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Abstract: An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with
unknown time-varying parameters and unknown time-varying delays. Linear matrix inequality (LMI) method is employed to design
the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The
learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter
is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a
Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence
of tracking error. A simulation example is provided to illustrate the effectiveness of control algorithm proposed in this paper.
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1 Introduction

Iterative learning control (ILC) and repetitive control
(RC) have become two of the most effective control strate-
gies in dealing with repeated tracking problem or peri-
odic disturbance rejection problem for systems. Generally
speaking, ILC deals with tracking tasks that repeat in a
finite time interval and require identical initial condition
(i.i.c.), whereas RC copes with periodic tracking tasks over
an infinite time interval without requirement of i.i.c. Al-
though there exist some differences between ILC and RC,
they are identical in basic idea, i.e., using the information
obtained from previous trial or period to improve the con-
trol for current trial or period.

In last two decades, both control strategies have made
much progress [1−21,24−29]. The classical ILC and RC
are usually designed based on contraction mapping the-
ory [1−3,17], where the current control input is computed
simply by adding the information of errors from preceding
trial or period. Thus, on the one hand, it achieves geomet-
ric convergence speed with very little system knowledge, on
the other hand, it is hard to make full use of any avail-
able system information, whether parametric or structural,
which is different from adaptive control approaches. Re-
cently, by combining adaptive control techniques into ILC
and RC, a kind of so-called adaptive iterative learning con-
trol(AILC) [4−16,24−26] and the adaptive repetitive control
(ARC) [18−20,27−28], have been developed, where the un-
certain parameters are estimated by various ways to gener-
ate the current control input. For instance, the unknown
parameters are estimated along time axis [8−9], or itera-
tion axis [4−7,10−13], or both of them [14,22]. It should be
mentioned that the composite energy function (CEF)-based
AILC or ARC places an important role in dealing with
periodic time-varying parameters. This control method is
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originally proposed in [13], and then successfully applied to
periodic adaptive control [22,23], where the unknown time-
varying parameters are periodic, but the reference signals
are allowed to be nonperiodic.

Although so many approaches have been developed in the
field of AILC and ARC, only a few of them are concerning
time-delay systems [39−41], and they are investigated only
within the framework of classical ILC. To the best of our
knowledge, up to now no work is reported from the view-
point of AILC or ARC to deal with nonlinear time-delay
systems, especially in the case when the unknown time-
varying parameters and the unknown time-varying delays
appear in systems. In fact, delay often exists in various
engineering systems, such as electrical networks, microwave
oscillators, nuclear reactor etc. The existence of delay is a
source of instability and poor performance [30]. Therefore,
the controller design and stability analysis for time-delay
systems, especially for uncertain nonlinear time-delay sys-
tems, have attracted a number of researchers over the past
years, and some interesting results have been obtained (see
[31-37, 44-45], and the references therein).

Motivated by the aforementioned discussion, instead
of ARC problem for linearly parameterized systems ad-
dressed in [23], in this paper we will focus on the observer-
based AILC problem for nonlinearly parameterized systems
with unknown time-varying parameters and unknown time-
varying delays. Our work is the further extension of the
results obtained in [23]. The main design idea is partly in-
spired by [23], but this paper is different from [23] in the
following aspects:

1). Form the viewpoint of system structure, the system
studied in [23] is a special case of system addressed in this
paper. For the first time, the additional mismatched non-
linear term and the matched uncertain time-varying time-
delay term are considered in this paper.

2). As far as the observer design is concerned, due to
the mismatched nonlinear term, we develop a nonlinear ob-
server based on linear matrix inequality (LMI), which is
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different from [23], where the designed observer is linear.
3). As far as the control design is concerned, different

from [23], our control law contains a proportional-integral-
derivative (PID) feedback term, and the constant learning
law is differential-difference-type, which is helpful to im-
prove the control performance of closed-loop system.

4). Form the viewpoint of stability analysis, due to
the uncertain time-delay terms, we construct a Lyapunov-
Krasovskii-like CEF to analyze the closed-loop stability,
which is also different from [23].

The rest of this paper is organized as follows. The system
description and problem formulation are given in Section 2.
In Section 3, the observer and controller are designed, and
the stability of closed-loop system is analyzed. In Section
4, a simulation example is provided to verify the feasibility
of control approach. Finally, we conclude the work of this
paper in Section 5.

