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H∞ control for a class of structured time-delay systems
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Abstract

In this paper, we design an H∞ controller for a class of lower-triangular time-delay systems. Backstepping is applied
to construct an explicit feedback controller, and the closed-loop system maintains internal stability and an L2-gain from
the disturbance input to the output. The design is delay-dependent. Simulations on an example system demonstrate the
good performance of the proposed design. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Time delay occurs in various engineering systems. Since the existence of delay is often a source of instability
and it greatly complicates the control system design, the study on time-delay systems has received considerable
attentions from both classic control and process control communities, refer to [1–4,8,9,11,12,14–16,17–22].
As pointed out in [21], various type of approaches such as predictive control theory, state-space approach
based on Hilbert space, optimal control, Lyapunov-type stability analysis and Razumikhin-type theory has
been established and applied for the delay systems. Although results have been obtained to test the stability
of linear systems with delayed states, constructing feedback control laws for systems with delay in control
to meet stability and certain performance requirement remains challenging. In this paper, we will design an
H∞ controller for a class of structured systems with delay in control. The dissipativity control theory will be
applied.
During the last decade, there were considerable publications on the stability criteria for systems in the

form of ẋ(t)=Ax(t) + Bx(t − td), refer to [1,15,19] and the references therein. Based on these results, robust
controller design for uncertain linear systems with time-delay state terms were discussed in [2,20]. For linear
systems with delay in control, a famous deadtime compensation method is the Smith predictor [17], which
converts the design problem for a process with delay to one without delay by eliminating time delay from
the characteristic equation of the closed-loop system. However, the Smith predictor is for open-loop stable
systems and cannot handle unmeasurable disturbances. Fuller [4] investigated an optimal regulator problem for
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processes with delay in control. More recently in [9], Smith predictor control was combined with input–output
linearization to design a controller for nonlinear time-delay systems.
For systems with the presence of persistent disturbances, H∞ control has been widely used as it provides

explicit performance index in the sense of L2 gain. With the development of the backstepping technique [10],
H∞ control for lower-triangular systems has been intensively discussed recently, see [13,6,7]. It was shown
that by exploring the structural information of the systems, the complicated controller design problem could
be simpliJed by a recursive design procedure.
H∞ control for systems with delay in input has been discussed in [16,8,9]. In [8], robust stabilization results

were given for linear systems with delay in control against additive perturbations, where the H∞ control
problem for a delay system was converted to a problem for a delay-free system. However, the application of
the method is limited since the equivalent mapping from the input to the output is only valid under some
underlying conditions of the augmented systems. Another interesting work in robust H∞ control of time-delay
systems was reported recently in [3]. State-delayed systems were considered, a delay-dependent Lyapunov
function was chosen and the linear matrix inequality (LMI) method was used to construct the control law.
In this paper, we consider the H∞ control problem for lower-triangular structural systems with delay in

control. Backstepping is used as a design tool for constructing the energy function which is nonlinear and
delay-dependent. A recursive design procedure is presented and the Jnal control law is dependent on the delay
constant td. The closed-loop system maintains an L2 gain from the disturbance input to the output with internal
stability. Naturally, the performance index, the L2 gain, is delay-dependent as well. Advanced dissipativity
control theory serves as the underlying theory. It is the Jrst to apply backstepping technique with time-delay
characteristics.
The rest of the paper is organized as follows: In Section 2, we give the system conJguration and deJne the

main problem concerned in the paper. Then in Section 3, a recursive controller design procedure is presented
using backstepping and our main theorem is given. Section 4 presents an example to illustrate the control
performance. Finally the paper is concluded in Section 5.
Notations: The notation used in this paper is standard. | · | denotes the usual Euclidean norm for vectors.

We say that z : (0; T ) → Rk is in L2(0; T ) if
∫ T
0 |z(t)|2 dt ¡∞. �max(P) and �min(P) denote the maximum

and the minimum eigenvalue of any square matrix P.

