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Abstract

This paper investigates the stability of neutral delay-differential systems with mixed multiple time-varying delay arguments.
Based on the Lyapunov functional method, and the relationship between the system states and the derivatives of these states, we
present a new asymptotical stability criterion and a new robust stability criterion in terms of only one simple linear matrix inequality
(LMI), which guarantees stability for such systems with time-varying delays. This LMI can be easily solved by various convex
optimization algorithms. Two examples are given to illustrate the advantages of the proposed methods over the existing ones.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Dynamical systems with time delays have been of considerable interest for decades, and in particular stability
analysis of various neutral delay-differential systems has received much attention. A number of delay-independent
sufficient conditions for the asymptotic stability of neutral delay differential systems have been presented by various
researchers [1,6,10,11,14,19]. Also, rather fewer delay-dependent sufficient conditions have been shown in [8,9,20].
However, in each case above, the time delays considered are constant. Han’s stability criterion in [7] is neutral delay-
independent, and is applicable only to systems with a time-varying state delay argument and invariant neutral delay. Park
[18] gave a new delay-dependent stability criterion for neutral differential systems with mixed multiple time-varying
delay arguments, but it is very conservative.

In this paper, we investigate the stability of neutral delay differential systems with multiple time-varying delay
arguments. In order to establish a new delay-dependent criterion for asymptotic stability and robust stability of the
systems, using the Lyapunov method, various slack matrices are introduced to express the relationship between system
states and the derivatives of the system states. Since this criterion is both neutral delay-dependent and discrete delay-
dependent, it is less conservative than existing criteria for neutral differential systems. Stability criteria derived in this
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paper are expressed using linear matrix inequalities (LMIs). We also note that these criteria can be applied under more
relaxed assumptions than those made in previous work. A solution to these LMIs can easily be found using various
optimization algorithms. Numerical examples are given to illustrate the proposed results.

2. Main results

In this paper, we are interested in the following linear system of neutral type with mixed multiple time-varying
delay arguments:

ẋ(t) = Ax(t) + B1x(t − d1(t)) + B2x(t − d2(t)) + C1ẋ(t − h1(t)) + C2ẋ(t − h2(t)) (1)

with the initial condition function

x(θ) = φ(θ), ∀θ ∈ [−ρ, 0] (2)

where x(t) ∈ Rn is the state vector,A,Bi, Ci are constant real system matrices, di(t) and hi(t) are positive time-varying
bounded delays satisfying{

0 < di(t) ≤ di < ∞, ḋi(t) ≤ μi < 1,

0 < hi(t) ≤ hi < ∞, ḣi(t) ≤ μi+2 < 1,
for i = 1, 2. (3)

φ(θ) is a given continuously differentiable function on [−ρ, 0]. We write d = max(d1, d2), h = max(h1, h2), ρ =
max(d, h). We assume the system matrix A is a Hurwitz matrix. Using ‖ · ‖ to denote the matrix norm, we assume that
matrices C1 and C2 satisfy

Assumption 1. ‖C1‖ + ‖C2‖ < 1.

This assumption guarantees that we can apply the Lyapunov–Krasovskii method to the stability of neutral type systems
with time-varying delays [13]—see, e.g., [3].

The goals of this paper are to find criteria for asymptotic stability and robust stability of Eq. (1) using the Lyapunov
method in conjunction with LMI techniques.

For simplicity, in the rest of the paper, in symmetric block matrices or long matrix expressions, we use ‘∗’ to
represent some term that is induced by symmetry.

Theorem 1. For given scalars d1, d2, h1, h2 and μi (i = 1 . . . 4), under the assumptions given, the neutral system in
Eq. (1) is asymptotically stable if there exist positive definite matrices P > 0, Qi > 0, Zi > 0, Wi > 0, Mi > 0, and
Ri > 0 for i = 1, 2 and any appropriately dimensioned matrices Yj , Lj , Tj ,Nj , (j = 1, . . . , 7) such that the following
linear matrix inequality (LMI) holds:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 −T1 +GT
4 PC1 +GT

5 −N1 +GT
6 PC2 +GT

7 −d1Y1 −d2L1 −h1T1 −h2N1 ATS

∗ Ω22 Ω23 −T2 − YT
4 −YT

5 −N2 − YT
6 −YT

7 −d1Y2 −d2L2 −h1T2 −h2N2 BT
1S

∗ ∗ Ω33 −T3 − LT
4 −LT

5 −N3 − LT
6 −LT

7 −d1Y3 −d2L3 −h1T3 −h2N3 BT
2S

∗ ∗ ∗ Ω44 −T T
5 −N4 − T T

6 −T T
7 −d1Y4 −d2L4 −h1T4 −h2N4 0

∗ ∗ ∗ ∗ Ω55 −N5 0 −d1Y5 −d2L5 −h1T5 −h2N5 CT
1S

∗ ∗ ∗ ∗ ∗ Ω66 −NT
7 −d1Y6 −d2L6 −h1T6 −h2N6 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 −d1Y7 −d2L7 −h1T7 −h2N7 CT
2S

