
Page 1 of 44

Java™ API for USB (javax.usb)

JSR-80 Specification

Version Code:
Version 0.9.0

Date:
Wednesday, April 04, 2001

Address questions to:

E. M. Maximilien

(919) 301-7014
maxim@us.ibm.com

D. D. Streetman

(919) 301-5672
ddstreet@us.ibm.com

B. Dimmock

(919) 301-5713
bkd@us.ibm.com

Java™ is a registered trademark of Sun Microsystems, Inc. http://www.sun.com

Page 2 of 44

Authors, Reviewers and Contributors

IBM
E. Michael Maximilien
Boyd Dimmock
Dan Streetman
Brian Weischedel

Sun Microsystems
Paul Klissner
Sunil Dusankar
Ron Kleinman

Fujitsu-ICL
Harry McKinlay

Wincor-Nixdorf
Peter Duellings

Independent
Roger Lindsjö
Steve Turner
Paul Gay
Boris Dainson

Page 3 of 44

Table Of Contents

Abstract ...4
1 Introduction ..5
2 Audience, Motivation and Requirements ..6

2.1.1 Intended Audience..6
2.1.2 Motivation ..6

2.2 Requirements...7
2.2.1 Java editions targeted...7
2.2.2 Functionality...7
2.2.3 Performance...7
2.2.4 USB Version...8
2.2.5 Internationalization (i18n) ..8
2.2.6 Abstraction ...8

3 Architecture ..9
3.1 Overview ..9

3.1.1 Future..10
4 Design ...11

4.1 UML Package Diagram ...11
4.2 USB OS Services Object Model...12
4.3 USB Device Object Model ...14
4.4 Descriptor Hierarchy ...16
4.5 Utility Classes/Interfaces ...17
4.6 USB Pipe Object Model...18

4.6.1 USB Pipe Input and Output ...20
4.6.2 USB Pipe Types ...20
4.6.3 USB Pipe State Model ..21
4.6.4 USB Pipe Class Diagram ..22
4.6.5 USB Pipe Event Class Diagram ...23

4.7 I/O Request Packets (IRPs)...24
4.8 Device Event Object Model ...27
4.9 Request/StandardOperations Object Model ..28

4.9.1 Requests and USB Device Operations Usage - Dynamic Model29
5 Sample Usage: Client Application Examples...30

5.1 USB View Application ...30
5.2 UsbPipe Test Application ..30

6 Conclusion ...32
7 Appendix A: Design Considerations and Future Releases ...34

7.1 J2ME ...34
7.2 USB 2.0 ...34
7.3 Claiming Interface using Policies ...34
7.4 Support for Isochronous Transfer...35

8 Appendix B: Frequently Asked Questions (FAQs) .. 36
9 Appendix C: Change Summary ..42
10 References...44

10.1 Web...44
10.2 Books ..44

Page 4 of 44

Abstract
Universal Serial Bus (USB) technology was demanded by the general IT market

to simplify the connectivity of peripheral devices while adding simplicity, flexibility, and
capacity to device attachment. This proposal describes a Java interface to USB:
javax.usb. It includes the architecture and design for this interface, which allows JVMs to
access the USB host controller with the full capabilities of the USB architecture. Similar
to Sun Microsystems’ javax.comm API for RS232 serial and parallel connectivities,
javax.usb is a Java-based API which is dependent on an implementation to map to the
native OS interface for USB. Availability of this interface implementation on Java
enabled platforms allows for true cross platform access to USB from Java software.

Page 5 of 44

1 Introduction
The javax.usb is a Java API giving full access to USB on a host system enabled

for the Java 2 platform. The API is similar in intent but very different in architecture and
design to Sun’s javax.comm. The javax.comm API is simple API that gives access to
RS232 ports and standard parallel ports from Java applications. The javax.comm
architecture and design, though sufficient for simple serial ports such as RS232, is
completely inadequate for USB, which is a tree based, dynamic, expandable, plug-and-
play, high bandwidth, powered bus. To correctly provide access to all the functionality of
USB it was clear that a new API was needed. Javax.usb is such an API, and gives full
access to USB from Java on any platform that supports USB 1.1 or later specification.
For each USB platform the JVM or OS provider will need to implement the javax.usb
specification by adding some native code that plugs in javax.usb and binds it to the host
OS USB driver architecture. To prove the validity of javax.usb, we have developed an
open source reference implementation of the specification for the Linux OS.

