input delay [13], the con-
troller can only be constructed via solving LMIs
problem and quasi-convex optimization problem
iteratively, which is very complex. By using certain
inequality condition, this paper constructs the feed-
back controller directly via solving a set of LMIs, and
thus the controller can be easily obtained. Further-
more, the admissible upper bound of data packet loss
and delays can be obtained by using the quasi-convex
optimization algorithm.
The paper is organized as follows. Section 2 models

an NCS with data packet dropout as a linear system
with time-varying input delay. Section 3 develops
sufficient conditions on the stabilization of such

NCSs. Moreover, the desired state feedback controller
can be constructed in terms of LMIs. Section 4 deals
with the problem of data packet dropout and trans-
mission delays in a similar manner. Section 5 derives
sufficient conditions on the stabilization of NCSs with
multiple-packet transmission. Section 6 presents
numerical examples to illustrate the efficiency and
feasibility of our proposed approach. Section 7 con-
cludes this paper.

2. Model of an NCS with Data Packet

Dropout

In this section, single packet transmission is con-
sidered, where all the sensor data are lumped together
into one network packet and transmitted at the same
time. We assume that the actuator and the sensor used
to measure the process output are connected through
a communication channel with finite bandwidth,
which is shared by several NCSs. Data packet dropout
in an NCS is unavoidable because of limited band-
width and several NCSs competing for one network
channel. When packet collision occurs, it might be
more advantageous to drop the old packet and
transmit a new one than repeated retransmission
attempt. An NCS with the possibility of dropping
data packet can be described as in Fig. 1. The model
consists of a continuous-time plant

_xxðtÞ ¼ AxðtÞ þ BuðtÞ, ð1Þ

and a piecewise continuous controller (realized by a
zero-order-hold (ZOH))

uðtÞ ¼ F�xxðtÞ, t 2 ½tk, tk�1Þ, k ¼ 1, 2, . . . , ð2Þ

where xðtÞ 2 Rn, uðtÞ 2 Rm are the plant state and the
plant input, respectively. F is the state feedback gain
matrix to be designed, A, B are known real constant
matrices of appropriate dimensions. We assume that
the pair (A, B) is stabilizable. The sensor shown in

 x = Ax + Bu x(t)

 
sensor

network
 

S1  
S2

 x̄(t)
F

ZOH

·

Fig. 1. An NCS with data packet dropout.
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Fig. 1 takes on the work of sampling and transmis-
sion. The sampling period is a fixed positive constant
scalar h, tk is the sampling instant, and �xxðtÞ is the
dynamics of the network.
We first consider the case where the controller and

the actuator are combined into one node and there are
no transmission delays between the sensor and the
combined node. The network is modelled as a switch.
When the switch is closed (in position S1), the data
packet containing x(kh) is transmitted, and the con-
troller utilizes the updated data; whereas when it is
open (in position S2), the output of the switch is held
at the previous value, the data packet is lost, and the
controller uses the old data. For a fixed sampling
period, what we are interested in is the maximum
quantity of packet loss that does not destabilize the
closed-loop system. The dynamics of the switch can be
expressed as follows:

the NCS (1)–(2) with no packet dropout at time
tk : �xxðtÞ ¼ xðtkÞ;

the NCS (1)–(2) with one packet dropout at time
tk : �xxðtÞ ¼ xðtk � hÞ;

..

.

the NCS (1)–(2) with d(k) packet dropout at time
tk : �xxðtÞ ¼ xðtk � dðkÞhÞ.

The quantity of dropped packets is accumulated from
the latest time when �xxðtÞ has been updated. Thus the
closed-loop system with the effect of packet loss is
described as

_xxðtÞ ¼ AxðtÞ þ BFxðtk � dðkÞhÞ, t 2 ½tk, tkþ1Þ:

Let �ðtÞ ¼ t� tk þ dðkÞh, then the system can be
expressed as:

_xxðtÞ ¼ AxðtÞ þBFxðt� �ðtÞÞ, t 2 ½tk, tkþ1Þ: ð3Þ

The quantity dðkÞ 2 Zþ may vary with time t and it is
assumed that

0 	 dðkÞ 	 dk < 1

for some positive integer dk. Hence the delay function
�ðtÞ satisfies

0	 �ðtÞ ¼ t� tkþdðkÞh	 ð�ddþ1Þh, t2 ½tk, tkþ1Þ,

where �dd ¼ maxkfdkg < 1. Also it is assumed that
ð�ddþ 1Þh 	 ��� , where ��� is a positive scalar.
In this way, we can model the NCS (1)–(2) with the

effect of data packet dropout as a linear delay system
(3), and this allows for the use of delay system theory
to study the NCS under consideration.