Throughout this paper, N denotes the set of nonnega-
tive integers, ‖ · ‖ denotes Euclidean norm of a vector or
its induced matrix norm, and ‖ · ‖s =: maxt∈[a,b] ‖ · ‖ rep-
resents the uniform norm over the interval [a, b]. For a
finite positive constant T , Cp{Rm×n, [0, T ]} denotes a set
of matrix-valued continuous functions (p = 0) and contin-
uously differentiable functions (p = 1). For a 2-D signal
rk(t), t ∈ [0, T ], k ∈ N , we say that rk(t) converges to zero

in L2
T norm if limk→∞

∫ T

0
‖rk(σ)‖2dσ = 0, and that rk(t) is

uniformly bounded if max(k,t)∈N×[0,T ] ‖rk(t)‖ < ∞.

2 Systems description and problem for-
mulation

Consider a class of uncertain nonlinear systems with the
delayed output:





ẋ = Ax + f(x, t) + B [u + Θ(t)ξ(x, t)

+η (y(t− τ(t)), υ(t))]

y = Cx

y(t) = $(t), t ∈ [−τmax, 0]

(1)

where x ∈ Rn is the system state vector, y ∈ Rm is
the system output vector, and u ∈ Rm is the system in-
put vector; f : Rn+1 → Rn and ξ : Rn+1 → Rn1 are
known vector-valued functions; Θ(t) ∈ C0(Rm×n1 , [0, T ])
and υ(t) ∈ C0(R1×n2 , [0, T ]) represent the time-varying
parametric uncertainties; η : Rm+1 → Rm represents the
time-varying and time-delay nonlinearly parameterized un-
certainty; τ(t) ∈ C1(R1, [−τmax, 0]) is the unknown time-
varying delay of the output y(t) with τmax ≥ 0 being an un-
known constant; $(t) ∈ C0(Rm, [−τmax, 0]) denotes the ini-
tial function of system (1); A, B, and C are known constant
matrices of appropriate dimensions with rank (CB) = m;
Only the output y(t) is physically accessible.

Remark 1. The adaptive learning control problem of
system (1) become more difficult than that studied in [23]
due to the known mismatched nonlinear function f(x, t)
and the uncertain matched time-varying, time-delay func-
tion η(y(t−τ(t)), υ(t)). The main feature of this paper is to
deal with these nonlinear terms in designing observer and
controller. It is obvious that system (1) can be considered
as an extension of system in [23]. For example, if f(x, t) = 0
and η(y(t− τ(t)), υ(t)) = 0, system (1) become the system

considered in [23].
Throughout this paper, we make the following assump-

tions on system (1).
Assumption 1. The time-delay term η(y(t − τ), υ(t))

satisfies the following inequality:

||η(%1, υ(t))− η(%2, υ(t))||
≤ ||%1 − %2||φ(%1, %2)ϑ, ∀%1, %2 ∈ Rm (2)

where φ(%1, %2) is a known continuous nonlinear function,
and ϑ is an unknown constant.

Assumption 2. The time-varying delay τ(t) satisfies

τ̇(t) ≤ µ < 1, i.e., − 1−τ̇(t)
1−µ

< −1.

Assumption 3. f(x, t) and ξ(x, t) are global Lipschitz
continuous, i.e., ∀χ1, χ2 ∈ Rn,

||f(χ1, t)− f(χ2, t)|| ≤ ||χ1 − χ2||ρ (3)

||ξ(χ1, t)− ξ(χ2, t)|| ≤ ||χ1 − χ2||l (4)

where ρ is a known Lipschitz constant, and l is an unknown
Lipschitz constant.

Remark 2. The inequality (4) in Assumption 3 is
from [23]. Assumption 1 and Assumption 2 will be used to
construct a Lyapunov-Krasovskii-like CEF. The inequality
(3) in Assumption 3 will be used to design the nonlinear
observer.

Our AILC problem for system (1) is formulated as fol-
lows. For a given desired trajectory yr(t) ∈ C1(Rm, [0, T ]),
find an appropriate control input series uk(t), such that the
system tracking error ek = yk − yr converges to zero in L2

T

norm.
To facilitate the subsequent derivations, two trace prop-

erties are given later [23]. For A1, A2, A4, W ∈ Rm×n1 , A3 ∈
Rm×m, ω1 ∈ Rn1 , and ω2 ∈ Rm.