2. Problem statement

We consider a class of systems in the following state-space form:

ż = Az + B(�1 + p0!);

�̇1 = �2 + p1!;

�̇2 = �3 + p2!;

...

�̇n = u(t − td) + pn!;

y = z1;

(1)

where

A=



0 1 0

. . .

0 0 1

0 0 : : : 0


 ; B=



0
...

0

1


 ;
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z=(z1; : : : ; z�)∈R�; �=(�1; : : : ; �n)∈Rn; [z; �]T is the state vector, u∈R is the control input, !∈Rm is the
disturbance input, y∈R is the to-be-controlled output; pi (i=0; 1; : : : ; n) is a constant matrix with appropriate
dimension, and td is the time-delay constant.
The problem discussed in this paper is deJned as follows.

H∞ Control Problem. Find a feedback control law u(t − td)= u(z(t − td); �(t − td)) for system (1), such that
the closed-loop system is globally uniformly asymptotically stable (GUAS) when !=0. And with the nonzero
disturbance !∈L2(0; T ); ∀T¿ 0, the following dissipation inequality is satisJed:∫ T

0
|y|2 dt6 �

∫ T

0
|w|2 dt + �(z(Kt0); �(Kt0); Kt0); (2)

where � is a positive constant, � is a positive semideJnite function and z(Kt0); �(Kt0); are the initial conditions
where Kt0 ∈ [− td ; 0].

Remark 1. In the dissipation inequality (2), the eLect of initial conditions is considered. Since z(Kt0) and �(Kt0)
happened in history which cannot be compensated, it is reasonable to be included as initial conditions. This
also explains the diLerence between the dissipation inequality for delayed systems and that for delay-free
systems.

3. Main result

In this section, we Jrstly present a recursive controller design procedure by backstepping. Then we show
that with the constructed controller, the H∞ Control Problem is solved.
Step 0: We start by considering the z-subsystem with �1 as the virtual control input. Choose the storage

function

V0(z)= zTPz; (3)

where P is a positive deJnite symmetric matrix solving the algebraic Riccati equation:

ATP + PA− 2�PBBTP + Q=0; (4)

where � is a positive constant and Q is a positive deJnite symmetric matrix.
DiLerentiating (3) along the solution of z-subsystem, we have

V̇ 0(z) = 2zTPAz + 2zTPB�1 + 2zTPBp0!

6 2zTPAz + 2zTPB�1 +
1
�0
|zTPBp0|2 + �0|!|2; (5)

where the inequality 2ab6 a2 + b2 (a; b∈R) is used in the second inequality, and �0 is a positive design
parameter.
If we let the virtual control �1 = �∗1 (z) as

�∗1 (z)=− BTPz − 1
2�0

p0pT
0B

TPz
�
= "10z (6)

then (5) turns to

V̇ 0(z)6− zTQz + �0|!|2: (7)
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Step 1: Augment the z-subsystem with the �1-subsystem, and choose a storage function as

V1(z; �1)=V0(z) + (�1 − �∗1)
2: (8)

Denote

�̇
∗
1 (z) = "10ż= "10Az + "10B�1 + "10Bp0!

�
= #10z + #11�1 + %1!: (9)

DiLerentiating V1 along the solutions of the (z; �1)-subsystem yields

V̇ 1(z; �1)6−zTQz + �0|!|2 + 2zTPB(�1 − �∗1) + 2(�1 − �∗1)(�2 + p1!− �̇
∗
1)

= −zTQz + �0|!|2 + 2(�1 − �∗1)(�2 + zTPB− #10z − #11�1 − %1!+ p1!)