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d1Z1 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d2Z2 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h1W1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h2W2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗ −S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (4)
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where Ω11 = ATP + PA+Q1 +Q2 +M1 +M2 +G1 +GT
1 ;Ω12 = PB1 − Y1 +GT

2 ;Ω13 = PB2 − L1 +GT
3 ;

Ω22 = −(1 − μ1)Q1 − Y2 − YT
2 ;Ω23 = −L2 − YT

3 ;Ω33 = −(1 − μ2)Q2 − L3 − LT
3 ;Ω44 = −(1 − μ3)M1 −

T4 − T T
4 ;Ω55 = −(1 − μ3)R1;Ω66 = −(1 − μ4)M2 −N6 −NT

6 ;Ω77 = −(1 − μ4)R2;Gi = Yi + Li + Ti +
Ni; S =∑2

i=1[diZi + hiWi + Ri].

Proof. Let the Lyapunov functional candidate be

V (xt) = V1 + V2 + V3 + V4 (5)

where

V1 = xT(t)Px(t), (6)

V2 =
2∑
i=1

∫ 0

−di

∫ t

t+s
ẋT(α)Ziẋ(α) dα ds+

∫ t

t−di(t)
xT(s)Qix(s) ds, (7)

V3 =
2∑
i=1

∫ 0

−hi

∫ t

t+s
ẋT(α)Wiẋ(α) dα ds+

∫ t

t−hi(t)
xT(s)Mix(s) ds, (8)

V4 =
2∑
i=1

∫ t

t−hi(t)
ẋT(s)Riẋ(s) ds. (9)

The time derivative of V along the trajectories of System (1) is given by

V̇ = V̇1 + V̇2 + V̇3 + V̇4. (10)

From (6) to (9), we have

V̇1 = 2xT(t)Pẋ(t) = 2xT(t)PAx(t) + 2xT(t)PB1x(t − d1(t)) + 2xT(t)PB2x(t − d2(t)) + 2xT(t)PC1ẋ(t − h1(t))

+2xT(t)PC2ẋ(t − h2(t)) (11)

V̇2 =
2∑
i=1

diẋ
T(t)Ziẋ(t) −

∫ t

t−di
ẋT(s)Ziẋ(s) ds+ xT(t)Qix(t) − (1 − ḋi(t))x

T(t − di(t))Qix(t − di(t))

≤
2∑
i=1

diẋ
T(t)Ziẋ(t) − 1

di(t)

∫ t

t−di(t)
di(t)ẋ

T(s)
1

di
Ziẋ(s)di(t) ds+ xT(t)Qix(t)

−(1 − ḋi(t))x
T(t − di(t))Qix(t − di(t))

≤
2∑
i=1

diẋ
T(t)Ziẋ(t) − 1

di(t)

∫ t

t−di(t)
di(t)ẋ

T(s)
1

di
Ziẋ(s)di(t) ds

+xT(t)Qix(t) − (1 − μi)x
T(t − di(t))Qix(t − di(t)) (12)

V̇3 ≤
2∑
i=1

hiẋ
T(t)Wiẋ(t) − 1

hi(t)

∫ t

t−hi(t)
hi(t)ẋ

T(s)
1

hi
Wiẋ(s)hi(t) ds+ xT(t)Mix(t)

−(1 − μi+2)xT(t − hi(t))Mix(t − hi(t)) (13)

V̇4 =
2∑
i=1

ẋT(t)Riẋ(t) − [1 − ḣi(t)]ẋ
T(t − hi(t))Riẋ(t − hi(t))

≤
2∑
i=1

ẋT(t)Riẋ(t) − [1 − μi+2]ẋT(t − hi(t))Riẋ(t − hi(t)). (14)



18 X.-G. Liu et al. / Mathematics and Computers in Simulation 75 (2007) 15–27

Adding (11)–(14) gives

V̇1 + V̇2 + V̇3 + V̇4 ≤ 2xT(t)PAx(t) + 2xT(t)PB1x(t − d1(t)) + 2xT(t)PB2x(t − d2(t))

+ 2xT(t)PC1ẋ(t − h1(t)) + 2xT(t)PC2ẋ(t − h2(t)) +
2∑
i=1

ẋT(t)[diZi + hiWi + Ri]ẋ(t)

+ xT(t)[Qi +Mi]x(t) − (1 − μi)x
T(t − di(t))Qix(t − di(t)) − (1 − μi+2)xT(t − hi(t))Mix(t − hi(t))

− (1 − μi+2)ẋT(t − hi(t))Riẋ(t − hi(t)) − 1

di(t)

∫ t

t−di(t)
di(t)ẋ

T(s)
1

di
Ziẋ(s)di(t) ds

− 1

hi(t)