P 0
1 : trace[(A1 −A2)

TA3(A1 −A2)]

−trace[(A1 −A4)
TA3(A1 −A4)]

= 2trace[(A4 −A2)
TA3(A1 −A2)]

−trace[(A4 −A2)
TA3(A4 −A2)]

P 0
2 : trace(ω1ω

T
2 W ) = ωT

2 Wω1.

The following lemma is used in this paper.
Lemma 1[43](Schur compliment lemma). The LMI

S =

[
S11 S12

S21 S22

]
< 0

where S11 = ST
11 and S22 = ST

22 is equivalent to

S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

3 Observer and controller design, sta-
bility analysis

3.1 Observer design

Since the system states cannot be obtained, the following
nonlinear observer is used to estimate the system states





x̂ = ν −Dy

ν̇ = (FA− LC)ν + Ff(x̂, t)

+ [L(Im + CD)− FAD] y

(5)
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where x̂ denotes the estimate of x; ν ∈ Rn, D =
−B(CB)−1 ∈ Rn×m, F = In + DC ∈ Rn×n; Im and In

are unit matrices of appropriate dimension; L ∈ Rn×m can
be chosen to render the following inequality holds

(FA− LC)TP + P (FA− LC)

+ ι−1P 2 + ιρ2||F ||2In < −Q (6)

where P, Q are positive definite matrices, ι is a positive
constant.

By defining the state estimation error ε = x − x̂, it can
be easily derived from (1) and (5) that

ε̇ = (FA− LC)ε + F (f(x, t)− f(x̂, t)). (7)

Remark 3. Different from [23], the observer (5) is
nonlinear, which leads to the requirement that the matrix
inequality (6) must be satisfied. In fact, based on Lemma
1, inequality (6) is equivalent to the following LMI

[
M P

P −ιIn

]
< 0

where M = (FA)TP−CTWT+PFA−WC+ιρ2‖F‖2In+Q,
and Q is a given positive definite matrix. Further, we can
use LMI tool box in Matlab to obtain P , W and ι, and then
we compute the observer gain matrix L = P−1W .

3.2 Controller design

In order to design the control law, we rewrite the dynamic
of the output tracking error ek = yk−yr at the k-th iteration
as follows

ėk = C [Axk + f(xk, t) + B(uk + Θ(t)ξ(xk, t)

+η(yk(t− τ(t)), υ(t))]− ẏr

= h(xk, t) + CB [uk + β(t)Ξ(xk, t) + Λk]

= CB [uk + β(t)Ξ(x̂k, t)] + h(x̂k, t) + gk (8)

where

h(xk, t) = CAxk + Cf(xk, t),

β(t) = [Θ(t) | η(yr(t− τ(t)), υ(t))− (CB)−1ẏr(t)],

Ξ(xk, t) =

[
ξ(xk, t)

1

]
,

Λk = η(yk(t− τ(t), υ(t))− η(yr(t− τ(t), υ(t)),

gk = h(xk, t)− h(x̂k, t) + CBβ(t)(Ξ(xk, t)

−Ξ(x̂k, t)) + CBΛk. (9)

Based on (8), the control law is designed as

uk = −β̂k(t)Ξ(x̂k, t) + (CB)−1
(
− h(x̂k, t)

−ψ̂kek −KP ek −KI

∫ t

0

ek(σ)dσ −KD ėk

− λ

4(1− µ)
ekφ2(yk, yr)

)
(10)

β̂k(t) = β̂k−1(t) + Γ(CB)TekΞT(x̂k, t) (11)

(1− ς)
˙̂
ψk = −ςψ̂k + ςψ̂k−1 + Υ||ek||2,

ψ̂−1(t) = 0, ψ̂k(0) = ψ̂k−1(T ) (12)

where KP , KI , KD ∈ Rm×m are positive definite matrices
with the minimum eigenvalue γ; λ is the minimum eigen-
value of Q; Γ ∈ Rm×m is a diagonal, positive gain matrix;
β̂k(t) is to approximate β(t) and ψ̂k is used to estimate an

unknown constant ψ = (||CA||+||C||ρ+||CB||βml)2+||CB||2ϑ2)
λ

with βm =: maxt∈[0,T ] β(t); 0 < ς < 1 and Υ > 0 are design
parameters.

In the control law (10), the term −β̂k(t)Ξ(x̂k, t) is used to
encounter the term β(t)Ξ(x̂k, t) in (8); the terms −h(x̂k, t)
and −ψ̂kek are used to compensate for the term h(x̂k, t) and

gk, respectively; the term − λ
4(1−µ)

ekφ2(yk, yr)
)

is employed

to compensate for the time-delay term Λk in gk (see eq.(17)
later).