6−zTQz + �0|!|2 + 2(�1 − �∗1)(�2 + zTPB− #10z − #11�1)

+
1
�1
|�1 − �∗1 |2|p1 − %1|2 + �1|!|2; (10)

where �1 is a positive constant.
Choose the virtual control �2 = �∗2 as

�∗2 (z; �1) = −BTPz − c1(�1 − �∗1) + #10z + #11�1 − 1
�1
(�1 − �∗1)|p1 − %1|2

, "20z + "21�1; (11)

where c1 ¿ 0.
Denote �̃1 = �1 − �∗1 , then (10) turns to

V̇ 1(z; �1)6− zTQz − 2c1�̃
2
1 + (�0 + �1)|!|2: (12)

Claim. Given any index 26 l6 n− 1; for the system

ż=Az + B(�1 + p0!);

�̇1 = �2 + p1!;

�̇2 = �3 + p2!;

... (13)

�̇l = �l+1 + pl+1!; (14)

there exist l+ 1 smooth functions

�∗i = �∗i (z; �1; : : : ; �i−1)= "i0z + "i1�1 + · · ·+ "i; i−1�i−1; 16 i6 l+ 1

such that in new coordinates

�̃i = �i − �∗i (z; �1; : : : ; �i−1); 16 i6 l
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the storage function

Vl =V0 +
l∑

i=1

�̃
2
i (15)

has time derivative; with �l+1 = �∗l+1; satisfying the dissipation inequality

V̇ l(z; �1)6− zTQz −
l∑

i=1

2ci�̃
2
i +

l∑
i=1

�i|!|2: (16)

The proof of the Claim is straightforward and is given in the appendix.
Step n: Let

Vn(z; �1; : : : ; �n)=Vn−1 + (�n − �∗n)
2 + Vd(t; z; �); (17)

where

Vd(t; z; �) =
∫ 0

−td

∫ t

t+(

[
r0zT(s)z(s) +

n∑
i=1

ri�Ti (s)�i(s) + �!(s)T!(s)

]
ds d(

+
∫ 0

−td

∫ t

t−td+(

[
l0zT(s)z(s) +

n∑
i=1

li�Ti (s)�i(s)

]
ds d( (18)

and r0; ri; l0; li; � are positive design parameters.
From Step n− 1 by the Claim, �∗n = "n0z + "n1�1 + · · ·+ "n;n−1�n−1. Denote

�̇
∗
n(z; �1; : : : ; �n−1) =

(
@�∗n
@z

ż +
@�∗n
@�1

�̇1 + · · ·+ @�∗n
@�n−1

�̇n−1

)

, #n0z + #n1�1 + · · ·+ #nn�n + %n!: (19)

DiLerentiating Vn along the solutions of system (1), we have

V̇ n6−zTQz −
n−1∑
i=1

2ci�̃
2
i +

n−1∑
i=1

�i|!|2 + 2�̃n[u(t − td) + pn!+ �̃n−1 − �̇
∗
n ] + V̇ d(t; z; �)

= −zTQz −
n−1∑
i=1

2ci�̃
2
i +

n−1∑
i=1

�i|!|2 + 2�̃n[u(t − td) + L0z +
n∑

i=1

Li�i] + 2�̃n(pn − %n)!

+ V̇ d(t; z; �); (20)

where �̃n = �n − �∗n , and

L0 =− "n−1;0 − #n0;

Li =




−"n−1; i − #ni; 16 i6 n− 2;

1− #ni; i= n− 1;

−#ni; i= n:

(21)

Note that

2�̃n(pn − %n)!6
1
�n
�̃
2
n|pn − %n|2 + �n|!|2: (22)
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Denote

u∗(z; �) = cn�̃n + L0z +
n∑

i=1

Li�i +
1
2�n

�̃n|pn − %n|2

,K0z + K1�1 + K2�2 + · · ·+ Kn�n (23)

then (20) turns to

V̇ n6− zTQz −
n∑

i=1

2ci�̃
2
i +

n∑
i=1

�i|!|2 + 2�̃n[u(t − td) + u∗(z; �)] + V̇ d(t; z; �): (24)

