Java™ API for USB (javax.usb)

JSR-80 Specification

Version Code:
Verson 0.9.0

Date:
Wednesday, April 04, 2001

Address guestions to:

E. M. Maximilien
(919) 301-7014
maxim@us.ibm.com

D. D. Streetman
(919) 301-5672
ddstreet@us.ibm.com

B. Dimmock
(919) 301-5713
bkd@us.ibm.com

Java™ is a registered trademark of Sun Microsystems, Inc. http://www.sun.com

Page 1 of 44

Authors, Reviewers and Contributors

IBM
E. Michad Maximilien
Boyd Dimmock
Dan Streetman
Brian We schedd

Sun Microsystems

Paul Klissner
Sunil Dusankar
Ron Kleinman

Fujitsu-ICL
Harry McKinlay

Wincor-Nixdorf
Peter Dudlings

Independent
Roger Lindgo
Steve Turner

Paul Gay
Boris Dainson

Page 2 of 44

Table Of Contents

F Y o153 (= (o PRSPPI 4

1 e o o (¥ el 1] o HE PP UPTR PP 5
2 Audience, Motivation and ReQUIFEMENTScvuiiiiii i e e anes 6
21.1 INtENAEA AUIENCE ... e e e e anes 6
2.1.2 70 Y7o o 6

2.2 REGUITEIMENTS ..ttt ettt ettt e e e e aa e ees 7
221 Java editions targeted........c..uiiiiiiiii e 7
222 FUNCHONAIITY ...ttt 7
2.2.3 PeITOIMANCE. ... e e 7
224 USB VBISION ...ttt ettt ettt e et e et e et e e e e e et e e e eanas 8
225 Internationalization (I18N)ccuiiiiiiiiii e 8
2.2.6 ADSTIFACTION .. 8

3 F (o] 11 (= Tod (1 PP PPTR PP 9
oL OVEIVIBW ..ttt ettt et et et et et ean s 9
3.1.1 FUUNE e e e 10

4 (DTS o | o [P TP PP PPT PP 11
4.1 UML PacKage DIAQIaIMuiiiieiiiieiit ettt et et e et e eean s 11
4.2 USB OS Services ObJect MOEL...........ocouuiiiiiiii e 12
4.3 USB Device ODBJECt MOEIocuiiiiiiiiiii e 14
4.4 DeSCrPLOr HIBIAICNY ...oveiiiiieii et 16
4.5 ULility ClasSeS/INTEITACESuiviiiiieii e e e e aee e 17
4.6 USB Pipe ODbJECt MOEL........ciiiiiiiiic e 18
4.6.1 USB Pipe Input and OULPULiveiiii e e e 20
4.6.2 L0 1S = R 0TI 3/ = 20
4.6.3 USB Pipe State MOGE!couiiiiiiiei e e e 21
4.6.4 USB Pipe Class Diagramocuuiiueiiieiieiee e e e e e e e s e e e enaeens 22
4.6.5 USB Pipe Event Class Diagramciueiiieiiei e eeee e e ean e e eeaaneenneees 23

4.7 I/O Request PACKetS (IRPS)... ...ttt 24
4.8 Device Event ODJECt MOUEIiiiiiiiii e 27
4.9 Request/StandardOperations Object MOdelccoiiiiiiiiiiiiii e, 28
49.1 Requests and USB Device Operations Usage - Dynamic Model 29

5 Sample Usage: Client Application EXamPpPIES........cc.iiiiiiiiiiiiiiiiee e 30
5.1 (O ST S V TV A 2N o] o] [o= 1 o o IR 30
5.2 UsbPipe Test APPlICAtiONiiiiiiii e 30

6 (0] o [od 1113 (o o EO PP 32
7 Appendix A: Design Considerations and Future Releasescccoocviveiiviiiiiiciineiineen, 34
7.1 J2MIE e 34
7.2 61 = 2 O TP 34
7.3 Claiming Interface using POICIEScouiiiiiiiii e 34
7.4 Support for 1ISOChroN0OUS TraNSTer........iiii e 35

8 Appendix B: Frequently Asked QUESHIONS (FAQS) ...ccceiiiiiirrrrereieseriiisnrrereeesessssssssrsseeeees 36
9 ApPeNndiX C: ChanNge SUMIMAIYvuuiiieiiiei et et e e e e e e e e e e e et e e e e et e eaeeaaaens 42
10 RETEIENCES ...t et et 44
L0, L WD e 44
L0 T2 = Vo o 24 44

Page 3 of 44

Abstract

Universal Serial Bus (USB) technology was demanded by the general IT market
to simplify the connectivity of peripheral devices while adding simplicity, flexibility, and
capacity to device attachment. This proposal describes a Java interface to USB:
javax.usb. It includes the architecture and design for this interface, which allows JVMsto
access the USB host controller with the full capabilities of the USB architecture. Smilar
to Sun Microsystems' javax.comm API for RS232 serial and parallel connectivities,
javax.usb is a Java-based API which is dependent on an implementation to map to the
native OSinterface for USB. Availability of thisinterface implementation on Java
enabled platforms allows for true cross platform access to USB from Java software.

Page 4 of 44

1 Introduction

Thejavax.usbisaJava APl giving full accessto USB on ahost system enabled
for the Java 2 platform. The APl issimilar in intent but very different in architecture and
design to Sun’sjavax.comm. The javax.comm APl issmple AP that gives accessto
RS232 ports and standard parale ports from Java applications. The javax.comm
architecture and design, though sufficient for smple serid ports such asRS232, is
completdy inadequate for USB, which isatree based, dynamic, expandable, plug-and-
play, high bandwidth, powered bus. To correctly provide accessto al the functiondity of
USB it was clear that anew APl was needed. Javax.usb is such an AP, and gives full
access to USB from Java on any platform that supports USB 1.1 or later specification.
For each USB platform the VM or OS provider will need to implement the javax.usb
specification by adding some native code that plugsin javax.usb and binds it to the host
OS USB driver architecture. To prove the validity of javax.usb, we have developed an
open source reference implementation of the specification for the Linux OS.

Page 5 of 44

2 Audience, Motivation and Requirements

2.1.1 Intended Audience

The following are the intended audiences of this document:

1. JSR-80 expert group: the expert group will ultimately decide the definition of the
Java APl for USB; namely the contents of this document

2. VM andlor OS providers. any platform that intends to support the JSR-80
gpecification will need to use this document to expose this AP to access USB

3. USB device manufacturers. who will create Java middleware drivers (or services)
to alow access to their devices from Java applications and applets*

4. Javagpplication and applets developers. who want to enrich their gpplications
with access to locally attached USB devices

2.1.2 Motivation

Implementation of device services (i.e. drivers) in Javais along-range strategy for
portable device support. This dlows providers to move towards a‘common’ set of device
services, which execute on dl Java enabled platforms. Bascdly this AP is extending the
“Write once, run anywhere’ ™ mantra to services (or drivers) of USB devices and
consequently to applications/applets needing to access these devices.

We recognize that there are additional evolving technologies for device
attachment (i.e. Firewire™, aka |EEE 1394) which may suggest that there should be
provison in this APl to support USB and other technologies seamlessly. However, our
intent is to expose USB uniquenessin this API in order to provide full accessto the bus.
Trying to provide a generic communications AP for the Java platform is beyond the
scope of this document?. We plan instead to provide a separate AP that can focus on the
particular communication transport a hand: USB. It is our opinion that seamless access
to devices, independent of the attachment technology, is correctly implemented viaa
layer of absiraction (an abstract device model) abovethis API. In fact, for the Retall
industry®, there are extensive specifications for device interfaces for point of sale devices,
which diminate the gpplication’s need to implement to a specific attachment technology
(i.e. RS232, USB, R485). It isworth noting that these retail specifications do not dedl
with the device connectivity in a generic way, but with the functiondity of the device.

! Since Java applets have very stringent security restrictions, access from appletsto any APl that is not part of the Java
core API that needs to load native libraries will necessarily need to be trusted (i.e. signed). Please see the details on
trusting applets for the Java 2 platform at http://java.sun.com/security

For an analysis of why having a generic communications API could be problematic and why we have chosen to have
a separate API, please see section 8.2 of this document.
3 The Java Point of Sale or JavaPOS specification can be found at http://www.javapos.com. Also the Financial
industry has a similar specification for devices attaching to financial point of service (e.g. used by Bank tellers) at
http://www.jxfs.com

Page 6 of 44

2.2 Requirements

2.2.1 Java editions targeted

This API istargeted at the 2SE (Java 2 Standard Edition) and 2ME (Java 2
Micro Edition) platforms. The requirement for 2SE stemns from the fact that USB is
becoming the primary connectivity for client persond platforms and is dso in demand for
vertical markets client platforms (e.g. Retail Point of Sal€). The requirement for 2ME as
atargeted platform is based on USB becoming an increasingly popular connection for
portable/persond devices (i.e. PDAS, etc.). Aswe move forward in the JCP process, the
expert group will refine the requirements for the particular profile required for 2ME?.

2.2.2 Functionality

USB isamore complex and feature rich bus than standard RS232 and parallel
ports. USB has amultiplex, high-bandwidth, dynamic, tree-based, powered, plug-and-
play architecture. The requirement for javax.usb isto expose the full architecture of USB
to Java software. Thisimplies that:

1. The APl should closdy follow the officid USB specification. (See:
http:/Amww.ush.org/)

2. The API must support the dynamic nature of USB, in that devices can be attached
and detached at runtime (hot plugging). The APl must provide a mechaniam to
determine whét is attached when a change occurs

3. The APl must support multiplex operations such that USB devices can be
attached to USB hubs that multiplex a USB port into more ports. Each port can
then accommodate another hub which can have hubs or devices atached. The
current limit is 5 hub-levels degp and with up to 128 devices (including root hub)
attached per "bus’ (per USB controller)

4. The attached devices form atree ingtead of alist (devices attached to hubs which
are themsdlves devices). A devicelist viatopologica sort, breadith first search or
depth first search of the tree should aso be possible

5. The APl provides accessto trangporting data and communication Sgnads. USB
a so transports power, such that devices can be powered from the USB. Although
not a dependency on the API, USB power information should be provided to the
user

6. USB devices can usudly be dynamicaly configured and can contain more than
one configuration. Drivers for such devices are o typicaly loaded and unloaded
dynamicaly.