∫ t

t−hi(t)
hi(t)ẋ

T(s)
1

hi
Wiẋ(s)hi(t) ds

= xT(t)[PA+ ATP +Q1 +Q2 +M1 +M2]x(t)

+ 2xT(t)PB1x(t − d1(t)) + 2xT(t)PB2x(t − d2(t)) + 2xT(t)PC1ẋ(t − h1(t)) + 2xT(t)PC2ẋ(t − h2(t))

+ ẋT(t)Sẋ(t) − (1 − μ1)xT(t − d1(t))Q1x(t − d1(t)) − (1 − μ2)xT(t − d2(t))Q2x(t − d2(t))

− (1 − μ3)xT(t − h1(t))M1x(t − h1(t)) − (1 − μ4)xT(t − h2(t))M2x(t − h2(t))

− (1 − μ3)ẋT(t − h1(t))R1ẋ(t − h1(t)) − (1 − μ4)ẋT(t − h2(t))R2ẋ(t − h2(t))

− 1

d1(t)

∫ t

t−d1(t)
d1(t)ẋT(s)

1

d1
Z1ẋ(s)d1(t) ds− 1

d2(t)

∫ t

t−d2(t)
d2(t)ẋT(α)

1

d2
Z2ẋ(α)d2(t) dα

− 1

h1(t)

∫ t

t−h1(t)
h1(t)ẋT(β)

1

h1
W1ẋ(β)h1(t) dβ − 1

h2(t)

∫ t

t−h2(t)
h2(t)ẋT(r)

1

h2
W2ẋ(r)h2(t) dr. (15)

Let

ξ(t) = [xT(t), xT(t − d1(t)), xT(t − d2(t)), xT(t − h1(t)), ẋT(t − h1(t)), xT(t − h2(t)), ẋT(t − h2(t))]T.

Then

ẋ(t) = Ax(t) + B1x(t − d1(t)) + B2x(t − d2(t)) + C1ẋ(t − h1(t)) + C2ẋ(t − h2(t))

= [A,B1, B2, 0, C1, 0, C2]ξ(t). (16)

Therefore,

ẋT(t)Sẋ(t) = ξT(t)[A,B1, B2, 0, C1, 0, C2]TS[A,B1, B2, 0, C1, 0, C2]ξ(t)

(17)

= ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ATSA ATSB1 ATSB2 0 ATSC1 0 ATSC2

∗ BT
1SB1 BT

1SB2 0 BT
1SC1 0 BT

1SC2

∗ ∗ BT
2SB2 0 BT

2SC1 0 BT
2SC2

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ CT
1SC1 0 CT

1SC2

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ CT
2SC2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξ(t). (18)

Since

x(t) − x(t − d1(t)) =
∫ t

t−d1(t)
ẋ(s) ds,



X.-G. Liu et al. / Mathematics and Computers in Simulation 75 (2007) 15–27 19

2ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

Y3

Y4

Y5

Y6

Y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[x(t) − x(t − d1(t))] − 2ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

Y3

Y4

Y5

Y6

Y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∫ t

t−d1(t)
ẋ(s) ds = 0,

hence,

2ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 −Y1 0 0 0 0 0

Y2 −Y2 0 0 0 0 0

Y3 −Y3 0 0 0 0 0

Y4 −Y4 0 0 0 0 0

Y5 −Y5 0 0 0 0 0

Y6 −Y6 0 0 0 0 0

Y7 −Y7 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξ(t) − 2

∫ t

t−d1(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

Y3

Y4

Y5

Y6

Y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(s) ds = 0. (19)

Similarly, we have

2ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 0 −L1 0 0 0 0

L2 0 −L2 0 0 0 0

L3 0 −L3 0 0 0 0

L4 0 −L4 0 0 0 0

L5 0 −L5 0 0 0 0

L6 0 −L6 0 0 0 0

L7 0 −L7 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξ(t) − 2

∫ t

t−d2(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1

L2

L3

L4

L5

L6

L7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(α) dα = 0, (20)

2ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 0 0 −T1 0 0 0

T2 0 0 −T2 0 0 0

T3 0 0 −T3 0 0 0

T4 0 0 −T4 0 0 0

T5 0 0 −T5 0 0 0

T6 0 0 −T6 0 0 0

T7 0 0 −T7 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξ(t) − 2

∫ t

t−h1(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

T7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(β) dβ = 0, (21)
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2ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 0 0 0 −N1 0

N2 0 0 0 0 −N2 0

N3 0 0 0 0 −N3 0

N4 0 0 0 0 −N4 0

N5 0 0 0 0 −N5 0

N6 0 0 0 0 −N6 0

N7 0 0 0 0 −N7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξ(t) − 2

∫ t

t−h2(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

N6

N7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(r) dr = 0. (22)