Remark 4. Note that different from [23], our control
law (10) contains a PID feedback term in time domain. It
has been proved that the PID control is indeed superior to
proportional(P)-type control law if the designer can suit-
ably choose their coefficients. The reason can be explained
as follows: The traditional P-type controller only provides
an overall control action proportional to the error signal
through the all-pass gain factor. The proportional term re-
sponds immediately to the current error, yet typically can-
not achieve the desired accuracy without an unacceptably
large gain. For plants with significant dead time, the effects
of previous control actions are poorly represented in the cur-
rent error. This situation may lead to large transient errors
when the pure proportional controller is used. However,
in PID controller, the integral term reduces steady-state
errors through low-frequency compensation by an integra-
tor. In general, the integral term yields zero steady-state
error in tracking a reference signal, and also enables the
complete rejection of constant disturbances. The deriva-
tive term improves the transient response through high-
frequency compensation by a differentiator. So, in general,
PID controller is superior to the P-type controller if the
designer can suitably choose coefficients, which has been
proved by the development of PID control. Moreover, how
to tune PID coefficients is an open issue especially for non-
linear systems. Some existing methods for linear systems
may be further considered for nonlinear systems, for exam-
ple, adaptive method [5]. Based on the existing literature, a
guideline is given as follows. If the external noises appear,
the D coefficient is usually chosen small owing to the sensi-
tiveness of derivatives on the noises; if the control task re-
quires the fast convergence speed, then the designer should
increase the I coefficient since I term can remove the static
error and accelerate the convergence, which can be verified
in simulation (see Fig. 2). Overall, the choice of PID coef-
ficients is different for different control tasks and systems.
How to determine PID coefficients is an issue studied in the
further work.

Remark 5. The adaptive learning law (12) is a
differential-difference learning law which is originally pro-
posed in [24]. In general, the adaptive law (12) will be-
come the pure differentiation-type learning law if ς = 0, or
pure difference-type learning law if ς = 1. In general, the
differential-difference-type learning law is better than the
difference-type learning law. The reason is given as follows.
The traditional difference-type learning law is used to up-
date the estimate of the unknown parameter only in the
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iteration domain. That is, the adaptive law in the current
trial is adjusted by the information from the past trials.
However, the proposed differential-difference-type learning
law updates the estimation value of unknown parameter us-
ing the information not only from the past trials but also
from the current trial. So, the information used to update
the estimation values is more exact and effective, which in
general, makes the differential-difference-type learning law
superior to the difference-type one. The other advantage
of the differential-difference-type learning law is that the
differential-difference-type learning law, in fact, contains a
leakage term ς/(ς − 1)ψ̂ that helps eliminate the parameter
drift in practical applications.

Then, substituting (10) into (8) leads to

ėk = −KP ek −KI

∫ t

0

ek(σ)dσ −KD ėk

+CBβ̃k(t)Ξ(x̂k, t)− λφ2
k(yk, yr)

4(1− µ)
ek

+gk − ψ̂kek (13)

where β̃k(t) denotes the estimation error of β(t), i.e.,
β̃k(t) = β(t)− β̂k(t).

3.3 Convergence analysis

Theorem 1. Under Assumptions 1-3, if the identical
initial condition is satisfied, i.e., xk(0) = x̂k(0) and yk(t) =
yr(t), t ∈ [−τmax, 0], the control law (10), the learning law
(11) and (12) ensure the state estimation error and the out-
put tracking error converge to zeros in L2

T norm, while keep-
ing all closed-loop signals yk(t), xk(t), νk(t), x̂k(t), ψ̂k(t),∫ t

0
trace[β̂T(σ)β̂(σ)]dσ and

∫ t

0
‖uk(σ)‖2dσ are bounded.

Proof. First, consider a Lyapunov-Krasovskii functional
candidate as follows

Vk(t) = εT
k Pεk +

1

2
eT

k ek +
1− ς

2Υ
ψ̃2

k +
1

2
eT

k KDek

+
λ

4(1− µ)

∫ t

t−τ(t)

||ek(σ)||2φ2(yk(σ), yr(σ))dσ

+
1

2

( ∫ t

0

ek(σ)dσ
)T

KI

( ∫ t

0

ek(σ)dσ
)

(14)

where ψ̃k = ψk− ψ̂k. The differentiation of (14) is given by

V̇k(t) = εT
k P ε̇k + ε̇T

k Pεk + eT
k ėk +

1− ς

Υ
ψ̃k

˙̃
ψk

+eT
k KD ėk +

λ

4(1− µ)
||ek||2φ2(yk, yr)−

λ(1− τ̇(t))