Since z(t); �i(t); 16 i6 n are continuously diLerentiable for t¿ 0, we have

z(t − td) = z(t)−
∫ 0

−td

ż(t + () d(

= z(t)−
∫ 0

−td

[Az(t + () + B(�1(t + () + p0!(t + ())] d(; (25)

�i(t − td)= �i(t)−
∫ 0

−td

[�i+1(t + () + pi!(t + ()] d(; (16 i6 n− 1); (26)

�n(t − td)= �n(t)−
∫ 0

−td

[u(t − td + () + pn!(t + ()] d(: (27)

Note that by using (25)–(27), the initial condition of system (1) shifts from [− td ; 0] to [− 2td ; 0], while the
system stability remains same [5, p. 131].
Now choose the true delayed control law

u(t − td)=− K0z(t − td)− K1�1(t − td)− K2�2(t − td)− · · · − Kn�n(t − td): (28)

Substitute (25)–(27), (28) into (24),

V̇ n6− zTQz −
n∑

i=1

2ci�̃
2
i +

n∑
i=1

�i|!|2 + -1(t; z; �) + -2(t; z; �) + -3(t; z; �) + V̇ d(t; z; �); (29)

where

-1(t; z; �)= 2�̃n

∫ 0

−td

[
K0Az(t + () + K0B�1(t + () +

n−1∑
i=1

Ki�i+1(t + ()

]
d(;

-2(t; z; �)= 2�̃n

∫ 0

−td

[
KnK0z(t − td + () +

n∑
i=1

KnKi�i(t − td + ()

]
d(;

-3(t; z; �)= 2�̃n

∫ 0

−td

(K0p0 +
n∑

i=1

Kipi)!(t + () d(: (30)

Using 2ab6 a2 + b2(a; b∈R) again, we obtain

-1(t; z; �)6 td

(
1
r0
|K0A|2 + 1

r1
|K0B|2 +

n−1∑
i=1

1
ri+1

|Ki|2
)
�̃
2
n
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+
∫ 0

−td

[
r0|z(t + ()|2 +

n∑
i=1

ri|�i(t + ()|2
]
d(;

-2(t; z; �)6 td

(
1
l0
|KnK0|2 +

n∑
i=1

1
li
|KnKi|2

)
�̃
2
n

+
∫ 0

−td

[
l0|z(t − td + ()|2 +

n∑
i=1

li|�i(t − td + ()|2
]
d(;

-3(t; z; �)6 td
1
�
(K0p0 +

n∑
i=1

Kipi)�̃
2
n +

∫ 0

−td

�|!(t + ()|2 d(: (31)

Notice that

V̇ d(t; z; �) = tdr0zTz +
n∑

i=1

tdri�Ti �i + td�!T!

−
∫ 0

−td

[
r0zT(t + ()z(t + () +

n∑
i=1

ri�Ti (t + ()�i(t + () + �!(t + ()T!(t + ()

]
d(

+ tdl0zTz +
n∑

i=1

tdli�Ti �i

−
∫ 0

−td

[
l0zT(t − td + ()z(t − td + () +

n∑
i=1

li�Ti (t − td + ()�i(t − td + ()

]
d(: (32)

Substitute (31), (32) into (29),

V̇ n6−zTQz −
n∑

i=1

2ci�̃
2
i +

n∑
i=1

�i|!|2

+ td(r0 + l0)|z|2 +
n∑

i=1

td(ri + li)|�i|2 + td.�̃
2
n + td�|!|2; (33)

where

.=

(
1
r0
|K0A|2 + 1

r1
|K0B|2 +

n−1∑
i=1

1
ri+1

|Ki|2
)

+

(
1
l0
|KnK0|2 +

n∑
i=1

1
li
|KnKi|2

)
+

1
�
(K0p0 +

n∑
i=1

Kipi): (34)

Since the mapping

/ : (z; �1; �2; : : : ; �n) �→ (z; �̃1; �̃2; : : : ; �̃n)

is a linear transformation whose Jacobian matrix is lower triangular with all diagonal components equal to
the constant one, it is easy to get