Denote Gi = Yi + Li + Ti +Ni for i = 1 . . . 7. From Eqs. (19)–(22), we have

ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 +GT
1 −Y1 +GT

2 −L1 +GT
3 −T1 +GT

4 GT
5 −N1 +GT

6 GT
7

∗ −Y2 − YT
2 −L2 − YT

3 −T2 − YT
4 −YT

5 −N2 − YT
6 −YT

7

∗ ∗ −L3 − LT
3 −T3 − LT

4 −LT
5 −N3 − LT

6 −LT
7

∗ ∗ ∗ −T4 − T T
4 −T T

5 −N4 − T T
6 −T T

7

∗ ∗ ∗ ∗ 0 −N5 0

∗ ∗ ∗ ∗ ∗ −N6 −NT
6 −NT

7

∗ ∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξ(t)

−2
∫ t

t−d1(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

Y3

Y4

Y5

Y6

Y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(s) ds− 2

∫ t

t−d2(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1

L2

L3

L4

L5

L6

L7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(α) dα − 2

∫ t

t−h1(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

T7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(β) dβ

−2
∫ t

t−h2(t)
ξT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

N6

N7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ẋ(r) dr = 0. (23)

Let η(t, s, α, β, r) = [ξT(t), d1(t)ẋT(s), d2(t)ẋT(α), h1(t)ẋT(β), h2(t)ẋT(r)]T. Thus,

V̇ = V̇1 + V̇2 + V̇3 + V̇4 + 0

≤ 1

d1(t)d2(t)h1(t)h2(t)

∫ t

t−d1(t)
ds
∫ t

t−d2(t)
dα
∫ t

t−h1(t)
dβ
∫ t

t−h2(t)
ηT(t, s, α, β, r)Ω̄η(t, s, α, β, r) dr (24)
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where

Ω̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̄11 Ω̄12 Ω̄13 −T1 +GT
4 ATSC1 + PC1 +GT

5 −N1 +GT
6 ATSC2 + PC2 +GT

7 −Y1 −L1 −T1 −N1

∗ Ω̄22 Ω̄23 −T2 − YT
4 BT

1SC1 − YT
5 −N2 − YT

6 BT
1SC2 − YT

7 −Y2 −L2 −T2 −N2

∗ ∗ Ω̄33 −T3 − LT
4 BT

2SC1 − LT
5 −N3 − LT

6 BT
2SC2 − LT

7 −Y3 −L3 −T3 −N3

∗ ∗ ∗ Ω̄44 −T T
5 −N4 − T T

6 −T T
7 −Y4 −L4 −T4 −N4

∗ ∗ ∗ ∗ Ω̄55 −N5 CT
1 SC2 −Y5 −L5 −T5 −N5

∗ ∗ ∗ ∗ ∗ Ω̄66 −NT
7 −Y6 −L6 −T6 −N6

∗ ∗ ∗ ∗ ∗ ∗ Ω̄77 −Y7 −L7 −T7 −N7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z1/d1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2/d2 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −W1/h1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −W2/h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

and

Ω̄11 = ATSA+ ATP + PA+Q1 +Q2 +M1 +M2 +G1 +GT
1 ;

Ω̄12 = ATSB1 + PB1 − Y1 +GT
2 ;

Ω̄13 = ATSB2 + PB2 − L1 +GT
3 ;

Ω̄22 = BT
1SB1 − (1 − μ1)Q1 − Y2 − YT

2 ;

Ω̄23 = BT
1SB2 − L2 − YT

3 ;

Ω̄33 = BT
2SB2 − (1 − μ2)Q2 − L3 − LT

3 ;

Ω̄44 = −(1 − μ3)M1 − T4 − T T
4 ;

Ω̄55 = CT
1SC1 − (1 − μ3)R1;

Ω̄66 = −(1 − μ4)M2 −N6 −NT
6 ;

Ω̄77 = CT
2SC2 − (1 − μ4)R2;

Gi = Yi + Li + Ti +Ni.

It can be seen that V̇ is negative if LMI Ω̄ < 0 holds. Multiplying both sides of this LMI by the matrix
diag(I, I, I, I, I, I, I, d1I, d2I, h1I, h2I), and using Schur complement, we find that Ω̄ < 0 is equivalent to LMI (4).

We will prove that all conditions of Theorem 1.6 in [13] are satisfied. In fact, denote

‖xt‖w =
(

|x(t)| +
∫ 0

−ρ
|ẋ(t + s)|2 ds

)1/2

, ‖xt‖s = sup
−ρ≤θ≤0

|x(t + θ)|.

For simplicity, the subscript of ‖ · ‖s is usually omitted.
Since x(t + θ) = x(t) − ∫ 0

θ
ẋ(t + s) ds for −ρ ≤ θ ≤ 0,

|x(t + θ)| ≤ |x(t)| +
∫ 0

−ρ
|ẋ(t + s)| ds.