4(1− µ)
||ek(t− τ)||2φ2(yk(t− τ), yr(t− τ))

+
1

2

( ∫ t

0

ek(σ)dσ
)T

KIek(t). (15)

Substituting (7), (12) and (13) into (15) yields

V̇k(t) = εT
k [(FA− LC)TP + P (FA− LC)]εk

+2εT
k PF (f(xk, t)− f(x̂k, t))

+eT
k [CBβ̃k(t)Ξ(x̂k, t)−KP ek − ψ̂kek + gk]−

λ(1− τ̇(t))

4(1− µ)
||ek(t− τ)||2φ2(yk(t− τ), yr(t− τ))

− 1

Υ
ψ̃k[−ςψ̂k + ςψ̂k−1 + Υ||ek||2]. (16)

Using inequality 2aTb ≤ ι−1aTa + ιbTb, a, b ∈ Rq for arbi-
trary ι > 0, and recalling inequality (3), we have

2εT
k PF (f(xk, t)− f(x̂k, t))

≤ ι−1εT
k P 2εk + ιρ2||F ||2εT

k εk. (17)

It is easily derived from (9) that

eT
k gk = eT

k

[
h(xk, t)− h(x̂k, t) + CBβ(t)(Ξ(xk, t)

−Ξ(x̂k, t)) + CBΛk

]

≤ ‖ek‖
[
‖h(xk, t)− h(x̂k, t)‖

+‖CB‖‖β(t)‖‖(Ξ(xk, t)− Ξ(x̂k, t))‖
+‖CB‖‖Λk‖

]
. (18)

Using Young’s inequality āb̄ ≤ cā2 + 1
4c

b̄2 with c > 0. Set
c = 1

λ
and note (2)-(4). We further have

eT
k gk ≤ (||CA||+ ||C||ρ + ||CB||βml)‖ek‖||εk||

+||CB||ϑ‖ek‖‖ek(t− τ)‖φ(yk(t− τ), yr(t− τ))

≤ (||CA||+ ||C||ρ + ||CB||βml)2

λ
||ek||2

+
λ

4
||εk||2 +

‖CB‖2ϑ2

λ
‖ek‖2

+
λ

4
‖ek(t− τ)‖2φ2(yk(t− τ), yr(t− τ))

= ψ||ek||2 +
λ

4
||εk||2

+
λ

4
||ek(t− τ)||2φ2(yk(t− τ), yr(t− τ)). (19)

where βm =: maxt∈[0,T ] β(t). Substituting (17) and (19)
back into (16), noting inequality (6) and Assumption 2, we
have

V̇k(t) ≤ −εT
k Qεk +

λ

4
εT

k εk + eT
k CBβ̃k(t)Ξ(x̂k, t)

−γ||ek||2 + ψ̃k||ek||2

− 1

Υ
ψ̃k[−ςψ̂k + ςψ̂k−1 + Υ||ek||2]

= −3λ

4
εT

k εk + eT
k CBβ̃k(t)Ξ(x̂k, t)− γ||ek||2

− ς

Υ
ψ̃k[ψ̃k − ψ̃k−1]

≤ −3λ

4
εT

k εk + eT
k CBβ̃k(t)Ξ(x̂k, t)− γ||ek||2

− ς

2Υ
[ψ̃2

k − ψ̃2
k−1] (20)

where γ is the minimum eigenvalue of KP . Note that in the
derivation of (20) we employ inequality ψ̃kψ̃k−1 ≤ 1

2
ψ̃2

k +
1
2
ψ̃2

k−1. Then, we define the following Lyapunov-Krasovskii-
like CEF

Ek(t) = Vk(t) +
1

2

∫ t

0

trace[β̃T
k (σ)Γ−1β̃k(σ)]dσ

+
ς

2Υ

∫ t

0

ψ̃2
k(σ)dσ (21)

The proof consists of three parts: Part A derives the
difference of the CEF; Part B proves the convergence of
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the tracking error; and Part C examines the boundedness
property of the system.