2.2.3 Performance

To dlow cresgtion of device servicesfor dl categories of devices, the APl should
minimize overhead. The APl should dlow for implementations that are quick, lean and
expose dl device functiondity in amanner that fits the type of device atached. The

* Itisworth noting that this first specification of the javax.usb does not include any dependency that would prevent it
from being implemented on the Personal Java platform or superset of the J2SE platform (i.e. J2EE).

Page 7 of 44

benchmark isfor the javax.usb API to not limit the data capacity throughput or response
time expectation as compared to the native OS interface.

2.2.4 USB Version

It is acceptable for an initid reference implementation to provide an AP that will
support the USB 1.1, which is dready prevaent in the marketplace. The USB 2.0 design
point isto be atransparent superset from afunctiona basis, which meansthat USB 1.1
devices and drivers should work in a USB 2.0 platform (see the USB 2.0 specification for
details http:/Amww.ush.org/). USB 2.0 specific details can be addressed in afollow-on
revison of thisAPI.

2.2.5 Internationalization (i18n)

Thereisthe requirement to support worldwide USB solutions. This may require
management of the trandation between USB LANGID codes and the i18n locaes of
Java. USB devices have string descriptors that describe them and their functiondity (e.g.
Manufacturer string, Product string, etc.) These strings arein UNICODE, so they can be

in any language. This must be supported.

2.2.6 Abstraction

To maximize flexibility in the use of this AP, it isimportant that the application
be independent from the actud underlying implementation and platform. The API
gpecification will use mogtly Javainterfaces with a minimum of classesto alow
flexibility in implementation.

Page 8 of 44

3 Architecture

The Java API for USB or javax.ush is architected to meet the requirements set
forth in the Audience, Moativation and Requirement section of this document. To
reiterate, below are the generd architectura gods for javax.uso:

1. The APl specification should be in accordance to the USB 1.1 specification.
2. The AP specification should be easly implemented on any platform that supports

the J2SE and 2ME and USB.

3. The AP spedification should use mostly Javainterfaces with a minimum of
classesto dlow flexibility in implementation.

4. Clients should be able to use any platform supporting javax.usb to create their
device sarvices (device drivers) and be guaranteed that their services should work
on al platforms supporting the javax.usb specification.

3.1 Overview

The USB 1.1 specification’s chapter 5 (Data Flow Model) and chapter 9 (Device
Framework) define alogica model for dl USB hosts and devices. Chapter 9 dso
describes in detall the generic functiondity and operations that are supported for al USB
devices. Usng these as a guide, we have defined javax.usb to include the following

ubsystems:

<<uses>>

«subsystem»
USB Pipes

<<uses>>

[]

F——————

«subsystem»
USB Requests (Operations)

Java USB Driver

<<listensFor>

|
— - y<<uses>> A\’
<<fires>> \
——————————— |~ ——— - ——————————7) «subsystem»
: [Events
]
| |
—| | 1
\/ |
) |
<<fires>> |
———- «subsystem» ————-————-—--—
Device model | _ __ ______
<<uses>>

|
7 l
I
I
I l
:<<creates>> |
I
: ———=) «subsystem»
—| | Descriptors
1
«subsystem»
OS Services

Figure 3.0 High-level overview of the javax.usb architecture®

® All subsystems are alogical set of interfaces/classes and do not always map to aJava™ package

Page 9 of 44

Together the above subsystems form the core of the javax.usb specification. They
should mest the goals and requirements dready set forth.

Name Description Java Package
Devicemodd | Defines an object mode for describing USB devices javax.ush
(including hubs) and dl of their characterigtics. This
Isthe main facade for users of javax.usb. In the
device modd we dso define ahierarchy for the
different descriptors that describe USB devices.
Events Defines an event mode (Smilar to the JavaBeans javax.ush.event
event modd) for USB devices and pipes.
USB Pipesand | Modds the communications to and from USB javax.ush
USB 1/O devices and their components. These pipes are logica
Request and are fashioned after the USB 1.1 specification
Packets (IRP) | chapter 5 USB pipes.
Request and | Modésthe type of requests that clients can send to javax.usb
uUsB USB devices. These requests or operations are
Operations fashioned after the USB 1.1 chapter 9 requests.
OS Services | Defines the services needed from the underlying OS javax.ush.os
and serves as part of the bootstrap that implements
javax.ush.
Table 3.0 javax.ush subsystems definition
3.1.1 Future

Although by using the current javax.usb one can access and communicate to any
kind of USB device, javax.ush does not directly address USB class device specifications
(e.g. HID, Audio, Storage, ...). Thisisintentional. Class devices such as HID can be

addressed specificdly as extensions to javax.usb or in afuture revison of this

gpecification. We intend that an AP for these class-specific USB devices would be
architected as alayer on top of the javax.ush®.

® This may of course possibly add some new requirements to the javax.usb but we believe that the current architecture
will stand firm, as we are able to communicate and access class-specific devices with the current javax.usb reference

implementation.

Page 10 of 44

4 Design

To specify in detall the design of javax.usb we will make heavy use of the Unified
Modeling Language (http:/mww.rationd .com/uml). We will start with a package
diagram that shows the different packages used by javax.usb and their interdependencies.
For each logica grouping of classes/interfaces that implement the architecture
ubsystemns, we show detailed static and dynamic structuresin the form of class,
statechart and sequence diagrams. Where appropriate we also describe the contracts of
key interfaces.

4.1 UML Package Diagram
javax.usb is specified usng 4 main packages.

1. javax.usb: the core interfaces and classes modeling USB devices, descriptors,
communication pipes and requests/operations.

2. javax.usb.util: various utility classes and interfaces that are used by other classes
and interfacesin the javax.usb specification.

3. javax.usb.event: dlasses and interfaces implementing the Event subsystem for
USB devices and pipes.

4. javax.ush.os: classes and interfaces that specify the services that need to be
provided by the underlying OS to accommodate an implementation of javax.usb.

ThisUML package diagram shows the different javax.usb packages and their
inter-dependencies.

The javax.usb package is the centra package where al the Device Object Moddl
exigs. The javax.ush.os package is the bootstrap to the underlying javax.usb
implementation and the javax.ush.event and javax.ush.util are the event/listener and

utility packages repectively.

util
(from usb)
] =7
usb p——""
(from javax)
T Te—_ .
I It event
| (from usb)
N
_| V

os
(from usb)

Figure 4.1 javax.usb package diagrams

The javax.usb AP interfaces and classes are heavily documented with JavaDOC.
Please refer to the javax.usb AP release.

Page 11 of 44

4.2 USB OS Services Object Model

UsbHostManager is a Singleton [Gamma9s, 127] class (that is only one instance
exists per VM) that bootstraps the implementation (the UshServices object). Thisis
shown in the class diagram by an aggregation relationship between the UsbHostM anager
and the UsbServices interface. The UsbhHostM anager uses the UsbServicesUtility to
query the UsbProperties (loaded with the contents of the jush.propertiesfile) for the
current implementation class for the UshServices interface. The implementation of the
UsbServices interface must have a default congtructor. The Javareflection AP is
used to create the UshServices object. The following diagram shows the Java
interfaces/classes in the javax.ush.os package:

<<Interface>> -
UsbTopologyServices NOTE: In order to keep the diagrams uncluttered,
(from os) some methods are shown w/o full signature and
some methods are not shown at all (typically the
methods judged to be less important)
BgetUsbRootHub() : UsbRootHub
ShfsUsbServices(hub : UsbHub) : Usblnfolterator,
“dfsUszevices(hub : UsbHub) : Usblinfolterator
'1
41
/
/
<<Interface>>
UsbServices o
(from os) <<utility>>
UsbServicesUtility
- _<<creates>> (from o0s)
P¥addUsbServicesListener())
g - ;
._.*removeUsbServucesLlstener() B<<class>> getUsbServices()
2 getRequestFactory()
[BgetUsblrpFactory() //'7.’
R.
\, //
servic:_‘x\ /// <<uses>>
N
4 <<singleton>> <<Interface>>
UsbProperties
UsbHostManager [
(from usb)) (from util)
properties
~
B i
MEgetUsbProperties() : UsbProperties .‘!oadPropemes()
g ; N : “*isLoaded()
getUsbServices() : UsbServices Mg etPropertyString()
M<<class>> getinstance() : UsbHostManager! ‘g perty 9
~*getPropertyNames()

/
/

This is a Singleton class meaning that there is no public T

constructor and only one instance of the class exist
which is accessed by calling the getinstance static
method like: UsbHostManager.getinstance()

Figure 4.2.0 javax.ush.os class diagram

The UsbhHostM anager.getlnstance() static method is used by clients to access the only
instance of the UsbHostManager. The current UsbHostM anager implementation uses lazy
initidization whereby the firgt client that cdlsit pays the price of the bootstrap as well as
creating the ingtance itsdlf. During cregtion of the UsbHostM anager instance the
UshServicesis created as mentioned above. Once the client gets the UsbHostM anager
reference it typicaly does the following:

1. Regigersfor eventsviathe

UsbHostM anager.getl nstance().getUsbServices().addUsbServicesL istener(
listener) to get notified when new devices are attached or current devices are
detached.