So

‖xt‖2 ≤
(

|x(t)| +
∫ 0

−ρ
|ẋ(t + s)| ds

)2

≤ 2|x(t)|2 + 2

(∫ 0

−ρ
|ẋ(t + s)| ds

)2

.
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Using Hölder’s inequality gives

‖xt‖2 ≤ 2|x(t)|2 + 2ρ
∫ 0

−ρ
|ẋ(t + s)|2 ds.

Hence,

‖xt‖2 ≤ 2(1 + ρ)‖xt‖2
w.

By simple computation, we have λmin(P)|x(t)|2 ≤ V (xt) ≤ {λmax(P) +∑2
i=1[ρ(λmax(Zi) + λmax(Wi)) + λmax(Ri) +

2(1 + ρ)(Qi +Mi)]}‖xt‖2
w. The neutral system in Eq. (1) can be given in the following form:

ẋ(t) = f (t, xt, ẋt),

where f (t, xt, ẋt) = Ax(t) + B1x(t − d1(t)) + B2x(t − d2(t)) + C1ẋ(t − h1(t)) + C2ẋ(t − h2(t)). It is obvious that
f (t, 0, 0) = 0 and f (t, xt, ẋt) satisfies a Lipschitz condition on the second argument xt . Now, we prove that f (t, xt, ẋt)
satisfies a Lipschitz condition on the third argument ẋt with Lipschitz constant less than 1. For simplicity, denote
f (t, ϕ, ψ) = Aϕ(0) + B1ϕ(−d1(t)) + B2ϕ(−d2(t)) + C1ψ(−h1(t)) + C2ψ(−h2(t)). Since Assumption 1 holds, i.e.
‖C1‖ + ‖C2‖ < 1, then, for any ϕ, ψ1, ψ2 ∈ C([−ρ, 0], Rn), we have that

|f (t, ϕ, ψ2) − f (t, ϕ, ψ1)|
= |C1ψ2(−h1(t)) + C2ψ2(−h2(t)) − C1ψ1(−h1(t)) − C2ψ1(−h2(t))|

≤ |C1ψ2(−h1(t)) − C1ψ1(−h1(t))| + |C2ψ2(−h2(t)) − C2ψ1(−h2(t))|
≤ ‖C1‖|ψ2(−h1(t)) − ψ1(−h1(t))| + ‖C2‖|ψ2(−h2(t)) − ψ1(−h2(t))|
≤ ‖C1‖‖ψ2 − ψ1‖ + ‖C2‖‖ψ2 − ψ1‖ = (‖C1‖ + ‖C2‖)‖ψ2 − ψ1‖ < ‖ψ2 − ψ1‖.

So, f (t, xt, ẋt) satisfies a Lipschitz condition on the third argument ẋt with Lipschitz constant less than 1. V̇ is negative
if LMI (4) hold. Hence, by Theorem 1.6 in [13], the existence of V > 0 such that V̇ < 0 guarantees asymptotic stability
of neutral system given in Eq. (1). This completes the proof. �

In the rest of this section, we develop a new robust stability criterion for a neutral system with uncertainties. We
first state a useful lemma.

Lemma 1. From [21]. Given matrices Q = QT, H, E and R = RT > 0 of appropriate dimensions,

Q+HFE + ETFTHT < 0

for all F satisfying FTF ≤ R, if and only if there exists some λ > 0 such that

Q+ λHHT + λ−1ETRE < 0.

Consider the following uncertain neutral system

ẋ(t) = (A+�A(t))x(t) +
2∑
i=1

(Bi +�Bi(t))x(t − di(t)) +
2∑
i=1

Ciẋ(t − hi(t)) (26)

where x(t), φ(θ), ρ, A, Bi, Ci, di(t), hi(t), di, hi, μj , for i = 1, 2 and j = 1, . . . , 4 are defined as in System (1). The
time-varying structured uncertainties are of the form

[�A(t),�B1(t),�B2(t)] = DF (t)[E,E1, E2], (27)

whereD,E,E1, E2 are constant matrices with appropriate dimensions. F (t) is an unknown and possibly time-varying
real matrix with Lebesgue measurable elements and whose Euclidean norm satisfies

‖F (t)‖ ≤ 1 ∀t. (28)

Theorem 2. For given scalars d1, d2, h1, h2 and μi (i = 1, 2, 3, 4), and Assumption 1, the neutral system in Eq.
(26) is robustly stable if there exist positive definite matrices P > 0, Qi > 0, Zi > 0, Wi > 0, Mi > 0, Ri > 0, for
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i = 1, 2 and any appropriately dimensioned matrices Yj , Lj , Tj ,Nj (j = 1 . . . 7) such that the following linear matrix
inequality (LMI) holds:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̂11 Ω̂12 Ω̂13 Ω̂14 Ω̂15 −N1 +GT
6 PC2 +GT