Note that the time delay in system (3) is time-
varying, and does not satisfy the condition: _��ðtÞ < 1,
as is usually assumed by the Lyapunov–Krasovskii
method [8]. Hence we will employ the Lyapunov–
Razumikhin method to study NCSs in the sequel.

3. Stabilization of NCSs with Data

Packet Dropout

The following lemma will be used in the proof of our
main results.

Lemma 1 ([15]). For any positive definite matrix
Q 2 Rn
n, the following inequality holds:

2xTy 	 xTQ�1xþ yTQy,

where x 2 Rn, y 2 Rn:

Sufficient condition on the stabilization of the NCS
(1)–(2) with data packet dropout is developed as
follows:

Theorem 1. Given an integer ��� > 0, if there exist
symmetric positive definite matrices X,R1,R2 2 Rn
n,
a symmetric positive definite matrix Q 2 Rm
m, a
matrix Y 2 Rm
n satisfying the following LMIs:

1
��� ðXAT þAXþYTBT þ BYÞ þ 2X BQ

QBT �Q

" #
< 0,

ð4Þ

�X YTBT

BY �R2

� �
	 0, ð5Þ

�X XAT

AX �R1

� �
	 0, ð6Þ

�Q Y

YT �X

� �
	 0, ð7Þ

R1 þ R2 � X 	 0, ð8Þ

then the NCS (1)–(2) is asymptotically stable with

F ¼ YX�1

for data packet dropout satisfying 0 	 dk 	 ð���=hÞ � 1.

Proof. From the previous section, the NCS (1)–(2)
with data packet dropout effect can be modelled
as linear delay system (3). Hence, we only need to
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consider system (3). In each piecewise continuous
interval of �ðtÞ, we apply the Newton–Leibniz
formula to system (3) and get

_xx ¼ ðAþ BFÞxðtÞ

� BF

Z t

t��ðtÞ
ðAxð�Þ þ BFxð�� �ð�ÞÞÞd� ð9Þ

with the initial condition xðt0 þ �Þ ¼ �ð�Þ for � 2
�t0, 2� , where � is a continuous norm-bounded initial
function and �t0, 2� ¼ ft 2 R : t ¼ 	 � 2�ð	Þ 	 t0, 	 �
t0g. As shown in [7], the asymptotic stability of system
(3) can be guaranteed by that of system (9). Thus we
proceed to analyze the latter.
Consider the following Lyapunov function

VðxðtÞÞ ¼ xTðtÞPxðtÞ,

where P is a symmetric positive definite matrix. The
time derivative of V(x(t)) along the trajectory of
system (9) is given by

_VVðxðtÞÞ ¼ xTðtÞðPðAþ BFÞ þ ðAþ BFÞTPÞxðtÞ

� 2xTðtÞPBF
Z t

t��ðtÞ
ðAxð�Þ

þ BFxð�� �ð�ÞÞÞ d�: ð10Þ

Let X ¼ P�1,F ¼ YP. Pre- and post-multiplying (5)
and (6) by block-diagfP, Pg, using the standard Schur
complement, we can get the following inequalities:

ATR�1
1 A 	 P, ðBFÞTR�1

2 BF 	 P: ð11Þ

To employ the Razumikhin-type theorem [7], we
evaluate _VVðxðtÞÞ for the case

Vðxð�ÞÞ < 
VðxðtÞÞ, t� 2� 	 � 	 t, ð12Þ

with 
 > 1. From (11)–(12) and Lemma 1, it follows
that

� 2xTðtÞPBF
Z t

t��ðtÞ
Axð�Þd�

	
Z t

t��ðtÞ
xTð�ÞATR�1

1 Axð�Þd�þ �ðtÞxTðtÞPBFR1FTBTPxðtÞ

	
Z t

t��ðtÞ
xTð�ÞPxð�Þd�þ �ðtÞxTðtÞPBFR1FTBTPxðtÞ

	 xTðtÞ�ðtÞð
PþPBFR1F
TBTPÞxðtÞ ð13Þ

� 2xTðtÞPBF
Z t

t��ðtÞ
BFxð�� �ð�ÞÞ d�

	 xTðtÞ�ðtÞð
Pþ PBFR2F
TBTPÞxðtÞ: ð14Þ

Inserting (13) and (14) into (10) yields

_VVðxðtÞÞ 	 xTðtÞðPðAþ BFÞ þ ðAþ BFÞTP
þ �ðtÞð2
Pþ PBF ðR1 þ R2ÞFTBTPÞÞxðtÞ:

Note that the LMIs (7) and (8) can be easily trans-
formed into the following inequalities,

P�1 � ðR1 þ R2Þ � 0, Q� FP�1FT � 0:

Hence _VVðxðtÞÞ < 0 for Vðxð�ÞÞ < 
VðxðtÞÞ ðt� 2� 	
� 	 tÞ if

PðAþ BFÞ þ ðAþ BFÞTP
þ �ðtÞð2
Pþ PBQBTPÞ < 0: ð15Þ

Pre- and post-multiplying (4) by block-diagfP, Ig, and
using Schur complement, we can get that (4) is
equivalent to

PðAþ BFÞ þ ðAþ BFÞTPþ ���ð2Pþ PBQBTPÞ < 0:

By the continuity of (15) in 
, (4) guarantees that there
exists a 
 > 1 sufficiently small such that (15) holds for
�ðtÞ 	 ��� . Furthermore, we have F ¼ YX�1. This
completes the proof. &

Remark 1. Theorem 1 provides a method of designing
a state feedback controller to stabilize an NCS with
data packet loss. One salient feature of Theorem 1 is
that the upper bound of �ðtÞ, which is related to the
allowable data packet loss that does not destabilize the
NCS, can be calculated directly by solving the fol-
lowing quasi-convex optimization problem:

maximize ��� ,

subject to 9X > 0,R1 > 0,R2 > 0,

Q > 0,Y satisfying ð4Þ�ð8Þ:

ð16Þ

Remark 2. Based on Lyapunov–Krasovskii method,
stability analysis for linear system with time-varying
state delay was conducted in [5], where there is no
restriction on the derivative of the delay. However,
their results can not be directly used to design stabi-
lizing controller for system (3).

4. Stabilization of NCSs with Transmission

Delay and Data Packet Dropout

In this section, the controller and the actuator are
assumed to be separated. We consider transmission
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delays induced by the network: sensor-to-controller
delay �sc and controller-to-actuator delay �ca. In fact,
if the feedback controller is static, these two delays can
be lumped together. The NCS model with transmis-
sion delays and data packet dropout is shown in Fig. 2.
The model consists of a continuous-time plant

_xxðtÞ ¼ AxðtÞ þ BuðtÞ, ð17Þ

and a piecewise continuous controller (realized by
a ZOH)

uðtÞ ¼ �F�xxðt� �caÞ, t 2 ½tk, tk�1Þ, k ¼ 1, 2, . . . :
ð18Þ

The delay �ca or �sc may be less than or larger than one
sampling period h. The network can be viewed as a
switch, and the dynamics of the switch with trans-
mission delays can be described as follows:

the NCS (17)–(18) with no packet dropout at time
tk : �xxðtÞ ¼ xðtk � �scÞ;

the NCS (17)–(18) with one packet dropout at time
tk : �xxðtÞ ¼ xðtk � �sc � hÞ;

..