Part A: Difference of CEF: For any t ∈ [0, T ], noting
Vk(t) =

∫ t

0
V̇k(σ)dσ + Vk(0), the difference of the CEF is

∆Ek(t) =: Ek(t)− Ek−1(t)

=

∫ t

0

V̇k(σ)dσ + Vk(0)− Vk−1(t)

+
1

2

∫ t

0

{trace[β̃T
k (σ)Γ−1β̃k(σ)]

−trace[β̃T
k−1(σ)Γ−1β̃k−1(σ)]}dσ

+
ς

2Υ

∫ t

0

[ψ̃2
k(σ)− ψ̃2

k−1(σ)]dσ. (22)

Using the trace properties P 0
1 , P 0

2 and considering the learn-
ing law (11), we derive

1

2

∫ t

0

{trace[β̃T
k (σ)Γ−1β̃k(σ)]

−trace[β̃T
k−1(σ)Γ−1β̃k−1(σ)]}dσ

=

∫ t

0

{trace[(β̂k−1(σ)− β̂k(σ))TΓ−1β̃k(σ)]

−trace[(β̂k−1(σ)− β̂k(σ))TΓ−1(β̂k−1(σ)− β̂k(σ))]}dσ

≤ −
∫ t

0

trace{Ξ(x̂k(σ), σ)[(CB)Tek(σ)]Tβ̃k(σ)}dσ

= −
∫ t

0

eT
k (σ)CBβ̃k(σ)Ξ(x̂k(σ), σ)dσ. (23)

Substituting (20) and (23) into (22) results in

∆Ek(t) ≤ −3λ

4

∫ t

0

||εk(σ)||2dσ − γ

∫ t

0

||ek(σ)||2dσ

+Vk(0)− Vk−1(t). (24)

Noting the identical initial condition εk(0) = 0 and
ek(0) = 0, t ∈ [−τmax, 0], we have Vk(0) = 1−ς

2Υ
ψ̃2

k(0) =
1−ς
2Υ

ψ̃2
k−1(T ) ≤ Vk−1(T ). Let t = T in (24), we further

obtain

∆Ek(T ) ≤ −3λ

4

∫ T

0

||εk(σ)||2dσ

−γ

∫ T

0

||ek(σ)||2dσ ≤ 0. (25)

Part B: Convergence of Analysis: Applying (25) repeat-
edly, we have

Ek(T ) = E0(T ) +

k∑
j=1

∆Ej(T )

≤ E0(T )− γ

k∑
j=1

∫ T

0

||ej(σ)||2dσ

−3λ

4

k∑
j=1

∫ T

0

||εj(σ)||2dσ. (26)

The previous relationship holds for any k, thus

lim
k→∞

Ek(T ) ≤ E0(T )− lim
k→∞

γ

k∑
j=1

∫ T

0

||ej(σ)||2dσ

− lim
k→∞

3λ

4

k∑
j=1

∫ T

0

||εj(σ)||2dσ. (27)

or equivalently

lim
k→∞

γ

k∑
j=1

∫ T

0

||ej(σ)||2dσ

+ lim
k→∞

3λ

4

k∑
j=1

∫ T

0

||εj(σ)||2dσ

≤ E0(T )− lim
k→∞

Ek(T ). (28)

As Ek(T ) is positive, if we can further prove that E0(T ) is

finite, then we conclude that the series
∑∞

j=1

∫ T

0
||ej(σ)||2dσ

and
∑∞

j=1

∫ T

0
||εj(σ)||2dσ will converge. According to the

necessary condition of the convergence of the series, we have
limk→∞

∫ T

0
||ek(σ)||2dσ = 0 and limk→∞

∫ T

0
||εk(σ)||2dσ =

0. Therefore, as k approaches infinity, x̂k converges to x
and yk converges to yr(t) asymptotically in L2

T norm.
Now, Let us check the finiteness property of E0(T ). For

any t ∈ [0, T ], from (21) (let k = 0), the derivative of E0(t)
is

Ė0(t) = V̇0(t) +
1

2
trace(β̃T

0 Γ−1β̃0) +
ς

2Υ
ψ̃2

0 . (29)

Note that in (29), the first term on the right-hand side has
been derived from (20) as follows

V̇0(t) ≤ −3λ

4
εT
0 ε0 + eT

0 CBβ̃0(t)Ξ(x̂0, t)− γ||e0||2

− ς

2Υ
ψ̃2

0 +
ς

2Υ
ψ2. (30)

For the second term on the right-hand side of (29), by sub-
stituting the learning law (11) and using the trace property
P 0

2 , we have

1

2
trace(β̃T

0 Γ−1β̃0)

=
1

2
trace(βTΓ−1β)− trace(β̂T

0 Γ−1β̃0)

−1

2
trace(β̂T

0 Γ−1β̂0)