Page 12 of 44

2. Asksthe UshServices for the root USB hub, which it uses to find the devices that

it cares about.
3. Usesather utility methods that return Usblnfolterator of the UsbDevicesin

breadth-firg- search and depthfirs-search orders.

The following sequence diagram shows typical interactions of clients with the
UsbHostManager and UsbServices objects:

Client :UsbHostManager .UsbServices :UsbRootHub :UsbDevice
|
II_ 1: getlnstance():UstostManagef
T -~ |
| L
2:getUsbServic’Es():UsbServices I
>1h
/ il
3: g’etUsbRootHub():Ust RootHub N
T Pt i)
| LI
II 4: seach for prticular UsbDevice
Pl !l
II Ll
|
T '15: Use UsbDevice (i.e. Jook for UsbConfig, UshInterface, UsbEndpqint)
! -
=1
/’ Ll
|l |
i I
UsbHostManager is a Singleton class '—\
and getlnstance() is the static I
|

Singleton class accessor method

Figure4.2.1 javax.ush.os typica usage sequence diagram

Since there could be more then one USB controller hardware per USB hog, the

UsbRootHub object returned from the UshServicesis aways a virtud UsbHub. This
UsbHub has attached to it all actud root hubs that are attached to this host. For instance,

if the host has two USB host contrallers, then the virtua root hub returned by caling

getUsbRootHub() will have two UsbHub objects attached to it.
Oncetheroot hub is returned from the UshServices object, the client may need to

search for athe particular device. This can be donein one of two ways.

1. lteratively searching through all UsbDevices attached to the UsbRootHub or other
UsbHub

2. Using aUshinfoVigtor filter class. An example of this method of searching for a
device is shown in section 8.5 of this document (FAQS)

Page 13 of 44

4.3 USB Device Object Model

Each USB device is composed of various components. And the different
components of adevice are well structured. The USB device modd shown in the class
diagram below triesto modd ageneric USB device with its component. It can be
understood as follows:

1. A USB deviceisan object whose classimplements the UsbDevice interface.
Since USB hubs are dso USB devices, then USB hubs are modeled with the
UsbHub interface which extends UsbDevice and aso contains a set of
UsbDevices (or UsbHubs, since UsbHubs are UsbDevices). In essence, thisisan
gpplication of the GoF Composite pattern [Gamma95s, 163]

2. A USB device has one or more configurations. Thisis modeled as an aggregate
relationship between UsbDevice interface and the UsbConfig interface. The
UsbConfig interface contains getter methods describing it. Thisinformation is
part of the descriptor for that configuration.

3. Each USB configuration for a device has a set of interfaces associated with it. The
interfaces define the exposed functiondity of the USB device for that
configuration. Thisis modd with an aggregate relationship between UsbConfig
and Usbinterface,

4. Each USB interface for each USB configuration on a USB device can have
endpoints associated with it. Thisis modeled again with an aggregete rdaionship
between Usblnterface and UsbEndpoint. A USB endpoint is a source or sink of
datato the USB device.

The following UML datic class diagram shows the different Javainterfaces and
classes that make up the device object mode!:

The Visitor interface defines visitXyz methods for each Usbinfo sub-ineriace
<<Interface>> (e.g. visitUsbDevice, ...). The default class is a convenience class that has
Usbinfo empty implementation of all visit methods and thus makes it easy for clients to
(from usb) implement their own visitors by extending that class and only implementing the
correct visitXyz method
accept(v : UsbinfoVisitor) : void fwe _ <<yisits>> - \
N =~ L A
/ ~—_ <<Interface>> P ATrry -
+ ~p DefaultUsbinfoV
\ sbinfoVisitor] rom ueb) |
\ (fromiush) =
|
<<Interface>>
<<Interface>>
UsbDevice UsbConfig
(from usb)) o
= .
igetActiveUsbConfig() : UsbConfig e 1.n
Wy ctDeviceDescriptor() : DeviceDescriptor Eetg""f"gg”’“be:” Usblnfo
o) dop 0 Operations etConfigDescriptor() (from usb) |<<exception>>|
7 A 1 UsbException
// n (from ush)
N attaclledDevice
attachedugbDevices | intefrfaces -
ASY | <<throws=%
1 P
<<Interface>> 0.n
UsbHub <<Interface>>
(from usb) Usblnterface
(from usb)
TisUsbRootHub() : boolean —a0
®getNumberOfPorts() : byte ®claim() : void
o1 Frelease() : void Usbin
V{ SisClaimed() : boolean sbinfo
parentsbHub N\ MgetAlternateSetting(n : byte) : Usblinterface| (from usb)
o <<Interface>> T
UsbRootHub endpoin
from usb
Usbinfo \\ {)i 0..n
(from usb) "\ 1.n <<Interface>>
<<Interface>> UsbEndpoint
UsbPort (fromiusb)
(from usb)
HgetUsbPipe() : UsbPipe —-0
WisUsbDeviceAttached() : boolean SgetEndpointAddress() : byte]
FgetDirection() : byte Usblinfo
HgetAttributes() : byte (from usb)
BgetType() : byte

Figure 4.3.0 javax.ushb device mode class diagram

Page 14 of 44

All of the different device modd interfaces extend Usbinfo, which is a token
interface that facilitates keeping a typed checked list of the different interfaces’. Also
with thisinterface, dl of the interfaces on the device modd (since the hierarchy is sable)
dlow Vigtors [Gamma95, 331]. The UsbinfoVistor is defined with visitXyz method for
each of the interfaces in the modd. With this Vistor pattern, one can add functionaity
(i.e. Methods) to the model without having to change the interfaces®. Thisaso dlows
easy traversa of the mode objects. Note aso that the model can till be traversed
and functiondity added without usng the vistors. Vistors just add flexibility and are
somewhat justified because the modd is stable (e.g. no new device modd Java interfaces
are anticipated to support verson 2.0 of the USB specification).

To show how clients typically access UsbConfig, Usbinterface and other objects,
we show a smple sequence diagram accessing a particular endpoint for some interface on
the current active configuration of a UsbDevice.

Client :UsbDevice :UsbConfig :Usblnterface :UsbEnpoint

I 1: getActiveUsbConfig():UsbConfig I
>rh

Ll
2: getUsblinterface(0): Upblinterface

==

3: getUsbEndpoint(someEpAddress):UsbErndpoint

4: use Endpoint object to send/receive data

L!
|
|
|
|
|

Figure 4.3.1 diagram showing access to a UsbEndpoint from a UsbDevice object

Alternate settings of any Usblnterface object can be obtained by caling
getAlternateSetting(byte) method of the Usblnterface object. This method will return
the Usbinterface for the dternate setting salected.

7 Java slack of generic support means that typical Javalist or collections keepslist of java.lang.Objectswhich is
somewhat unsafe. Thisis not avery significant issue but we felt that having UsbinfoList and UsblnfoListlterator would

keep the object model more consistent.
8 See section 8 of this document (FAQs) for an example on how to use the UsblnfoVisitor to search for a particular
device.

Page 15 of 44

4.4 Descriptor Hierarchy

The descriptor extends the device mode by adding a set of interfaces that
separates the information associated with each of the USB descriptors. By themsdves,
these descriptors can be used as away to collect the device s descriptor information and
search for specific informatior?.

Has the visitXyz methods where Xyz == Contains various constants
DeviceDescriptor, ConfigDescriptor, ... (not shown) for descriptors
\.
/ <<Interface>> \
- \
Descriptor
<<Interface>> (from ushb) <<Interface>>
DescriptorVisitor <<uses>> <<uses>> DescriptorConst
(from usb) "Q‘getLength() byte (from usb)
Y ‘_"getType() : byte
,{l_\ "i’toBytes() : byte[] ‘:5
~ /1 ~. A
; N4l N2 \\\
- // / \ \ ~
DefaultDescriptorV / / \ \ AN
(from ush) Ve / \\ \\ N
S / \ N AN
/ / \ N
/ \ N,
// // \ \\ N
/ / \\ \, \\
/7 /
<<Interface>> / <<Interface>> <<Interface>> N <<Interface>>
DeviceDescriptor / ConfigDescriptor InterfaceDescriptor \\ StringDescriptor
(from usb) (from usb) (from usb) N (from_usb)
B . \ I ’ :
‘:"gethdDevice() : short ‘:?getNumInterfaces() : byte J;getlnterfaceNurr?ber().. byte \\ ?._‘getStrlng() : String
‘Q’getDeviceCIass() : byte [®getConfigValue() : byte ‘_*getAIternaIeSe_ttlng(). : byte \.
[#getDevicesubclass() : byte FgetConfigindex() : byte l‘_igelNumEndpomts()., byte \\
‘%getVendorld() : short HyetAttributes() : byte _‘_*getlnterfaceCIass() 5 bylte
""getProductld() : short -“getMaxPower() : byte BgetinterfaceSubclass() : byte <<interface>>
S HgetinterfaceProtocol() : byt
[®getBcdUsb() : short l‘_*ge n erface L OCOAO - byte EndpointDescriptor
.*getMaxPacketSize() : byte IR) 8 (S (from usb)

"?getDeviceProtocoI() : byte
-*‘getManufacturerlndex() : byte
5etProductindex() : byte

[®getSerialNumberindex() : byte

[getNumConfigs() : byte

"?getEndpointAddress() : byte
-*getAttributes() : byte
-*‘getMaxPacketSize() : byte
-*getlnterval() : byte

Figure 4.4.0 javax.ushb descriptors class diagram

Descriptor objects for each type of the USB mode objects can be accessed by
caling get<Type>Descriptor() method on the actual mode object. For example, to access
the InterfaceDescriptor object of some interface of the active configuration of a
UsbDevice the following snippet of code can be used:

I nterfaceDescriptor iDescriptor =

sonmeDevi ce. get Acti veUsbConfi g().getUsblnterface(i Nunber).
getl nterfaceDescriptor();

Similar code can be used to access other Descriptor objects.