7 −d1Y1 −d2L1 −h1T1 −h2N1 A
TS PD

∗ Ω̂22 Ω̂23 Ω̂24 Ω̂25 −N2 − YT
6 −YT

7 −d1Y2 −d2L2 −h1T2 −h2N2 B
T
1S 0

∗ ∗ Ω̂33 Ω̂34 Ω̂35 −N3 − LT
6 −LT

7 −d1Y3 −d2L3 −h1T3 −h2N3 B
T
2S 0

∗ ∗ ∗ Ω̂44 Ω̂45 −N4 − T T
6 −T T

7 −d1Y4 −d2L4 −h1T4 −h2N4 0 0

∗ ∗ ∗ ∗ Ω̂55 −N5 0 −d1Y5 −d2L5 −h1T5 −h2N5 C
T
1S 0

∗ ∗ ∗ ∗ ∗ Ω̂66 −NT
7 −d1Y6 −d2L6 −h1T6 −h2N6 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̂77 −d1Y7 −d2L7 −h1T7 −h2N7 C
T
2S 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d1Z1 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d2Z2 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h1W1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h2W2 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗ −S STD

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (29)

where

Ω̂11 = ATP + PA+Q1 +Q2 +M1 +M2 +G1 +GT
1 + ETE;

Ω̂12 = PB1 − Y1 +GT
2 + ETE1;

Ω̂13 = PB2 − L1 +GT
3 + ETE2;

Ω̂14 = −T1 +GT
4 ;

Ω̂15 = PC1 +GT
5 ;

Ω̂22 = −(1 − μ1)Q1 − Y2 − YT
2 + ET

1E1;

Ω̂23 = −L2 − YT
3 + ET

1E2;

Ω̂24 = −T2 − YT
4 ;

Ω̂25 = −YT
5 ;

Ω̂33 = −(1 − μ2)Q2 − L3 − LT
3 + ET

2E2;

Ω̂34 = −T3 − LT
4 ;

Ω̂35 = −LT
5 ;

Ω̂44 = −(1 − μ3)M1 − T4 − T T
4 ;

Ω̂45 = −T T
5 ;

Ω̂55 = −(1 − μ3)R1;

Ω̂66 = −(1 − μ4)M2 −N6 −NT
6 ;

Ω̂77 = −(1 − μ4)R2;

Gi = Yi + Li + Ti +Ni;

S =
2∑
i=1

[diZi + hiWi + Ri].
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Proof. Replace A, B1, B2 in Theorem 1 by A+DF (t)E, B1 +DF (t)E1, B2 +DF (t)E2, respectively. If U =
[E E1 E2 0 0 0 0 0 0 0 0 0], X = [DTP 0 0 0 0 0 0 0 0 0 0 DTS] then LMI
(4) for the uncertain system in Eq. (26) is equivalent to the following condition⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 −T1 +GT
4 PC1 +GT

5 −N1 +GT
6 PC2 +GT

7 −d1Y1 −d2L1 −h1T1 −h2N1 A
TS

∗ Ω22 Ω23 −T2 − YT
4 −YT

5 −N2 − YT
6 −YT

7 −d1Y2 −d2L2 −h1T2 −h2N2 B
T
1S

∗ ∗ Ω33 −T3 − LT
4 −LT

5 −N3 − LT
6 −LT

7 −d1Y3 −d2L3 −h1T3 −h2N3 B
T
2S

∗ ∗ ∗ Ω44 −T T
5 −N4 − T T

6 −T T
7 −d1Y4 −d2L4 −h1T4 −h2N4 0

∗ ∗ ∗ ∗ Ω55 −N5 0 −d1Y5 −d2L5 −h1T5 −h2N5 C
T
1S

∗ ∗ ∗ ∗ ∗ Ω66 −NT
7 −d1Y6 −d2L6 −h1T6 −h2N6 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 −d1Y7 −d2L7 −h1T7 −h2N7 C
T
2S

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d1Z1 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d2Z2 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h1W1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h2W2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗ −S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+XTF (t)U + UTF (t)X < 0. (30)

By Lemma 1, a necessary and sufficient condition for LMI (30) to hold for the uncertain system in Eq. (26) is that
there exists a λ > 0 such that⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 −T1 +GT
4 PC1 +GT

5 −N1 +GT
6 PC2 +GT

7 −d1Y1 −d2L1 −h1T1 −h2N1 A
TS

∗ Ω22 Ω23 −T2 − YT
4 −YT

5 −N2 − YT
6 −YT

7 −d1Y2 −d2L2 −h1T2 −h2N2 B
T
1S

∗ ∗ Ω33 −T3 − LT
4 −LT

5 −N3 − LT
6 −LT

7 −d1Y3 −d2L3 −h1T3 −h2N3 B
T
2S

∗ ∗ ∗ Ω44 −T T
5 −N4 − T T

6 −T T
7 −d1Y4 −d2L4 −h1T4 −h2N4 0

∗ ∗ ∗ ∗ Ω55 −N5 0 −d1Y5 −d2L5 −h1T5 −h2N5 C
T
1S

∗ ∗ ∗ ∗ ∗ Ω66 −NT
7 −d1Y6 −d2L6 −h1T6 −h2N6 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 −d1Y7 −d2L7 −h1T7 −h2N7 C
T
2S