.

the NCS (17)–(18) with d(k) packet dropout at time
tk : �xxðtÞ ¼ xðtk � �sc � dðkÞhÞ:

In this mode of switch, the quantity of dropped packet
is accumulated from the latest time when �xxðt� �caÞ
has been updated. Thus the closed-loop system with
the effects of transmission delays and network packet
loss is described as

_xxðtÞ¼AxðtÞ�BF�xxðt��caÞ
¼AxðtÞ�BFxðtk��ca��sc�dðkÞhÞ, t2 ½tk,tkþ1Þ:

Let �ðtÞ ¼ t� tk þ �ca þ �sc þ dðkÞh, then the system
can be expressed as:

_xxðtÞ ¼ AxðtÞ � BFxðt� �ðtÞÞ, t 2 ½tk, tk�1Þ: ð19Þ

The quantity dðkÞ 2 Zþ may vary with time t and it is
assumed that

0 	 dðkÞ 	 dk < 1

for some positive integer dk. Hence the delay function
�(t) satisfies

0 	 �ðtÞ ¼ t� tk þ �ca þ �sc þ dðkÞh
	 ð�ddþ 1Þhþ �ca þ �sc, t 2 ½tk, tkþ1Þ,

where �dd ¼ maxkfdkg. Again, it is assumed that
ð�ddþ 1Þhþ �ca þ �sc 	 ��� , where ��� is a positive scalar.
In this way, the NCS (17)–(18) with transmission

delays and data packet dropout is modelled as a linear
system with time-varying input delay (19), thus the
existing theory of delay systems can be applied. It is
noted that the delay function in system (19) does not
satisfy the condition _��ðtÞ < 1 as required in previous
work (e.g. [8]).
The stabilization result on the NCS (17)–(18) with

transmission delays and data packet dropout is a
direct consequence of Theorem 1 and is briefly sum-
marized as follows.

Theorem 2. Given an integer ��� > 0, if there exist
symmetric positive definite matrices X,R1,R2 2 Rn
n,
a symmetric positive definite matrix Q 2 Rm
m and a
matrix Y 2 Rm
n satisfying the following LMIs:

1
��� ðXAþ AXþ YTBT þ BYÞ þ 2X BQ

QBT �Q

" #
< 0,

�X YTBT

BY �R2

� �
	 0,

�X XAT

AX �R1

� �
	 0,

�Q Y

YT �X

� �
	 0,

R1 þ R2 � X 	 0,

then the NCS (17)–(18) is asymptotically stable with

F ¼ YX�1

for data packet dropout and transmission delays
satisfying 0 	 ðdk þ 1Þhþ �ca þ �sc 	 ���:

Remark 3. The largest ��� preserving the stability of the
NCS (17)–(18) can be determined by solving a quasi-
convex optimization problem with the efficient LMI
toolbox [2].

Fig. 2. An NCS with data packet dropout and transmission delays.
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5. Stabilization of NCSs with

Multiple-Packet Transmissions

In distributed NCSs, due to the wide location of sen-
sors whose information length may surpass that of the
network packet, multiple-packet transmission is
necessary. In the multiple-packet transmission, plant/
controller output is split into separate packets to be
transmitted to the controller/actuator over different
network channels and they may not arrive at the
destination simultaneously.
An NCS with multiple-packet transmission and

data packet dropout can bemodelled as a linear system
with multiple delays. For simplicity, we consider the
case that the actuator and controller are combined
into one node and there are no transmission delays.
Consider the NCS (1)–(2) with matrix B being of

full column rank. For simplicity, we assume that the
plant state is split into two parts xðtÞ ¼ XT1 ðtÞ XT2 ðtÞ

� �T
with X1ðtÞ and X2ðtÞ being transmitted over different
network channels, where X1ðtÞ ¼ x1ðtÞ � � � xrðtÞ½ �T and
X2ðtÞ ¼ xrþ1ðtÞ � � � xnðtÞ½ �T, r < n. Figure 3 illustrates
the case where the plant state is transmitted in two
packets.
Data packet dropout might happen over each net-

work channel. When the switch is in position S1, the
outputs of S1 and S2 are held at the previous value and
two packets are lost; When the switch is in position S2,
network packet containing X1ðkhÞ is transmitted,
whereas the output of switch S2 is held at the previous
value; Similar analysis can be done when the switch is
in position S3. Thus, the multiple-channel network is
modelled as a switch, and the dynamics of the switch
can be described as follows:

�XX1ðtÞ ¼ �XX1ðt� hÞ, �XX2ðtÞ ¼ �XX2ðt� hÞ
if the switch is in position S1;

�XX1ðtÞ ¼ �XX1ðt� hÞ, �XX2ðtÞ ¼ X2ðtkÞ
if the switch is in position S2;

�XX1ðtÞ ¼ X1ðtkÞ, �XX2ðtÞ ¼ �XX2ðt� hÞ
if the switch is in position S3:

Analogous to the single-packet transmission case,
we obtain that

�xxðtÞ ¼
�XX1ðtÞ
�XX2ðtÞ

� �
¼

X1ðtk�d1ðkÞhÞ
X2ðtk�d2ðkÞhÞ

� �
¼

X1ðt� �1ðtÞÞ
X2ðt� �2ðtÞÞ

� �
,

where �1ðtÞ ¼ t� tk þ d1ðkÞh, �2ðtÞ ¼ t� tk þ d2ðkÞh.
Thus the closed-loop system with two packet trans-
mission is modelled as

_xxðtÞ ¼AxðtÞþBF�xxðtÞ ¼AxðtÞþBFC1xðt� �1ðtÞÞ
þBFC2xðt� �2ðtÞÞ, ð20Þ

where

C1 ¼
Ir 0

0 0

� �
, C2 ¼

0 0

0 In�r

� �
:

The quantity diðkÞ 2 Zþði ¼ 1, 2Þmay vary with time t
and it is assumed that

0 	 diðkÞ 	 dik < 1

for some positive integers dik. Hence the delay
�iðtÞði ¼ 1, 2Þ satisfy the following inequality:

0 	 �iðtÞ ¼ t� tk þ diðkÞh 	 ð�ddi þ 1Þh,
t 2 ðtk, tkþ1Þ,

where �ddi ¼ maxkfdikg. We also assume that ð�ddiþ 1Þ
h 	 ���i, where ���i are positive scalars.
As in the previous sections, the NCS (1)–(2) with

data packet dropout in multiple-packet transmission
can be modelled as a linear system with time-varying
multiple input delays (20). We will apply the theory of
delay systems to the analysis and design of the NCS
(1)–(2). Due to the characteristics of the control
problem under consideration and our modelling
method, the original (state feedback) control problem
for such a system can be viewed as an output feedback
problem in our framework.
The following theorem establishes a sufficient con-

dition on the stabilization of the NCS (1)–(2) with
data packet dropout in multiple-packet transmission.

Theorem 3. Given integers ���1 > 0, ���2 > 0, if there exist
symmetric positive definite matrices P,U1,U2,U3,
U4,U5,U6 2 Rn
n, a matrix M 2 Rm
m and a matrix
N 2 Rm
n satisfying

PB ¼ BM, ð21ÞFig. 3. An NCS with multiple packet transmission.
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and the following LMIs:

ATU1A 	 P, ATU4A 	 P, ð22Þ

U2 	 P, U3 	 P, U5 	 P, U6 	 P, ð23Þ

P CT1N
TBT

BNC1 P

� �
� 0, ð24Þ

P CT2N
TBT

BNC2 P

� �
� 0, ð25Þ

� ���1BNC1 ���1BNC1 ���1BNC1 ���2BNC2 ���2BNC2 ���2BNC2

� ����1U1 0 0 0 0 0

� � ����1U2 0 0 0 0

� � � ����1U3 0 0 0

� � � � ����2U4 0 0

� � � � � ����2U5 0

� � � � � � ����2U6

2
666666666664

3
777777777775
< 0, ð26Þ

where � ¼ PAþ ATPþ BNC1 þ BNC2 þ CT1N
TBTþ

CT2N
TBT þ 3ð���1 þ ���2ÞP, then the NCS (1)–(2) with B

being of full column rank is asymptotically stable with

F ¼ NM�1

for data packet dropout satisfying 0 	 dik 	
ð���i=hÞ � 1.