® In the current release of this specification Descriptor objects are immutable. This might change to allow usersto
modify descriptor information by accessing these objects and using them to submit viathe
Request/StandardOperations. See section 4.9 for details about Request/StandardOperations.

Page 16 of 44

4.5

Utility Classes/Interfaces

<<Interface>>
Usblinfolterator
(from util)

.*hasNext() : boolean
.*nextUsbInfo() : Usblinfo

A
/_I_\

<<Interface>>
UsblinfoListlterator

(from util)

.?hasPrevious() : boolean

-*previousUsblnfo() : UsblInfo
~“nextindex() : int
.?previouslndex() vint
-*size() sint

<<singleton>>

are shown w/o full signature and some methods are not shown at

NOTE: In order to keep the diagrams uncluttered, some methods 'ﬁ
|
all (typically the methods judged to be less important) !

—
—
—_—
—_—
—
—

<<Interface>>
UsblinfoList
(from util)

¥ addUsblinfo()
--"clear()
<<creates>> __ _I[
£ -“getUsbInf()
--'indexOf()
~Fsize()
.?usblnfolterator()
= -'removeUsbInfo()

contains()

<<Interface>>
UsblnfoVisitor
(from usb)

-'-“visitUszevice()
B#¥visitUsbHub()
BvisitUsbPort()
B¥yisitUsbConfig()

As mentioned before, we have created smple List interfaces and Iterator

Figure 4.5.0 javax.ush.util utility class diagram

Tracer <<Interface>>
(from util) TracerOutput
(from util)
Wf<<class>> getinstance() ? 1
A "print() A *print()
2 “println() A *println()
“Hison()
<<Interface>>
<<application>> UsbPropert|es
UsbPropertiesViewer (from util)
(from util) Ssusesz> - i
i :IoadPropertles()
Bmai HisLoaded()
main0 B getPropertyString()

i 5‘getPropertyNames()

FvisitUsblinterface()
BBvisitUsbEndpoint()
B¥yisitUsbEndpoint0()

UsbInfoToStringV
(from util)

j‘getString() : String

interfaces for al Ushinfo objects. These interfaces collect al types of Usbinfo objects.
The device modd makes use of these utility interfaces/classes. Since the implementation

of these interfaces should be reusable, the javax.ush.util package contains default
implementations of both the list and iterator interfaces using the Java collection AF!.
The UsbProperties interface alows the OS services subsystem to capture runtime
information (such as turning on tracing or the leve of tracing, €tc...).

An example of using the UshinfoVigtor isillugtrated in UsbinfoToStringV,

which shows how to create a String representation of any Usbinfo object without having
to modify the toString() method for each class implementing the interfaces or having to

write code doing heavy conditiond statements(i.e.i f (obj ect i nstanceOf

Usbl nterface){..}).

Page 17 of 44

4.6 USB Pipe Object Model

Pipes are the only method of communication between client software (the host)
and a device' s endpoints. In this specification, piop&sare modeled as ‘logicd’ pipes; they
are objects which belong to a specific endpoint® and exist for aslong as the device moded
exigs. The specid Default Control Pipe, which is present on dl devices, is not directly
accessble by client software; instead, applications should use Requests. See the USB
specification section 5.3.2 for details on USB pipes.

Pipes are accessed through their associated endpoint*!. There are severd
conditions and actions that must be met or performed before using a pipe. Firs, the pipe
must bein an active sate. Pipes belonging to an endpoint on an active interface setting
(and active configuration) are active; pipes on inactive interface settings (or inactive
configuraions) are inactive. Active pipes must be opened before use. The diagram below
shows how to prepare a UsbPipe for use.

1. The Ushinterface that owns the UsbPipe' s UsbEndpoint must be clamed via

cdam(). Thiscdl may fall if the Usbinterface is clamed by any other client (or

anything else goes wrong).

Get the UsbPPipe object from its associated UsbEndpoint via getUsbPipe().

3. Cdl open() on the UsbPipe. If opening the pipe does not fail, the UsbPipe is now
reedy for data submission. If the cdl falls, it will throw a UsbPipeException that
indicates the problem.

N

Client :Usbinterface I

1: claim()

A7

r—

2: getUsbPipe()

——1

——

3: open()

A/

——
—

————]

Figure 4.6.0 Preparing a UsbPipe for communication

19 Most pipes belong to a specific endpoint. Control pipes are slightly different. The USB specification, section 5.3.2,
states: “A USB pipeis an association between an endpoint...” and software on the host, then in alater paragraph states,
“the pipe that consists of the two endpoints with endpoint number zero is called the Default Control Pipe”. This
specification assumes a Control pipeisasingle pipe that is bi-directionally connected to its single associated endpoint.
The direction bit (which is part of the endpoint bEndpointAddress) should be ignored.

= Except the Default Control Pipe, which is not accessed directly; instead, Requests are used.

Page 18 of 44

The diagram below indicates how to submit data synchronoudy and asynchronoudy
using byte]s. See section 4.7 for more complicated methods.

1. Create abyte[] which will be the required data buffer.

2. If thedirection of communication is out (host to device), fill the byte]] with the
data you wish to send.

3. For synchronous communication, cal syncSubmit(byte{]). Thiswill block until
the submisson is complete.

4. After the submission iscomplete, adl of the UsbPipe s listeners will receive a data
or error event (depending on whether the submission was successfully completed
or an error occurred).

5. The syncSubmit(byte[]) method will ether return the number of bytes
transferred, or throw a UsbException.

Asynchronous communication is Smilar to synchronous, except asyncSubmit(byte(]
) isused and the call returns a SubmitResult object that can be used to track the
submission. The SubmitResult is returned immediatdy after the subsystem accepts the
submission. The dient may cal waitUntilCompleted() on the SubmitResult to block until
the submission completes.

Client |I :UsbPipelistener || :UsbPipe SubmitResut| |~ usbPipe | I byt | | javaxusb Subsystem |
| IL | ! 1| | L __ Implementation |
I 1: new byte[] I
el
2: if pipe directionis out, format byte[] T
g
1, 3: syncSubmit(:byte]]) : int 4: :byte[] sgnt to subsystem 5: subsystem
6 :byte[]
7: dataEventOccurred| r:Ust’lpeDa{aEvem) or =——
tered
errorEventOccurred(FUsbPipeErorEvent) errorepeountere

8: return number gf bytes transferred

d
throw UsbPibeException

9: process
:UsbPipeEvent

le——!

10: asyndsubmit(:byte[]) : UsbPipfe.SubmitResult

11: byte[] sgnt to subsystem

12: create
:SubmitResult

13: return :SubmitResult

——1

14: <optional>waitUntilCompleted()

15: 1

16; dataEventOccurred() or
or error encountered
efrorEventOccurred()

17: notify
waiting client(s)

18: process
:UsbPipeEvent

fe——!

Figure 4.6.1 UsbPipe communication using a byte]]

Page 19 of 44

4.6.1 USB Pipe Input and Output

A UsbPipe' s endpoint’s direction determines whether it may be used for input or
output*2. Only pipes with a host-to-device direction endpoint may be used for output, and
only pipes with a device-to-hogt direction endpoint may be used for input. For input, the
provided data buffer isfilled with data recelved from the endpoint, and for output the
provided data is sent to the endpoint. Thereis no minimum datasize™®, nor istherea
maximum datasize*. If the data sizeis greater than the UsbPipe’ s maximum packet size
the datawill be sent in segments'® as outlined in the USB specification section 5.3.2.

4.6.2 USB Pipe Types
There are four transfer types defined in the USB specification section 5.4 :

1. Control

2. Buk

3. Isochronous
4. |nterrupt

Except for Control pipes, the dataformat is determined by the client and the data
direction is determined by the endpoint.

46.2.1 Control Pipes

There are two types of Control pipes, norma Control pipes and the Default Control
Pipe. The Default Control Pipeis not directly ble. Ingtead, Requests must be used.
Norma Control pipes may be directly accessed, but they require a specific data format.
The first eight (8) bytes of the provided data buffer is the Setup packet. The direction of
dataflow is determined by the bmRequestType direction bit. Be aware thet al fidlds are
little-endian according to the USB specification section 8.1. This means the word-sized
fieldsin the Setup packet must be provided by the application in little-endian order.

Byte 0 isthe bmRequestType
Byte 1 is the bRequest

Byte 2 isthe LSB of thewVdue
Byte 3isthe MSB of thewVaue
Byte 4 isthe LSB of the windex
Byte 5isthe MSB of the windex
Byte 6 isthe LSB of the wLength
Byte 7 isthe MSB of the wLength.

NG ~WNE

12 Control pipes can be used for input and output, i.e. they are bi-directional. See this specification sec 4.6.2.1

13 Control pipes require a 8 byte setup packet which is embedded in the data. See this specification sec 4.6.2.1

14 | sochronous pipes impose a maximum data size of 1023 bytes per packet. See the USB specification section 5.6.3.
15 | sochronous pipes will not segment data; i.e. one packet per submission. See this specification section 4.6.2.2

Page 20 of 44

Also see the USB specification section 9.3 for more information on the format of the
Setup packet. The format of the actud data portion is determined by the client and
outside the scope of this specification.