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d1Z1 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d2Z2 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h1W1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ −h2W2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗ −S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ λ−1XTX+ λUTU < 0. (31)

Multiplying both sides of LMI (31) by λ and replacing matrices λP , λQi, λZi, λWi, λMi, λRi for i = 1, 2 and matrices
λYj ,λLj ,λTj ,λNj (j = 1, . . . , 7) by matrices P,Qi,Zi,Wi,Mi,Ri for i = 1, 2 and matricesYj ,Lj ,Tj ,Nj (j = 1 . . . 7),
respectively, and applying Schur complements, we obtain LMI (29), completing our proof of Theorem 2. �
Remark 1. A descriptor model transformation was introduced for analysis of delay-dependent stability of neutral
systems in [2]. Fridman and Shaked [5] extended the results in [2] to the case of systems with time-varying discrete
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delays by finding tighter bounds on the cross terms introduced by Park in [17]. This method produces less conservative
criteria than those in [12]. However, since the basic approach in [5] is based on the substitution of x(t) − ∫ t

t−τ ẋ(s) ds
for x(t − τ), and Park’s inequality for bounding of the cross terms, it does not entirely overcome the conservatism
of the methods given by Park [17]. The stability criteria obtained in [5] are neutral-delay-independent. Furthermore,
these stability criteria can not be applied to neutral systems with time-varying neutral delays. Our paper presents a
new approach to establishing both neutral-delay-dependent and discrete-delay-dependent stability criteria for time-
varying-delay systems basing on the free weighting matrix method without requiring use of Park’s inequality [17] or
Moon’s inequality [16].

Remark 2. Michiels and Vyhlidal [15] studied the stabilization of linear time delay systems of neutral type using
an eigenvalue-based approach. Computing the radius of the essential spectrum of the solution operator of the neutral
equation, they reduced the stabilization problem of the neutral equation to a problem involving only a finite number
of characteristic roots. Stabilization is achieved by shifting the rightmost or unstable characteristic roots to the left
half-plane in a quasi-continuous way. However, this eigenvalue-based approach is limited to systems with constant
neutral and discrete delays. The stability criterion obtained in our paper is suitable for systems with time-varying
neutral and discrete delays.

3. Numerical examples

To illustrate the usefulness of the proposed method, we present the following examples.

Example 1. Consider the time-delay system

ẋ(t) = Ax(t) + B1x(t − d1(t)) + B2x(t − d2(t)) + C1ẋ(t − h1(t)) + C2ẋ(t − h2(t))

where

A =
[−3 −2

1 0

]
, B1 =

[
1 0.5

0.5 1

]
, B2 =

[
0.1 0

0 0.1

]
, C1 =

[
0.1 0.05

0.05 0.1

]
, C2 =

[
0.05 0

0 0.05

]

and it is assumed that the time derivatives of delays d1(t), d2(t), h1(t) and h2(t) are bounded by μ1 = 0.3, μ2 = 0.2,
μ3 = 0.3 andμ4 = 0.2, respectively. Solving LMI (4) in Theorem 1 in our paper we obtain a solution with d1 = 0.5429,
d2 = 0.5429, h1 = 0.5429 and h2 = 0.5429. The maximum allowable bound ρ guaranteeing asymptotic stability of
this system is 0.5429.

Note that the criteria of Chen [1] and Hui and Hu [11] are not applicable to this system even were it to have time-
invariant delay. Also, since the criterion of Park and Won [20] is not satisfied, their method cannot decide whether
this system is stable or not. However, in [18], Park established delay-independent and delay-dependent criteria for
asymptotic stability of the system in Eq. (1), and used the former criterion to prove the system in this example is
asymptotically stable, i.e. it has a maximum allowable delay bound ρ of +∞. He did not investigate the asymptotic
stability of this system using his delay-dependent asymptotic stability criterion.

Our delay-dependent stability criterion can also be used to investigate the asymptotic stability of this system.
Generally speaking, delay-independent criteria are more conservative than delay-dependent criteria when the delay
is small. However, it should be noted that the maximum allowable delay bound ρ we give above for this system is
more conservative than that obtained in [18] since the system is asymptotically stable for infinite delays di(t) = hi(t) =
+∞, i = 1, 2. In fact, the sufficient asymptotic stability condition in our paper is more conservative than the delay-
independent criterion in Theorem 1 in [18] when we analyze the stability of the above system with large delays. In
such cases, some conservatism of our sufficient condition results from replacements of di(t) by di (see, for example,
the second part of Inequality (12)) and from replacements of hi(t) by hi (see, for example, Inequality (13)) when we
compute the time derivative of the Lyapunov functional V.