Proof. In each piecewise continuous interval of
�iðtÞði ¼ 1, 2Þ, we apply the Newton–Leibniz formula
to equation (20) and get

_xxðtÞ ¼ ðAþ BFC1 þBFC2ÞxðtÞ

� BFC1

Z t

t��1ðtÞ
ðAxð�Þ þBFC1xð�� �1ð�ÞÞ

þ BFC2xð�� �2ð�ÞÞÞd�

� BFC2

Z t

t��2ðtÞ
ðAxð�Þ þBFC1xð�� �1ð�ÞÞ

þ BFC2xð�� �2ð�ÞÞÞd� ð27Þ

with the initial condition xðt0 þ �Þ ¼ �ð�Þ for
� 2 �t0 , where � is a continuous norm-bounded
initial function and �t0 ¼

S2
i¼1 �

i
t0
¼

S2
i¼1ft 2 R : t ¼

	 � 2�ið	Þ 	 t0, 	 � t0g. From [7], global uniform
asymptotic stability of system (20) will be ensured by
that of system (27). Thus we proceed to study the
latter.

Consider the following Lyapunov function

VðxðtÞÞ ¼ xTðtÞPxðtÞ,
where P is a symmetric positive definite matrix. The
time derivative of V(x(t)) along the trajectory of
system (27) is given by

_VVðxÞ ¼ xTðtÞðPðAþ BFC1 þ BFC2Þ
þ ðAþ BFC1 þ BFC2ÞTPÞxðtÞ

� 2xTðtÞPBFC1
Z t

t��1ðtÞ
ðAxð�Þ

þ BFC1xð�� �1ð�ÞÞ þ BFC2xð�� �1ð�ÞÞÞ d�

� 2xTðtÞPBFC2
Z t

t��2ðtÞ
ðAxð�Þ

þ BFC1xð�� �2ð�ÞÞþBFC2xð�� �2ð�ÞÞÞd�:
ð28Þ

Let Ri ¼ U�1
i , i ¼ 1, . . . , 6. From (22)–(23), we obtain

ATR�1
1 A 	 P, ATR�1

4 A 	 P, ð29Þ

R�1
2 	 P, R�1

3 	 P, R�1
5 	 P, R�1

6 	 P:

ð30Þ

Because B is of full column rank, it follows from (21)
thatM is also of full rank, and thus invertible. Using
this fact and Schur complement, we can deduce from
(24)–(25) and (30) that

CT1F
TBTR�1

2 BFC1 	 CT1F
TBTPP�1PBFC1

¼ CT1N
TBTP�1BNC1 	 P, ð31Þ

CT2F
TBTR�1

3 BFC2 	 CT2F
TBTPP�1PBFC2

¼ CT2N
TBTP�1BNC2 	 P, ð32Þ

CT1F
TBTR�1

5 BFC1 	 CT1F
TBTPP�1PBFC1

¼ CT1N
TBTP�1BNC1 	 P, ð33Þ

CT2F
TBTR�1

6 BFC2 	 CT2F
TBTPP�1PBFC2

¼ CT2N
TBTP�1BNC2 	 P, ð34Þ

where N ¼MF.
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To employ the Razumikhin-type theorem [7], we
evaluate _VVðxðtÞÞ for the case