4.6.2.2 Isochronous Pipes

Isochronous pipe direction is determined by its associated endpoint. Isochronous
trandfers are time-sengitive and more complicated than other transfers. The USB
gpecification section 5.12.6 states that “when an isochronous transfer is presented to the
Host Controller, it identifies the frame number for the first frame”’. Currently, this
specification does not provide away for the gpplication to indicate the starting frame
number; instead, each submisson represents a angle packet, and the implementation
should schedule the packet for the earliest possible frame, and maintain proper
scheduling of subsequent packets as long asthe pipeis busy. If the pipe becomesidle the
implementation drops frame synchronization and starts over by scheduling the next
packet for the earliest possible frame. The application should provide as many packets as
possible so the implementation can maintain proper frame-synchronized packet
scheduling. Composite submissions may be used in an ‘optimized’ way by the
implementation. See the USB specification section 5.10.2 for details on isochronous
optimization of multiple submissons.

Synchronization and Feedback types [USB specification section 5.12.4.1,
5.12.4.2, and 5.12.4.3] are not addressed in this version of this specification.

4.6.3 USB Pipe State Model

A pipe exigsin one of two conditions: active or inactive An inactive pipe belongs
to an inactive configuration and/or interface setting. An active pipe belongsto an active
configuration and interface setting. Only active pipes are of interest, Snce inactive pipes
cannot be used. For active pipes, there are two superstates : the closed state and open
gate. The open state has three subgtates : theidle, busy and error states. All active pipes
tart in the closed state™®. No submissions can be made on the pipe in the closed state,
When the pipeis opened it will change into the open Sate.

4.6.3.1 Idle/Busy State

Theidle gateisthe first state of the open state. Submissions can be made in this
gate, and will cause the state to change to the busy state. The busy sate indicatesa
submission isin progress on the pipe. When there are no more submissonsin progress
the state will change back to theidle gate. If the pipeis closed from the idle Sate, it will
change to the closed gtate; the pipe cannot be closed from the busy state. Any persistent
pipe errors (e.g. a stdled pipe or removed device) that occur in any of the open States
cause the state to change to the error state. The pipe can only be closed from the idle State
or error state, not the busy state.

18 The Default Control Pipeis always active and open; the client may pass Requests at any time. If the Default Control
Pipe enters an error state, the device must be reset; the subsystem in some cases may automatically do this. A device's
Default Control Pipe startsin the open (idle) state, and can never change to the closed state.

Page 21 of 44

46.3.2 Error State

This state indicates there is a persstent error on the pipe. No submissions are
possblein this sate. When changing to this sate, any submissonsin progresswill be
aborted with an appropriate UsbException. Action must be taken appropriate to the
origind error to change from this state. Any attempts to use the pipe while in the error
gate will result in a UsbException indicating the current error condition. To begin using
the pipe again, the gpplication must close the pipe and re-open the pipe (aswell as
correcting whatever error occurred). Note that if the error originated from adevice
disconnect, the error is uncorrectable and the pipe will never exit this state.

4.6.4 USB Pipe Class Diagram

<<event>> <<exception>>
V¢ .
Contains constants from USB UsbPipeEvent US?ExceP:’IOH
1.1 spec section 5 and 9 (from event) (from usb)
7

/ 0 /.7’ usb\ ception

/) ! <<thrOW§;/> Bxgep

L <<fires>> Il Y Ao

<<Interface>>
UsbPipeConst
(from usb)

| /

<<Interface>>
UsbPipe
=<yses>> (from usb)
~.
~.

:*open() : void
M close() : void
"%isActive() : boolean
[isopen() : boolean
"Q‘isCIosed() : boolean

_Z*isInError() : boolean

<<Interface>>
UsbEndpoint

(from usb)

| “getMaxPacketSize() : short
"%syncSubmit(bArray : byte[]) : void
/ _-*asyncSubmit(bArray : byte[]) : SubmitResult

"?syncSubmit(irp : Usblrp) : void

-*getUsbPipe()
¥ getEndpointAddress()
"%getDirection()
Hgetattributes()
HgetType()

1 [®asyncSubmit(irp : Usblrp) : void

[Mabortsubmission(irp : Usblrp) : void

"@abortAIlSubmissions() : void

?‘addUsbPipeListener(I : UsbPipeListener) : void

"'?removeUsbPipeListener(l : UsbPipeListener) : void|
7

/

/<<submits>>
v

<<Interface>>
Usblrp
(from usb)

-*getNumber() M

&
"’%setData(bArray

=)
-*setResubmit(b

-*recycle() : void

[#getData() : byte[]

[getDataLength() : int
"*isCompIeted() : boolean
"Qisanstxception() : boolean
-*waitUntiICompIeted() : void
-*waitUntiICompIeted(l : long) : void
“SgetResubmit() :

"Q‘getAcceptShonPacket() : boolean
-“setAcceptShortPacket(b : boolean) : void

-*setResubmitDataCommand(c : ResubmitDataCommand) : void

=

ong

-
—_—
—

: byte[]) : void

boolean
: boolean) : void

-

<<interface>>
SubmitResult
(from UsbPipe)

<<inner>> >
”””

F¥getNumber() : long

[geData() : byte[]
[fgetDataLength() : int
"%isCompleted() : boolean
-*WaitUntiICompIeted(I : long) : void,
"?isanstxception() : boolean
[Hrecycle() : void

<<interface>>
ResubmitDataCommand

(from Usblrp)

<<inner>>_ -7 I¥getResubm

itData(irp : Usblrp) : byte[]

Figure 4.6.4.0 USB pipe specification class diagram

Page 22 of 44

4.6.5 USB Pipe Event Class Diagram

<<Interface>> <<event>>
EventListener UsbEvent EventObject
(from util) (from evem_|> (from util)
Y
4 /'\\
/ ‘-
// I
|
<<Interface>> I
UsbPipeListener PU——
(from event) S source <<Interface>>
<<delivers>> _-.; UsbPipeEvent > UsbPipe
. from event i
_’-!errorEventOccurred() () (i ()
T ataEventOccurred() 5 N T:k
“HstatusEventOccurred() N DS N
\ ~
e \ \\\
/ \ ~
7/ ~.
’ \\ \\\
~
<<event>> <<event>> ~ <<event>>
UsbPipeStatusEvent UsbPipeErrorEvent UsbPipeDataEvent
(from event) (from event) (from event)
B¥getstatusCode() : int ¥ getUsbException() : UsbException F¥getData() : byte]]
""’getErrorCode() sint _"!getDataLength() int

Figure 4.6.5.0 USB pipe events class diagram

Like UsbDevice, UsbPipe dlows for clients to register for asynchronous events.
Modeled dso after the JavaBeans event model, UsbPipeEvents form a hierarchy with two
kinds of events: Error and Data. A UsbPipeErrorEvent indicates that an error has
occurred in a submission on the pipe. A UsbPipeDataEvent indicates asynchronous data
isavalablefor the client. Pipe states are described in section 4.6.3.

Page 23 of 44

4.7 1/0 Request Packets (IRPs)

Pipes provide different methods of communication. For smple communication, a
data buffer may be provided which will be used in the communication (see section 4.6.0).
For more complicated submissions, 1/0 Request Packets (IRPs) may be used. The USB
specification section 5.3.2 describes IRPs. In this specification, an IRP consgts of the
data buffer, communication policy information, and other meta-data, in a single object.
| RPs provide much more control over the submission process than using a byte[] data
buffer. The diagram below indicates how to use Usblrps for asynchronous
communication.

I javax.usb Subsystem |
L __!mplementation |

UsbPipe

Client I:UsbPiQeListener :UsbServices I :Usbirp :UsblrpFactory
L L

|
4

1: getUsblrpFactbry() : UsbirpFactaory
U
2: createUshlirp() : Usblrp

3: setData(:byte[]

4: <defalult> setResubmit(false)

5: <default> s¢tResubmitDataCpmmand(null)

6: <optional> any other Usplrp setup

7: asyncSubmit(:Usblip) 8: Usblrp sent

to subsystem

9: process Usblirp

<&——
10: <optignal> waitUntilCompleted()

11: Usblrp completes

12: fire (data @r error) event

13: notify waifing client(s)

14: process event

P

15: recycle()

Figure 4.7.0 UshPipe communication using a Usblrp

IRPs may be st to automatically resubmit themselves upon completion. Thisis
especidly ussful for input pipes (e.g. input interrupt pipe). If the IRPis st to
autometically resubmit, it will resubmit itself immediately after completion. Its status will
remain ‘active’, and any dients waiting for it to complete will not be natified. It will fire
adata event (if appropriate) or an error event (if appropriate) through its associated pipe.
Resubmission will continue until the IRP is set to not resubmit (by whatever means).

Page 24 of 44

If an IRPis set to resubmit itsdlf, it will ask the current ResubmitDataCommand*’
for the new data buffer. The default for this Command is to create a new data buffer of
equd sze and copy the contentsinto the new buffer. Clients may set the
ResubmitDataCommand so they can handle processing the completed data buffer and
providing the new data buffer. The ResubmitDataCommand may turn off resubmission
(if the client chooses to do s0). Events will ill be fired normally.

Client i :UsbPipetListen | i wsbip | | sbirp. Resubmii i UsbPipe |l javax.usb Subsystem 1
i er 1] | |_tDataCommand | L Il implementation _ |
| 1: client creatds an object i Usblrp. itDatabomman d | |
2: setResubgnit(true) L I I
3: setl DgataCommand(: DataCommand) I I
H 4: agyncSubmit(:Usblrp) I 5: Usblrp sent I
to subsystem | 6: process
7: <optional> wait{ntiiCompleted() Usblirp
8: Usblirp completes v
9: fire event
10: getResubmitData() : Hyte[]
11: process eve| l
<—= |
12: if preyious completion was successful, I
resubmit with byte[] returned from, |
ResubmitDataCommand | 13LJPLTC€55
1 Usbip
<=2
15: fire event fLa: Usb\rplcomple(es
X6: process eve]
<=3
17: (if resubmisgion is still kenabled)
getResubmetRata) : ytel]
\
U
18: ! is still enabled)
\ rellubm\(
— b
o
19: if resubmisgjon is disabled \ :
(by whateyer means) \
notify waitingg client(s) \ '
== The DataCommand may setResubmit(false) to
=11 end the resubmission cycle. Also, any errors encountered will
disable resubmission before calling the
ResubmitDataCommand.
|

Figure 4.7.1 UshPipe communication using a resubmitting Usblrp

Usblrps dso dlow the user to specify whether short packets should be accepted.
The detalls are explained in the USB specification section 5.3.2. If the client specifies not
to accept short packets for this Ushlrp, the subsystem will treat a short packet like a
communication error, and the Usblrp will not complete successfully. The default isto
accept short packets.