≤ 1

2
trace(βTΓ−1β)− eT

0 CBβ̃0(t)Ξ(x̂0, t). (31)

Substituting (30) and (31) into (29) yields

Ė0(t) ≤ −3λ

4
||ε0||2 − γ||e0||2 +

1

2
trace(βTΓ−1β)

+
ς

2Υ
ψ2

≤ 1

2
trace(βTΓ−1β) +

ς

2Υ
ψ2. (32)

The boundedness of β and ψ leads to the boundedness of
Ė0(t), which implies that ∀t ∈ [0, T ], |E0(T )| ≤ |E0(0)| +∫ T

0
|Ė0(σ)|dσ is bounded.
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Part C: Boundedness Property: Up to now, we only prove
the boundedness of Ek(T ) for k ∈ N . Now, let us check the
boundedness of Ek(t) for any t ∈ [0, T ] and k ∈ N . Accord-
ing to the definition of Ek(t) and the finiteness of Ek(T ), the

boundedness of
∫ T

0
trace(β̃T

k (σ)Γ−1β̃k(σ))dσ,
∫ T

0
ψ̃2

k(σ)dσ

and ψ̃2
k(T ) are guaranteed for all iterations. Therefore,

∀k ∈ N and t ∈ [0, T ], there exist finite constants M1 and
M2 satisfying

1

2

∫ t

0

trace[β̃T
k (σ)Γ−1β̃k(σ)]dσ +

ς

2Υ

∫ t

0

ψ̃2
k(σ)dσ

≤ 1

2

∫ T

0

trace[β̃T
k (σ)Γ−1β̃k(σ)]dσ +

ς

2Υ

∫ T

0

ψ̃2
k(σ)dσ

≤ M1 (33)

and

Vk+1(0) =
1− ς

2Υ
ψ̃2

k+1(0) =
1− ς

2Υ
ψ̃2

k(T ) ≤ M2. (34)

Then, from (21)and (33), we have

Ek(t) = Vk(t) + M1. (35)

On the other hand, from (25) and (34), we have

∆Ek+1(t)

≤ −3λ

4

∫ t

0

||εk+1(σ)||2dσ − γ

∫ t

0

||ek+1(σ)||2dσ

+Vk+1(0)− Vk(t)

≤ M2 − Vk(t). (36)

Combining (35) and (36) yields

Ek+1(t) ≤ M1 + M2. (37)

As we have shown E0(t) is bounded, for ∀k ∈ N , t ∈ [0, T ],
Ek(t) is uniformly bounded, hence εk(t), ek(t), ψ̃k(t) and∫ t

0
trace(β̃T

k (σ)β̃k(σ))dσ are uniformly bounded, which fur-

ther implies the uniform boundedness of yk(t), ψ̂k(t) and∫ t

0
trace(β̂T

k (σ)β̂k(σ))dσ. In the sequel, consider the Lya-

punov function Wk = νT
k Pνk, which derivative is given by

Ẇk = νT
k [P (FA− LC) + (FA− LC)TP ]νk

+2νT
k PF [f(νk −Dyk, t)− f(−Dyk, t)]

+2νT
k P∆(yk)

≤ −νT
k Qνk +

λ

2
νT

k νk +
2

λ
||P ||2||∆(yk)||2

= −λ

2
νT

k νk +
2

λ
||P ||2||∆(yk)||2 (38)

where ∆(yk) = Ff(−Dyk) + [L(Im + CD)− FAD] yk is a
continuous vector-valued function. According to (38), the
uniformly bounded yk(t) ensures the uniform boundedness
of νk(t), in the sequel the uniform boundedness of x̂k(t),
then xk(t) = x̂k(t) + εk(t) is also uniformly bounded. Fi-
nally, from (13), we have

ėk = (I + KD)−1
[
−KP ek −KI

∫ t

0

ek(σ)dσ

+CBβ̃k(t)Ξ(x̂k, t)− λφ2(yk, yr)

4(1− η)
ek

+gk − ψ̂kek

]
. (39)

The uniform boundedness of ek(t), xk(t), x̂k(t),
ψ̂k(t), yk(t),

∫ t

0
trace[β̂T

k (σ)β̂k(σ)]dσ and the bound-
ednsess of yr(t), ẏr(t) further imply that ėk(t) is uniformly
bounded. Therefore, according to the control law (10),∫ t

0
‖uk(σ)‖2dσ is uniformly bounded.
Remark 6. Compared with [23], due to the nonlinear

term f(x̂, t) in (5), it is more difficult to obtain the uniform
boundedness of ν. Therefore, we must make additional ef-
forts to establish the inequality (38) to ensure the uniform
boundedness of ν. Similarly, due to appearance of PID-
type feedback term in the control law (10), we also have to
establish the Eq.(39) to ensure the uniform boundedness of
ėk(t).