Vðxð	ÞÞ < 
VðxðtÞÞ, t� 2� 	 	 	 t, ð35Þ

with 
 > 1. By Lemma 1, it follows from (29)–(35)
that

�2xTPBFC1
Z t

t��1ðtÞ
Axð�Þ d�

	
Z t

t��1ðtÞ
xTð�ÞATR�1

1 Axð�Þ d�

þ �1ðtÞxTðtÞPBFC1R1CT1FTBTPxðtÞ

	
Z t

t��1ðtÞ
xTð�ÞPxð�Þ d�

þ �1ðtÞxTðtÞPBFC1R1CT1FTBTPxðtÞ
	 xTðtÞ�1ðtÞð
Pþ PBFC1R1C

T
1F
TBTPÞxðtÞ,

�2xTPBFC1
Z t

t��1ðtÞ
BFC1xð�� �1ð�ÞÞ d�

	 xTðtÞ�1ðtÞð
Pþ PBFC1R2C
T
1F
TBTPÞxðtÞ,

�2xTPBFC1
Z t

t��1ðtÞ
BFC2xð�� �2ð�ÞÞ d�

	 xTðtÞ�1ðtÞð
Pþ PBFC1R3C
T
1F
TBTPÞxðtÞ,

�2xTPBFC2
Z t

t��2ðtÞ
Axð�Þ d�

	 xTðtÞ�2ðtÞð
Pþ PBFC2R4C
T
2F
TBTPÞxðtÞ,

�2xTPBFC2
Z t

t��2ðtÞ
BFC1xð�� �1ð�ÞÞ d�

	 xTðtÞ�2ðtÞð
Pþ PBFC2R5C
T
2F
TBTPÞxðtÞ,

�2xTPBFC2
Z t

t��2ðtÞ
BFC2xð�� �2ð�ÞÞ d�

	 xTðtÞ�2ðtÞð
Pþ PBFC2R6C
T
2F
TBTPÞxðtÞ:

Then, we obtain that

_VVðxðtÞÞ
	 xTðtÞðPðAþ BFC1 þ BFC2Þ
þ ðAþ BFC1 þ BFC2ÞTP
þ �1ðtÞð3
Pþ PBFC1ðR1 þ R2 þ R3ÞCT1FTBTPÞ
þ �2ðtÞð3
Pþ PBFC2ðR4 þ R5 þ R6ÞCT2FTBTPÞÞ

 xðtÞ

¼ xTðtÞðPAþ BNC1 þ BNC2 þ ATPþ CT1N
TBT

þ CT2N
TBT þ �1ðtÞð3
Pþ BNC1ðR1 þ R2 þ R3Þ


 CT1N
TBTÞ þ �2ðtÞð3
Pþ BNC2ðR4 þ R5 þ R6Þ


 CT2N
TBTÞÞxðtÞ:

Hence, _VVðxðtÞÞ < 0 for Vðxð�ÞÞ < 
VðxðtÞÞðt� 2� 	
� 	 tÞ if

PAþBNC1þBNC2þATPþCT1NTBTþCT2NTBT

þ�1ðtÞð3
PþBNC1ðR1þR2þR3ÞCT1NTBTÞ
þ�2ðtÞð3
PþBNC2ðR4þR5þR6ÞCT2NTBTÞ<0:

ð36Þ

Using Schur complement, (26) is equivalent to

PAþBNC1þBNC2þATPþCT1NTBTþCT2NTBT

þ���1ð3PþBNC1ðR1þR2þR3ÞCT1NTBTÞ
þ���2ð3PþBNC2ðR4þR5þR6ÞCT2NTBTÞ<0:

ð37Þ

By the continuity of (36) in 
, (26) guarantees that
there exists a scalar 
 > 1 sufficient small such that
(36) holds for �iðtÞ 	 ��� i, i ¼ 1, 2. This completes the
proof. &

For the NCS (1)–(2) in multiple-packet transmis-
sion, by Theorem 3, the feedback controller can be
obtained in terms of LMIs. For admissible bound on
the amount of data packet loss in each network
channel, if ���1 is set to be fixed, then ���2 can be max-
imized via the quasi-convex optimization algorithm
with the efficient LMI toolbox [2]; or vice versa.

Remark 4. It is noted that twomatricesC1 andC2 with
special structures have been introduced into the
closed-loop system and this introduces additional
complexity in feedback controller design. To tackle
this problem, some bounds for the cross-product
terms have been introduced and, admittedly, this
introduces some conservatism.

Remark 5. Theorem 3 can be easily extended to NCSs
with transmission delays and data packet dropout in
multiple-packet transmission and to NCSs with
separate controller and actuator. Moreover, though
we present our results for two-packet transmission
case simply for notational simplicity, it should be clear
that our results and methods are not restricted to the
two-packet transmission case.