4.7.1 Composite Usblrps

A specid type of Usblrp isthe UsbCompositelrp. This object can be submitted
just like anorma Usblrp. However, ingtead of containing its own data buffer, it instead
containsalig of individud Usblrps. When submitted, those individuad Usblirps are used
for submisson. The implementation ensures that those Usblrps are submitted
uninterrupted, i.e., no other datais submitted in between two of the composite' s Usblirps.
Additiondly, the implementation may use optimization to handle the Usblrps more

7 GoF Command pattern

Page 25 of 44

effidently. The UsbCompositelrp inherits al the methods present in a norma Usbirp,
and additiondly hasaUsblrpLigt of itsindividud Usblrps. It aso containsa
CompositeErrorCommand, which is executed only when one of the individua Usblrps
encounters an error. The result of the command determines whether the remaining
Usblirps should continue with their submissions. It dso determines the satus of the
UsbhCompostelrp; if the command stops submission of the remaining Usblrps, the
UshCompositelrp completes with an error.

Norma operation of a UshCompositelrp isidentica to that of aUsblrp. The
exception isinstead of setting the data on a UshCompositelrp, the data should be set on
Ushlrps, which are then added to the UsbCompositelrp’slist. Once the UsbCompositelrp
has Usblrps added to it, it is ready for submission.

Page 26 of 44

4.8 Device Event Object Model

Each USB device can be dynamicadly attached and detached. Because of this
dynamic behavior, clients of a USB device must be able to receive asynchronous events
associated with a USB device. To accomplish thisgoa, USB devices have an event
modd (patterned after the JavaBeans event modd). Each USB device can have a set of

UshDevicel isteners that register to receive UsbDeviceEvent objects. These events are
delivered asynchronoudy.

< >>
EventObject U<Sevaevne|m
(from util) tl<Zt————-] (from event)
~
< >
P N
// ~
PP RED UsbServicesEvent
UsbDeviceEvent omeen) usbDevices | it
from event Bl .,
(v) xﬂ;etUsbServwces() i UsbServices (from util)
== .
ESgetUsbDevice() : UsbDevice i ;elUszevwces(ﬁ)\. UsblinfoList
<7 A \
ad “\. \
4 A \
<<event>> <<event>> \
UsbDeviceDataEvent UsbDeviceErrorEvent \
(from event) (from event) \
. <<receives>
[#getData() E#getErrorCode() ‘\>
‘\
<<receijes>> \
\
\
A ERES <<Interface>>
UsbDevicelistener UsbServicesListener
om Grend) (from_event)
¥usbDeviceDetached(e : UsbDeviceEvent) : void IusbDeviceAttached(e : UsbServicesEvent) : void
o I®usbDeviceDettached(e : UsbServicesEvent) : void
N\,
N i
N e
RN 2

<<Interface>>
SventListener
(from_util)

Figure 4.8.0 UsbDevice and UsbServices event class diagram

Client :UsbServicesListener :UsbServicesEvent :UsbServices Javax.usb Subsystem I
Implementation I
I) .y !
I IL: addListener(:UsbServicesListener) I
| [1 = i
| \ L!
L \
\
\
\
\\ 2: device is attached
3: uszeviceAt\acheo(:UsbServicesEvent) L

The UsbServicesListener instance is created by %
the client and passed to the UsbServices
instance. It should process UsbServicesEvents
however the client wishes.

| ‘\

I 4: process \

| L_UsbServicesEvent
| e e \
L N \
| o
|

|

!

Figure 4.8.1 typicd event sequence diagram

Page 27 of 44

4.9 Request/StandardOperations Object Model

The Request and USB operations provide a S mple mechanism for performing
USB standard device operations as well as USB class and vendor defined operations or
requests using javax.ush. The USB specification section 9.4 specifies a series of standard
requests that al USB devices must support. These are modeled in the Request interface.
The operations that these requests represent are sent to the device using the
StandardOperations interface. The request results are made available using getter
methods from the Request objects. Since the different type of requests have different data
encoding and required values, a RequestFactory is provided to create Request objects. If
the data passed to the factory or set directly on the Request object isinvadid, a
RequestException isthrown. Similarly, vendor and class specific request are created
using the RequestFactory and submitted via the gppropriate UsbOperations object. In
cases where more than one Request object need to be submitted, these can be aggregated
into a RequestBundle and submitted via the UsbOperations object.

<<interface>>

<RequestType> == ClearFeature, GetConfiguration, ... (all the

SubmitResult
(from UsbOperations)

<<Interface>>
Requestlterator

standard requests defined in the USB 1.1 spec section 9.4)

]

(from util)

¥ getNumber() -
[#getrequest) '_:nextRequest()
| HrgetData() [EhasNext) | <<Interface>>
| #getDataLength() 7\‘ RequestFactory
- [#Eiscompleted() \ (from usb)
<<exception>> | #waitUntilCompleted() <<returns>>\

RequestException

FwaitUntilCompleted()

\

Mcreate<RequestType>Request(...) : Request|

(from usb) =5 i
“getUsbException() <<Interface>> 3 .
.*isanstxception() RequestBundle .*createVendorRequest(...) : Request
- Y “=createClassRequest(...) : Request
W. Hrecycle() (from usb) P)
\ <creates>H¥recycle() : void
N\ \ e T
\\ Siterator() |
SisEmpt
. <<inner>3~\ ,"!'add()p y0 <fcreates>>
<<exception>> \\ \ remove() =N |
UsbException \, size() 1 N |
(from usb) <Atows>> Erecycle() \\ v
N <<Interface>>
\\ << b/nﬁt >> N R
__ __ij _IS 1 n& (from usb)
<<Interface>> v
<<Interface>> UsbOperations ':?gelRequeSIType() : byte
UsbDevice (from usb) <<submits>> [SgetRequest() : byte
(from ush) Hgetvalue() : short
N U sy ncsubmit() #getindex() : short
|) i #getLength() : short
®asyncSubmit() g g
B | MgetData() : byte[]
pe A 10Bytes() : byte[]
/ | \ ?‘recycle() : void
7/
/ ! \ T
! |
<<Interface>> <<Interface>> <<Interface>> |<<uses>>
StandardOperations ClassOperations VendorOperations
(from usb) (fromusb) (from usb) \l/
<<Interface>>
[®<requestType>(...) : Request "=classRequest() #vendorRequest() RequestConst
7 A (from usb)
/ ol
/ |
/ |

/

<requestType> ==
clearFeature,
getConfiguration, ... (all the
requests defined in the
USB 1.1 spec section 9.4)

<<Interface>>
HubClassOperations
(fromusb)

®<hubclassRequest>() : Request

T
|
|
|

Contains Request constants as defined by
USB 1.1 spec section 9.4 (not shown)

Figure 4.9.0 javax.usb Request and StandardOperations class diagram

Page 28 of 44

4.9.1 Requests and USB Device Operations Usage - Dynamic Model

To execute standard USB device operations, use the Request/Standard Operations
mechanism. This is accomplished by the following steps (Ao illugtrated below in the
UML sequence diagramy:

Get the UshServices object from the UsbHostM anager.

Get the RequestFactory object from the UsbServices object.

Create the appropriate Request object viathe factory in step b (above).

Fill in the required data for the request. Setting data that is not gppropriate for the
Request object might result in a RequestException to be thrown. Seethe USB
specification section 9.4 for details on data required for each Request type.

Get the StandardOperations object from the UsbDevice.

Submit the Request object via the StandardOperations object.

Read the result of Request using the gppropriate getter methods in the Request
object.

Recycle the Request object viathe recycle() method. Note: a Request object
should no longer be used after being recycled. A new object should be obtained
from the factory (which could be recycled objects) if new Requests are required.

oo oo

2 Q™o

:StandardOperations

| Client | | UsbHostManager | [:UsbServices | i :RequestFactory | | Request | | :UsbDevice | I i
I I I I [I i

1. getinstance() |
-T1
2: getUsbServices() IT'

3: getReques{Factory()

2T
[=

4: cteate<RequestType>()

5: setup/initialize Réquest data

| 6: getRoot\U bHub()

R | U
Search for UshDevice of
interest

7: getStandardOperations()

—L

8: submit(:Reqpest)

9: read results with gejtter methods

10: recycleX)

21

Figure 4.9.1 javax.usb Request and StandardOperations sequence diagram

Page 29 of 44

5 Sample Usage: Client Application Examples

5.1 USB View Application

The javax.ush USB View gpplication is a pure-Java application that showcases
the javax.ush API. Just as other USB view gpplications on native platforms (like the USB
View Windows application that ships with the Windows DDK), you can useit to view
the current USB topology on the host and see configuration(s), interfaces and endpoints
of the attached devices.

The application is written using the Swing API. The“Topology” tab shows the
current USB topology on the host and the “Hub list” and “Device lig” tabsfilter out the
hubs or devices. Thisis done by creating and using the sample javax.usb.util Visitor
classes. Press the “Refresh” button to refresh the topology or run it in “auto-refresh”
mode.