Remark 3. If we set d1(t) = 0.5 sin(0.6t), d2(t) = 0.4 sin(0.5t) which ensure that the time derivatives of delays d1(t)
and d2(t) are bounded by μ1 = 0.3, μ2 = 0.2, respectively in Example 1, and if the time derivatives of delays h1(t)
and h2(t) are bounded by μ3 = 0.3 and μ4 = 0.2,, respectively, iteratively solving the LMI (4) in Theorem 1 gives a
maximum allowable upper bound of neutral delay for h1(t) of h1 = 0.3156, and a maximum allowable upper bound
h2 for neutral delay h2(t) of more than 10,000. In fact, the actual maximum allowable upper bound for h2(t) is +∞.
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Example 2. Consider the following system

ẋ(t) =
[−2 1

0 −2

]
x(t) +

[
0 1

1 0

]
x(t − d1(t)) +

[
0.1 −0.05

0.05 0.1

]
x(t − d2(t))

+
[

0 0.2

0.2 0

]
ẋ(t − h1(t)) +

[
0.1 0

0 0.1

]
ẋ(t − h2(t))

in which it is assumed that the time derivatives of delay d1(t), d2(t), h1(t) and h2(t) are bounded byμ1 = 0.4,μ2 = 0.4,
μ3 = 0.3 and μ4 = 0.3, respectively. We can compute the maximum allowable bound ρ for guaranteeing asymptotic
stability of the above system by iteratively solving LMI (4), giving ρ = 4.98. This implies the system is stable for time
delays d1(t) ≤ 4.98, d2(t) ≤ 4.98, h1(t) ≤ 4.98 and h2(t) ≤ 4.98 with the given μi. However, the delay-dependent
stability criterion in [18] provides a maximum allowable bound ρ = 1.07 for this system to be asymptotically stable.
This example shows that the stability criterion in this paper gives much less conservative results than the one in Park
[18].

Remark 4. If we set d1(t) = 5 sin(0.08t), d2(t) = 8 sin(0.05t) which ensure that the time derivatives of delays d1(t)
and d2(t) are bounded by μ1 = 0.4, μ2 = 0.4, respectively, and if the upper bounds of the derivatives of delays h1(t)
and h2(t) are μ3 = 0.3, μ4 = 0.3, respectively, in Example 2, iteratively solving the LMI (4) in Theorem 2 gives a
maximum allowable upper bound of neutral delay for h1(t) of h1 = 4.98, and a maximum allowable upper bound h2
for neutral delay h2(t) is more than 10,000. Again, the actual maximum allowable upper bound for h2(t) is +∞.

Remark 5. In Example 2, when the time derivatives of delay d1(t), d2(t),h1(t) andh2(t) are bounded byμ1 = 0.4,μ2 =
0.4, μ3 = 0.3 and μ4 = 0.3, respectively, Park [18] obtained the maximum allowable bound ρ = 1.07 such that this
system is asymptotically stable. However, the maximum allowable bound ρ for guaranteeing asymptotic stability of the
above system using our Theorem 1 is ρ = 4.98. Let us consider the influence of the free weighting matrices in Theorem
1 for this particular case, i.e. μ1 = 0.4, μ2 = 0.4, μ3 = 0.3 and μ4 = 0.3. If we set Y1 = Y2 = Y3 = Y4 = Y5 =
Y6 = Y7 = L1 = L2 = L3 = L4 = L5 = L6 = L7 = N1 = N2 = N3 = N4 = N5 = N6 = N7 = T6 = 0 we obtain a
solution to Inequality (4) giving a maximum allowable bound ρ = 4.98. The free weighting matrices T1, T3, T4, T5,
T7 lead to the improvement over the result in Park [18]. In fact,

• If T7 = 0 in Inequality (4), then the maximum allowable bound ρ guaranteeing the asymptotic stability of the system
given in Example 2 decreases from ρ = 4.98 to 4.74.

• If T7 = T3 = 0 in Inequality (4), then the maximum allowable bound ρ = 4.37.
• If T7 = T3 = T5 = 0 in Inequality (4), then the maximum allowable bound ρ = 3.51.
• If T7 = T3 = T5 = T4 = 0 in Inequality (4), then the maximum allowable bound ρ = 2.36.
• If T1 = 0 in Inequality (4), then the maximum allowable bound decreases from ρ = 4.98 to 3.57.

Thus, the free weighting matrices T1, T3, T4, T5 and T7 in Theorem 1 clearly contribute to the improvement in the
maximum allowable bound ρ for guaranteeing asymptotic stability of the system given in Example 2.

4. Conclusion

The stability of a class of linear neutral systems with mixed multiple time-varying delay arguments has been
investigated. New stability criteria have been obtained which are applicable to linear neutral systems. Numerical
examples have shown that the results derived using this new criterion significantly improve the stability bounds
compared to existing results in the literature.
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