Remark 6. In a very recent paper [6], a sampled-data
system is modelled as a linear system with time-
varying delays without any restriction on the deriva-
tive of the delay function. However, the method
presented there must first fix a tuning parameter or
use an iterative algorithm to obtain the stabilizing
controller in terms of LMIs. Moreover, the results in
[6] only concern the case of a system with a single
delay function, and can not be readily and directly
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applied to a system with multiple delay functions as in
(20) (which corresponds to the multiple-packet
transmission case).

6. Numerical Examples

Example 1. Consider the state-space plant transmitted
in single packet

_xx1

_xx2

� �
¼

�1 �0:01
1 0:02

� �
x1

x2

� �
þ
0:4

0:1

� �
u: ð38Þ

The feedback controller takes the form u ¼ �F�xxðtÞ,
with F to be designed.

When the state information from the plant to the
controller is transmitted through a network channel,
system (38) can be written in the form of (3). By sol-
ving the quasi-convex optimization problem (16)
(based on Theorem 1) using the LMI toolbox [2], we
obtain the feedback gain F ¼ ½�3:8625 �3:9211�
and the admissible bound of ��� to be 0.5950. Therefore,
if the sampling period h ¼ 0:19 s and the transmission
delays can be neglected, the closed-loop system is still
stable even in the case of two data packets dropped in
every three packets. From the relationship between
the dropped packet and ��� , we can see that, with the
increase of the sampling period, the quantity of data
packet dropout between two transmission instants has
to be decreased in order to guarantee the stability of
the NCS.

Example 2. Consider the state-space plant transmitted
in two packets.

_xx1

_xx2

� �
¼

�0:8 0:1

0:2 0:05

� �
x1

x2

� �
þ
0

1

� �
u: ð39Þ

The feedback controller takes the form u ¼ �F�xxðtÞ,
with F to be designed.

In this example, we consider stabilization of the
system with data packet dropout. It is assumed that
X1 ¼ x1, X2 ¼ x2. From Section 5 we obtain

C1 ¼
1 0

0 0

� �
, C2 ¼

0 0

0 1

� �
:

For simplicity, we assume that ���1 ¼ ���2. The admis-
sible upper bound is found to be ���i ¼ 0:3102 ði ¼ 1, 2Þ
using the quasi-convex optimization algorithm based
on Theorem 3. Also, we can obtain the feedback
gain F ¼ ½0:0756 �4:1729�. This shows that for
given sampling period h, if data packet dropout in
each network channel satisfies 0 	 dik 	 ð���i=hÞ � 1,
the NCS (39) is stable.

For the specific case �1ðtÞ ¼ �2ðtÞ, Remark 1 can be
applied. Solving the quasi-convex optimization pro-
blem (16), the upper bound of �iðtÞði ¼ 1, 2Þ and the
feedback gain are found to be 0.5295 and F ¼
½�0:1049�1:2200�. This shows that, in this specific
case, Theorem 3 is a bit more conservative than
Theorem 1 because some bounds were introduced in
order to deal with the cross-product terms.
These two examples illustrate that with the increase

of the sampling period, the data packet dropout has to
be decreased, that is, the NCS will be sensitive to data
packet dropout in the case of slow sampling. Though
it is natural to sample fast to approximate the real
continuous-time system in order to be robust to data
packet dropout, this will increase the load of the
network and thus deteriorate its performance. Hence,
it is an interesting and important research topic
to study the relationship between sampling period,
performance and data packet dropout of NCSs.

7. Conclusions

We have investigated the stabilization problem for a
class of networked control systems with data packet
dropout and transmission delays induced by network
channels. The admissible upper bound of data packet
dropout and transmission delays can be obtained via
solving a quasi-convex optimization problem with the
efficient LMI toolbox. The feedback controllers can
be constructed in terms of LMIs. For NCSs in
multiple-packet transmission, similar stabilization
results have been established, where single delay has
been extended to multiple delays, and state feedback
problem has been extended to output feedback pro-
blem. Illustrative examples on both single-packet
transmission and multiple-packet transmission have
been worked out to demonstrate the effectiveness of
the proposed approach. The obtained results in this
paper can be applied to NCSs without packet loss to
save network bandwidth or to find the maximum
allowable delay between state update. This is of
practical importance in engineering applications.
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