Figure 5.1.0 javax.usb USB View goplication main window

5.2 UsbPipe Test Application

The UsbPipeTest is an add-on tool to the USB view application, written in 100%
Java, using javax.usb, that alows clients to create and use UsbPipes. It alowsthe user to
graphicaly sdect a Ushbinterface and UsbEndpoint, creste and open apipeto it and
submit any USB requests to that opened pipe.

Page 30 of 44

Figure 5.2.0 UsbPipe Test gpplication showing an Interrupt pipe

Page 31 of 44

6 Conclusion

The javax.usb specification is meant to enable USB on the Java platform. This
specification is targeted at the J2SE and J2ME platforms. This specification only assumes
that the underlying platform fully supports the USB 1.1 specification. Using the javax.ush
gpecification, developers should be able to cregte services (or drivers) for their USB
devices. Thesewould alow third party applications and applets to use their USB
devices. Both the device services and third party application should be portable to dl
javax.usb enabled platforms. The following diagram illusirates this concept:

Java Application Signed Java Applets

USB Java Device Service
Java

javax.usb

» &

javax.usb Implementation

Java/INI/C/C++
Native

JVM JNI l

Linux) .
A in2000 A

Figure 6.0.0 Java application/applets, device service and javax.usb layers

enabled
os

As part of the JCP process, this specification is provided as the underlying
architecture and design for the javax.ush. The following are (or will be) provided as part
of the JCP process:

1. Thefull set of classes and interfaces for this specification with intensve JavaDOC
documentation.

2. A reference implementation for the Linux OS platform (origindly by IBM).

3. Vaious utilities and tools that use javax.ush. Thesetodls, like device services for
javax.usb, will work on al Java enabled plaiforms with ajavax.usb
implementation.

4. A full set of test casesthat can verify that an implementation follows the
semantics of this specification.

Page 32 of 44

We bdieve that this specification, in the spirit of the Java“Write Once, Run
Anywhere™” mantra, will enable USB for the Java platform and thus open the Java
community to awhole new sat of gpplications that otherwise would not be possible.

Page 33 of 44

7 Appendix A: Design Considerations and Future
Releases

7.1 J2ME

The JavaMicro Edition (2ME) isthe Java platform targeted for persond, portable
devices. There aretwo configurationsin 2ME, namely CLDC (Connected Limited
Device Configuration) and CDC (Connected Device Configuration), and multiple profiles
defined for 2ME to dlow the system integrator to choose the minimum specific function
required to use for a particular solution. Javax.usb will run on the CDC profile!®.

The Foundation Profile isa set of Java APIs, which, together with the CDC, provides
aJ2ME application runtime environment for consumer eectronic and embedded devices.
More study is required to identify any specific requirements that javax.usb may have on
the classes in the Foundation Profile.

From a pragmatic standpoint, at this time PersonadJavais a prevailing standard for
companies developing Java enabled consumer devices. Since J2SE requires more
resources than these devices provide, EmbeddedJava is suitable for closed systems only,
and the complement of 2ZME profiles are just beginning to be defined to provide for the
full matrix of requirements. More study isrequired to determine if the CLDC profile can
be supported as well.

7.2 USB 2.0

The current ingtalled base of system units supporting USB and the USB
peripherds themsdves are largely ones conforming to the USB 1.1 specification. The
follow-on USB 2.0 should support this prevaent slandard. The USB 2.0 design point isto
be a trangparent superset from afunctiona bass, which meansthat USB 1.1 devices and
drivers should work on a USB 2.0 platform. So we therefore expect that the current
specification and implementations of javax.usb should be applicable to USB 2.0 hosts
and stack. USB 2.0 specific functions can be addressed in follow-on revisons of this
API.

7.3 Claiming Interface using Policies

The javax.usb 1.0 release provides asmple API for controlling access to adevice
S0 that only one client can use a particular device interface a atime. The advantage to
this cdlam() and reeasy() interface isthet it is Smple to use and effectively protects an
goplication’ s access to a clamed USB interface from interference from another
gpplication running in ancther VM. This mechanism does not, however, help the
gpplication to control accessif multiple gpplications are sarted in asngle VM. Any
goplication in the WM will be able to access the USB interface of adevice claimed by
any other application in the same VM.

18 http://www.sun.com/software/communitysource/j 2me/cdc

Page 34 of 44

This issue has been consdered and there is a proposal under consideration to
expand the cdlaming mechanisms to use a sort of Policy object that would give more
control to the application. With this APl extension, the application would provide its
own policy object thus customizing the control of claming and releasing of USB
interfaces by the client application. Thiswill dlow finer granularity of contral to the
client application.

7.4 Support for Isochronous Transfer

Isochronous Data Transfers occupy a pre-negotiated amount of USB bandwidth
with a pre-negotiated ddivery latency (o cdled streaming red time transfers).
Isochronous transfers are complicated, time-senditive, and may not be gpplicableto dl
hardware environments.

The API currently provides support for 1sochronous data transfer types for
platform implementations that can provide thisleve of capability. It is considered by the
Expert Group, that a platform can be compliant to the javax.usb APl without providing
thisfunction, if it adequately responds to such API requests with the appropriate
exceptions.

Page 35 of 44

8 Appendix B: Frequently Asked Questions (FAQS)

8.1 What Diagnostic Capabilities are provided for use with this API?
Various utilities and tools that use the javax.usb interfaces are a so provided with

the reference implementation. PipeView and the UsbView Utilitiesare availablein a

package named javax.usb.tools. These utilities are written in Javafor use with any

reference implementation. They are indipensable as example code for reference

implementations as well asfor diagnostics for gpplications using the API. UsbView can

be used to identify the current USB portsthat are attached and the endpoints and

interfaces for the devices present.

There are tab sdlectors for “Topology” showing the current USB topology on the
hogt, the “Hub ligt” to list the attached hubs, and “Device lig” filtering out the connected
devices. Also supported are the “ Refresh” function to refresh the topology and an “auto-
refresh” mode. The UsbView is dso designed as a JavaBean dlowing integration of its
functiondity into other tools.

The PipeView tool alows the user to create USB pipes and exercise the device
access. It dlowsthe user to graphicaly sdect a USB device interface and endpoint,
create and open apipe to it, and submit any USB requests to that opened pipe. Sincethe
tool actualy communicates to the device, the input/output stream dedlivery can be tested
viathe specific device responses. The PipeView aso shows how to integrate the
UsbView into another application.

8.2 Why not create a Java communication API for all device
communications via the Java 2 platform that would include, for
instance, Bluetooth, rather than a specific API for USB?

The mogt direct answer to this question isin the relm of performance and
pragmatism. An AP to talk to communication devices needs to have the least amount of
overhead. Many (like usa IBM) will be cregting middleware that is used by application
writers to talk to attached devices. This APl must have minima path overhead and at the
same time expose dl device functiondity in amanner that fits the type of device
attached. In addition, there has already been an expert group (JSR 82) formed to create a
low level Java AP for bluetooth technology. See

http://java.sun.com/aboutJava/communityprocessjs/jsr 082 _bluetooth.htm
for details on the work in progress for bluetooth.

It isaso notable that it would be possible to creaste a middieware layer by
providing awrapper classto abstract dl of the device accesses to the different APIsto
meet thisneed. Thiswould be useful to gpplications that want to use a middieware driver
without caring about the underlying connectivity issues. In other words, the middieware
driver would use the connectivity specific API and expose another API to the gpplication.

Page 36 of 44

The javax.comm design point was RS232/Pardld and it is not agood design base
for other bus architectures. It would most likely need to be changed to come up with a
unified serid gpproach. Thiswould not be acceptable to the industry since thereis
extengve javax.comm device support aready in place.

Asfar asaunified serid API, we have given it some thought and here are some
issues with that idea. The issues are captured in the list of dternatives given below and
the problems that occur with each gpproach. This anadys's supports our conclusion that
each connection type (e.g. RS232/Pardld, USB, FireWire, Bluetooth, etc) will most
likely need itsown API. There are 3 possible approaches that could be used to make a
unified serid APL:

1. Design to the lowest common denominator (which could be RS232). This would
limit the features exposed by the generic API. For example, USB devices can
have multiple sub-devices (cdled USB interfaces) and each interface can have
multiple endpoints, which can al have communication channdls (called USB
pipes) open to them. There is no adequate mapping of this structure of interfaces
and endpoints to serial-like communication.

2. Desgnacomplex AP that supportsdl seria communications and enables the
correct functions for the type of device attached. There are variousissues with
this

a. Thisisaquestionable design approach since the API for a particular bus
would only implement a subset of the whole AP, which clients need. For
ingtance, USB devices are dynamicaly configured but RS232 devices are
daticdly configured.

b. Sincedientswould talk to asmall subset of the big API, why not separate
them? Clients would need to know what type of device they are taking to
and sdlect the correct API functions.

c. Thiscomplex APl would take time to reach agreement and would delay
the implementation.

d. Itisnot clear that we would have aworkable solution in areasonable
amount of time. USB isjust now being supported on most platforms (e.g.
GNU/Linux, Solaris, AlX, etc). FreWireisdso initsinfancy on many
platforms other than the Mac OS and Win32, and it would be premature to
implement an AP for it now.

3. Takethe opposite agpproach of (2) and design avery abstract API that each
particular bus APl would extend to add its particular features. The approach is
actudly the most feasible; however, there are afew issues that makesit
undesirable:

a. Thiswould require incompatible changes to the javax.comm, which is
dready in use.

b. Thevarious buses are different enough that this abstract API would not be
useful in and of itself, and users would need to access the particular bus
API. If that is the case, then why not have separate APIS?

Page 37 of 44

c. Thiswould aso mean that in creating this abstract APl we would need to
foresee the future and support dl future communication APIs. Thiswould
be impractica.