�i = �̃i + ’i−1�̃i−1 + · · ·+ ’1�̃1 + ’0z; (35)

where ’0 is a constant matrix, and ’1; : : : ; ’i−1 are constants.
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Applying

(a1 + a2 + · · ·+ ak)26 k(a21 + a22 + · · ·+ a2k); a1; a2; : : : ; ak ∈R

to (35),

|�i|26 (i + 1)(|’0|2|z|2 + ’2
1�̃

2
1 + · · ·+ ’2

i−1�̃
2
i−1 + �̃

2
i ): (36)

Therefore (33) turns to

V̇ n6− 1|z|2 −
n∑

i=1

2i�̃
2
i + �|!|2; (37)

where

1= �min(Q)− td

[
(r0 + l0) +

n∑
i=1

(ri + li)(i + 1)|’0|2
]
;

2i =

{
2ci − td(ri + li)(i + 1)’2

i ; 16 i6 n− 1;

2ci − td[(ri + li)(i + 1) + .]; i= n;

�=
n∑

i=1

�i + td�: (38)

It can be seen that 1; 2i (16 i6 n); � are dependent on td. For certain small td, it is possible to Jnd positive
design parameters �; Q; ci; r0; ri; l0; li; �i; � to ensure that 1; 2i ¿ 0.

Now we are in the position to state our main result.

Theorem 1. The feedback control law (28) solves the H∞ Control Problem if there exist positive constants=
matrix �; Q; ci; r0; ri; l0; li; �i; �; (16 i6 n) such that 1; 2i are positive as de:ned in (38).

The proof of the theorem is given in the appendix.

Remark 2. The controller design method proposed above is a recursive procedure. It follows the backstepping
design where energy function and virtual control law are stepwisely constructed. The delay in the input makes
the energy function more complicated than that for delay-free systems. It includes an integral term of the
states within the delayed time period. The Jnal dissipation inequality (37) shows the energy dissipating along
the closed-loop trajectory. The design is delay-dependent.

Remark 3. The integral form of energy function (18) was Jrstly proposed in [12] and recently used in [3].
While in [3] state-delayed systems were discussed and initial conditions were assumed to be zero, the present
paper deals with systems with delay in control and initial conditions are explicitly addressed in the dissipation
inequality (2). It is also noted that the proving method in [3] is only valid for the L2 space deJned on [0;∞)
instead of that on [0; T ]; ∀T ¿ 0.

4. An illustrated example

We consider the following lower-triangular system:

ż1 = z2;

ż2 = �+ 0:2!;

�̇= u(t − td) + 0:5!: (39)
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Fig. 1. Closed-loop system response by the proposed H∞ control: [x1; x2; x3]= [z1; z2; �].
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Fig. 2. Control input response.

Following the design procedure described in Section 3, and choosing the design parameters

�=20; Q= I; c1 = 4; �0 = �1 = 0:5;

we obtain the control law

u(t − td)=− 22:3741z1(t − td)− 23:8378z2(t − td)− 9:6352�(t − td):

Simulation results of the closed-loop system is shown in Figs. 1 and 2, where td = 0:1, !=1, and the initial
condition is [z1 z2 �]T = [0:5 0:5 0:5]T. Satisfactory performance for all states can be observed.
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Fig. 3. Comparison of output responses: solid line — proposed H∞ control; dashed line — LQ control; dotted line — open-loop system.

To compare our controller to the open-loop system and the standard LQ design method, we show in Fig. 3
the output trajectories under the three situations. It can be seen that the open-loop system is unstable; the LQ
design method stabilizes the system but cannot attenuate the disturbance’s eLect (as it was not considered in
the design); and the H∞ control design by the proposed method ensures the stability and achieves disturbance
attenuation to the output.