4 Simulation study

In this section, we provide a simulation example to illus-
trate the control approach proposed in this paper. Consider
the following system at the k-th iteration

ẋk = Axk + f(xk)

+B {uk + Θ(t)ξ(xk) + η(yk(t− τ(t)), t)}
yk = Cxk (40)

with

xk =

[
xk,1

xk,2

]
, A =

[
−1 2

3 −4

]
,

f(xk) =

[ √
2

2
sin xk,1√

2
2

cos xk,2

]
, ξ(xk) =

[
e−x2

k,1

xk,2

]
,

Θ(t) = [| sin t| cos3(t)],

η(yk(t− τ(t)), t) = sin2(t)y2
k(t− τ(t)),

τ(t) = 2 + 0.5 sin t,

B = [1 1]T, C = [1 1].

The control objective is to make the system output yk(t)
track the desired trajectory yr(t) = sin(t) + sin(2t) for
t ∈ [0, 2π]. It is easy to verify that Assumptions 1-3 are
satisfied, and ρ = 1, l =

√
2, ϑ = 1 and φ(yk, yr) = |yk +yr|.

Based on the LMI in Remark 3 with Q = I, by using the
LMI tool box in Matlab we can obtain L = [2.0289; 1.0289].
Then, according to (5), the observer is given as





x̂k = νk −
[
−0.5

−0.5

]
yk

ν̇k =

[
−4.0289 0.9711

0.9711 −4.0289

]
νk+

[
0.5 −0.5

−0.5 0.5

] [ √
2

2
sin x̂k,1√

2
2

cos x̂k,2

]
+

[
0.5

−0.5

]
yk.

(41)

Based on (10), the control law is designed as

uk =
1

2

(
− h(x̂k)− ψ̂kek −KP ek −KI

∫ t

0

ek(σ)dσ

−KD ėk − 1

2
ek(yk + yr)

2
)
− β̂k(t)Ξ(x̂k) (42)
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with ek = yk − yr, and

Ξ(x̂k) =




e−x̂2
k,1

x̂k,2

1


 ,

h(x̂k) = [1 1]

[
−1 2

3 −4

] [
x̂k,1

x̂k,2

]
+

[1 1]

[ √
2

2
sin x̂k,1√

2
2

cos x̂k,2

]
.

The parameter learning laws are designed as follows

β̂k(t) = β̂k−1(t) + Γ2ekΞT(x̂k), β̂−1(t) = 0 (43)

(1− ς)
˙̂
ψk = −ςψ̂k + ςψ̂k−1 + Υ||ek||2,

ψ̂−1(t) = 0, ψ̂k(0) = ψ̂k−1(T ). (44)

In simulation, the control parameters are set to be KP =
0.5, KI = 0.5 and KD = 0.5, the design parameters are
specified as ς = 0.5, Υ = 0.5, Γ = 0.25. All initial condi-
tions are set to be zeros. The simulation results are shown
in Fig. 1.
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Fig. 1 Simulation results for system (37)

From Fig. 1, it can be seen that as the iteration number
k increases, the tracking error ‖e(t)‖L2

T
can converge to

zero. When k = 20, the system output y(t) can match the
reference output yr(t) very well, which further verifies the
effectiveness of the control scheme proposed in this paper.

To show the effect of PID coefficients on the control per-
formance, we give the simulation curves of |e(t)|L2

T
for four

cases which are shown in Fig. 2. It can be seen from Fig. 2
that compared with P-type controller, PI-type controller
can obtain the fast convergence, but increase the initial
tracking error; PD-type controller can decrease the initial
tracking error, but converge slowly; PID-type controller can
obtain a good balance between the initial tracking error and
the convergence speed. So, in the applications, the designer
should choose the suitable PID coefficients in order to ob-
tain the satisfactory control performance.
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Fig. 2 Simulation comparison of |e(t)|L2
T

5 Conclusions

In this paper, we extend the CEF-based AILC approach
to the nonlinear time-varying time-delay systems. We de-
velop a novel observer-based AILC scheme to deal with non-
linearly parameterized uncertainties depending on unknown
time-varying parameters and unknown time-varying delays.
For simplicity, we only focus on AILC in this paper, but the
proposed idea is also applied to solve ARC problem without
any difficulty.
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