Thisline of reasoning leads to the conclusion that a separate AP isthe most
practica and likely to succeed. The JSR 80 specification and working reference
implementation will attest to the vdidity of this gpproach.

8.3 What are the expected performance characteristics of a Java
API for USB?

USB's actud throughput is a function of many variables. One of these is certainly
the efficiency of the APl implementation; however other Sgnificant ones are the target
device's ability to source or Snk data, the bandwidth consumption of other devices on the
bus, and the efficiency of the underlying operating system’s USB software stack. In some
cases, PCI latencies and processor |oading can dso be critical. Performance of device
handling software written in Java should gpproximate the speed of the same function
written in C++ on the same platform. Thisis based on the assumption of an appropriate
JT (Just in Time) compiler for the platform and adequate memory to minimize paging.

Assuming that only the target endpoint consumes a significant amount of bus
bandwidth and both the target and the host are able to source or sink data as fast as USB
can move it, the maximum attainable bandwidth is a function of the transfer type and
sgnding rate. These bandwidths are given in chapter 5 of the USB specification. In
practice, most hosts can reach the maximum isochronous and interrupt bandwidths with a
angle target endpoint. With bulk transfers, typica transfer rates are around 900 kb/sto a
single endpoint, increasing to near ided trandfer rates with multiple endpoints.

8.4 What is the design language used in this specification?
The UML used in this specification was done using Rationa Rose 2000e.

Two main categories of UML diagrams are used in this specification:

1. Static sructure diagrams. these are typicaly class and package diagrams. They
show the dtatic relationships (that is relationship that are constant with time) of
classes/interfaces with other classe/interfaces.

2. Dynamic diagrams: these are sequence diagrams and state chart diagrams. These
diagrams show the dynamic relationship (thet is relationship over time) of objects
with other objects or within one object.

Interfaces are either shown using the lallipop symbol or abox symbol adorned
with the <<interface>> stereotype. A UML interface maps directly to a Java interface.

All other boxes are classes. They typicdly are plain classes (i.e. not adorned) or
adorned with an <<event>> or <<utility>> stereotype. The <<event>> stereotype
indicates an event class and the <<utility>> indicates a class that typicaly has satic
methods used as services by other classes. Classes typicaly do not show attributes since

Page 38 of 44

that would violate encagpsulation. Showing attributes aso gives too much information
about the classimplementation; and furthermore, the attributes of a class can be inferred
from the relaionships of a class with other classes. The operation compartment of aclass
or interface typicaly shows critical operations only. This is done to keep the Satic
dructure diagrams smple.

Classes show an inheritance reationship (for instance, arelationship) with a open
arrow pointing from the subclass to the superclass. Thisis a Sraightforward “extends’ in
Java Implementation of interfaces is shown just like inheritance except that the line of
the arrow is dashed.

Classes and interfaces show aggregeation relaionship (i.e. containment, whole- part
relationship) with aline between the two classes. The “whol€’ class hasits sde of the
line adorned with adiamond. The other class (the “part” class) ether has an arrow or
nothing. Multiplicity of containment isindicated by numbersor * to indicate O or many.

Relationships between classes can dso be shown by a dashed line arrow between
the classe/interfaces. Thisis a dependency relationship. This means that the
classlinterface on the start of the arrow depends on the other. That dependency can be
further refined by indicating a Stereotype like <<uses>> or <<creates>> which asthe
name suggests, means that one class/interface uses the other (in some way, like for
instance a Congt interface, an interface defining congtant objects, istypicdly used by
various classeslinterfaces) or means that one class/interface creates instances of the other.
This could indicate thet the class/interface is a factory for the other.

Thereisagenerd philosophica note by Booch, Rumbaugh and Jacobson in the
various UML books listed in the References section of this document. UML isa
moddling language, it is not meant to execute on the machine, it just dlows quick,
efficient overview and creation of complex moddsto alevel of abgraction that is higher
than looking a source code. That said, it isagrest tool to creete, explain, pecify,
introduce a complex (or non obvious) piece of software to other engineers. In other
words, itisaway to communicate. However, UML cannot (and is not meant to) replace
code. Once the big UML picture is communicated, engineers should refer to the source
files or the JavaDOC (which isthe closest thing to source files).

In sequence diagrams, method calls between objects that terminatesin : <Type>
implies that ainstance of <Type> is returned to the cdler.

For aquick, gentle and short introduction to the UML, see Martin Fowler’ s book
liged below “UML Didtilled”.

Page 39 of 44

8.5 How do | use the UsbinfoVisitor interface?

The Vigtor pattern dlows an externd client to add methods to a hierarchy of
clases/interfaces without having access or modifying the sources. The hierarchy hasto
be stable otherwise the Visitor code will need to change. For a complete and thorough
discusson of the Vidtor pattern including advantages/disadvantages aswdl aswhereits
use is applicable, please refer to Design Pattern book [Gamma95s, 331].

The best explanation of how to use the UshinfoVisitor isto look at asimple
example of filtering the UsbRootHub for a particular device that one islooking for. For
that we will:

1. Create aFiltertUsbDeviceV vigtor. This dasswill extend DefaultUsblinfoV and
add two setter methods (set the vendor and product ID) and one getter method to
return the UsbDevice found (if any)

2. Show acode snippet that usesthat vigitor by:

a. Create an instance of FilterUsbinfoV

b. Set the vendor and product 1D of the device that needs to be searched
for (filtered)

c. Get the UsbRootHub from the UsbServices

d. Vigtthe UsbRootHub to filter out the device
Get the resulting filtered device if found

Page 40 of 44

import javax.usb.*;
public class FilterUsbDeviceV extends Defaul t Usbl nf oV
public UsbDevi ce get UsbDevice() { return usbDevice; }
public void setVendorld(short vid) { vendorlid = vid; }
public void setProductld(short pld) { productld = pld; }
public void visitUsbDevice(Usblnfo usblnfo)
UsbDevi ce devi ce = (UshbDevi ce) usbl nf o;
i f(device.getVendorld() == vendorld &% devi ce. get Product1d() == productld

usbDevi ce = devi ce;

}

public void visitUsbHub(Usblnfo usblnfo)
UsbHub hub = (UsbHub) usbl nf o;
Usbl nfolterator iterator = hub. get AttachedUsbDevi ces().usblnfolterator();
while(iterator.hasNext())
iterator.nextUsblnfo().accept(this);
}
private UsbDevi ce usbhDevice = null;

private short vendorld = O;
private short productld = O;

}

<cl i ent - code- sni ppet >
/...

Fi |l terUsbDevi ceV visitor = new FilterUsbDevi ceV();

visitor.setVendorld(0x1234);
visitor.setProductld(0x5678);

UsbRoot Hub root Hub = UsbHost Manager . get | nst ance().
get UsbSer vi ces() . get UsbRoot Hub() ;

root Hub. accept(visitor);
UsbDevi ce device = visitor.get UsbDevice();

/...

</ cli ent - code- sni ppet >
Of course thisis a smple example which assumes, for ingtance, thet thereis only

one such <vendorld, productld> device attached to the hub, but neverthdless, it clearly
shows the power of visitors.

Page 41 of 44

9 Appendix C: Change Summary

Changes resulting in document revisons will be summarized in thistablein
reverse chronologica sequence. Revision bars () will highlights the text changed in the
new document versons.

Verson Date Change Description

0.9.0 6/29/2001 1. Some minor improvements and clarifications
on the Pipe section

2. Request section has be improved (diagrams
and abit of text)

Added moreillustrative UML datic structure
diagrams

Added more dynamic structure diagrams
Expanded the FAQ section

Added a*“Future Consderation” section
Variousimprovements to existing

paragraphs to make them flow better

0.8.0 4/5/2001

=

arwON

0.0.3 12/15/2000 1. More spdling/grammar errorsfixed (when
the technica content of paragraphs have not
changed due to spdling/grammar error,
revison bars*[" are not used)

2. Using Dewy dotted decima notation in
entire gecificaion

3. Some UML diagrams improvements,
especidly showing key method names and
sgnatures

4. Added info and UML diagrams about USB
request and operations

0.1.0 02/19/2001 1. Spdling/grammar errorsfixed

2. Added more English description for each
UML diagrams

3. Added an appendix for explaining the usage
of UML in this document

4. Added explanation on the UsbPipe mode

and how to useit

Page 42 of 44

5. Added various description on the different
sections

0.0.1

10/2000

Origind

Page 43 of 44

10 References

10.1Web

[W1] “JSR-80, Java APl for USB”
http://java.sun.com/aboutJava/communityprocessjsr/isr 080 ush.html

[W2] “JavaPOS Specification” Sun, IBM, NCR, Epson, Fujits-ICL, NRF, Datéfit,
MGV, RCS, €t d., http://www.javapos.com

[W3] “UML Document” http:/Aww.rationa .com/uml/

[W4] “USB 1.1 Specification” http://www.usb.org/devel opers/data/ushspec.zip

[W5] “USB 2.0 Specification” http://www.ush.org/devel opers/data/ush 20.zip

[W6] “Linux USB Project” http:/mww.linux-ush.org

[W7] *Java Communication API” http://java.sun.com/products/javacommy/index.html

10.2Books

[Gammads] E. Gamma et d. “Dedgn Patterns. Elements of Reusable O-O Software”
Addison Wedey 1995.

[Lea00] D. Lea“Concurrent Programming in Java Design Principles and Patterns’
second edition, Addison Wesley 2000.

[Booch98] Booch, G. et d “The Unified Modeling Language: User Guide’ Addison
Wedley 1998.

[Rumbaugh99] Rumbaugh, J. et d “The Unified Modding Language: Reference’
Addison Wedley, 1999.

[Fowler99] Fowler, M. et d “UML Didtilled” Addison Wedey 1999, second edition.

Page 44 of 44