5. Conclusions

The H∞ control problem for the lower-triangular systems with delay in control has been studied. An explicit
feedback control law has been built, and the closed-loop system maintains the L2-gain from the disturbance
input to the output with internal stability. Backstepping technique was applied to the structural system. The
design is delay-dependent. Simulation results on a third-order example system have demonstrated its good
performance compared to the open-loop system and the standard LQ design method.
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Appendix

Proof of the Claim. As stated previously, the Claim holds for system l=1. Assume that the Claim is true
for system l= k − 1, we wish to prove the claim for system l= k.

Consider the storage function

Vk =Vk−1 + �̃
2
k : (A.1)
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DiLerentiating it along the solutions of the (z; �1; : : : ; �k)-subsystem in (14), we have

V̇ k6− zTQz −
k−1∑
i=1

2ci�̃
2
i +

k−1∑
i=1

�i|!|2 + 2�̃k [�̃k−1 + �k+1 + pk!− �̇
∗
k ]; (A.2)

where �̃k = �k − �∗k .
Note that

�̇
∗
k = "k0ż + "k1�̇1 + · · ·+ "k;k−1�̇k−1

, #k0z + #k1�1 + · · ·+ #kk�k + %k!: (A.3)

Substituting (A.3) into (A.2), and collecting similar terms, we get

V̇ k6− zTQz −
k−1∑
i=1

2ci�̃
2
i +

k−1∑
i=1

�i|!|2 + 2�̃k

[
�k+1 + 50z +

k∑
i=1

5i�i

]
+ 2�̃k(pk − %k)!; (A.4)

where

50 =− "k−1;0 − #k0;

5i =




−"k−1; i − #ki; 16 i6 k − 2;

1− #ki; i= k − 1;

−#ki; i= k:

(A.5)

Note that the last term of (A.4) turns to

2�̃k(pk − %k)!6
1
�k
�̃
2
k |pk + %k |2 + �k |!|2; (A.6)

where �k is a positive design parameter.
Choose the virtual control �k+1 = �∗k+1 as

�∗k+1 = −ck �̃k − 50z −
k∑

i=1

5i�i − 1
2�k

�̃k |pk + %k |2

, "k+1;0z + "k+1;1�1 + · · ·+ "k+1; k�k ; (A.7)

where ck is a positive design parameter, then we get

V̇ k6− zTQz −
k∑

i=1

2ci�̃
2
i +

k∑
i=1

�i|!|2: (A.8)

This completes the proof of the Claim.

Proof of Theorem 1. From the design procedure described in Section 3, we have the following Lyapunov
function,

Vn(t; z; �) = zTPz +
n∑

i=1

�̃
2
i

+
∫ 0

−td

∫ t

t+(

[
r0zT(s)z(s) +

n∑
i=1

ri�Ti (s)�i(s) + �!(s)T!(s)

]
ds d(

+
∫ 0

−td

∫ t

t−td+(

[
l0zT(s)z(s) +

n∑
i=1

li�Ti (s)�i(s)

]
ds d(: (A.9)
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Due to (35), Vn is positive deJnite in the coordinates (z; �̃). Its derivative along the closed-loop trajectory
is

V̇ 6− 1|z|2 −
n∑

i=1

2i�̃
2
i + �|!|2: (A.10)

If 1; 2i; � are all positive, when !=0, V̇ is negative deJnite. So the transferred states (z; �̃) is GUAS.
Since (35), the original coordinates of system (1) is GUAS too.
When ! 	=0, taking the integral along time t for both sides of (A.10) and simplifying, we obtain∫ T

0
1|z|2 dt6 �

∫ T

0
|!|2 dt + Vn(0; z(0); �(0)): (A.11)

Therefore,∫ T

0
|y|2 dt6 �

∫ T

0
|w|2 dt + �(z(Kt0); �(Kt0); Kt0); (A.12)

where

�= �=1;

�(z(Kt0); �(Kt0); Kt0)=Vd(0; z(0); �(0))=1: (A.13)

This completes the proof of the theorem.
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