Page 6 of 44

2 Audience, Motivation and Requirements

2.1.1 Intended Audience
The following are the intended audiences of this document:

1. JSR-80 expert group: the expert group will ultimately decide the definition of the
Java API for USB; namely the contents of this document

2. JVM and/or OS providers: any platform that intends to support the JSR-80
specification will need to use this document to expose this API to access USB

3. USB device manufacturers: who will create Java middleware drivers (or services)
to allow access to their devices from Java applications and applets1

4. Java application and applets developers: who want to enrich their applications
with access to locally attached USB devices

2.1.2 Motivation
Implementation of device services (i.e. drivers) in Java is a long-range strategy for

portable device support. This allows providers to move towards a 'common' set of device
services, which execute on all Java enabled platforms. Basically this API is extending the
“Write once, run anywhere”™ mantra to services (or drivers) of USB devices and
consequently to applications/applets needing to access these devices.

We recognize that there are additional evolving technologies for device
attachment (i.e. Firewire™, aka IEEE 1394) which may suggest that there should be
provision in this API to support USB and other technologies seamlessly. However, our
intent is to expose USB uniqueness in this API in order to provide full access to the bus.
Trying to provide a generic communications API for the Java platform is beyond the
scope of this document2. We plan instead to provide a separate API that can focus on the
particular communication transport at hand: USB. It is our opinion that seamless access
to devices, independent of the attachment technology, is correctly implemented via a
layer of abstraction (an abstract device model) above this API. In fact, for the Retail
industry3, there are extensive specifications for device interfaces for point of sale devices,
which eliminate the application’s need to implement to a specific attachment technology
(i.e.. RS232, USB, RS485). It is worth noting that these retail specifications do not deal
with the device connectivity in a generic way, but with the functionality of the device.

1 Since Java applets have very stringent security restrictions, access from applets to any API that is not part of the Java
core API that needs to load native libraries will necessarily need to be trusted (i.e. signed). Please see the details on
trusting applets for the Java 2 platform at http://java.sun.com/security
2 For an analysis of why having a generic communications API could be problematic and why we have chosen to have
a separate API, please see section 8.2 of this document.
3 The Java Point of Sale or JavaPOS specification can be found at http://www.javapos.com. Also the Financial
industry has a similar specification for devices attaching to financial point of service (e.g. used by Bank tellers) at
http://www.jxfs.com

Page 7 of 44

2.2 Requirements

2.2.1 Java editions targeted
This API is targeted at the J2SE (Java 2 Standard Edition) and J2ME (Java 2

Micro Edition) platforms. The requirement for J2SE stems from the fact that USB is
becoming the primary connectivity for client personal platforms and is also in demand for
vertical markets’ client platforms (e.g. Retail Point of Sale). The requirement for J2ME as
a targeted platform is based on USB becoming an increasingly popular connection for
portable/personal devices (i.e. PDAs, etc.). As we move forward in the JCP process, the
expert group will refine the requirements for the particular profile required for J2ME4.

2.2.2 Functionality
USB is a more complex and feature rich bus than standard RS232 and parallel

ports. USB has a multiplex, high-bandwidth, dynamic, tree-based, powered, plug-and-
play architecture. The requirement for javax.usb is to expose the full architecture of USB
to Java software. This implies that:

1. The API should closely follow the official USB specification. (See:
http://www.usb.org/)

2. The API must support the dynamic nature of USB, in that devices can be attached
and detached at runtime (hot plugging). The API must provide a mechanism to
determine what is attached when a change occurs

3. The API must support multiplex operations such that USB devices can be
attached to USB hubs that multiplex a USB port into more ports. Each port can
then accommodate another hub which can have hubs or devices attached. The
current limit is 5 hub-levels deep and with up to 128 devices (including root hub)
attached per "bus" (per USB controller)

4. The attached devices form a tree instead of a list (devices attached to hubs which
are themselves devices). A device list via topological sort, breadth first search or
depth first search of the tree should also be possible

5. The API provides access to transporting data and communication signals. USB
also transports power, such that devices can be powered from the USB. Although
not a dependency on the API, USB power information should be provided to the
user

6. USB devices can usually be dynamically configured and can contain more than
one configuration. Drivers for such devices are also typically loaded and unloaded
dynamically.

2.2.3 Performance
To allow creation of device services for all categories of devices, the API should

minimize overhead. The API should allow for implementations that are quick, lean and
expose all device functionality in a manner that fits the type of device attached. The

4 It is worth noting that this first specification of the javax.usb does not include any dependency that would prevent it
from being implemented on the Personal Java platform or superset of the J2SE platform (i.e. J2EE).

Page 8 of 44

benchmark is for the javax.usb API to not limit the data capacity throughput or response
time expectation as compared to the native OS interface.

2.2.4 USB Version
It is acceptable for an initial reference implementation to provide an API that will

support the USB 1.1, which is already prevalent in the marketplace. The USB 2.0 design
point is to be a transparent superset from a functional basis, which means that USB 1.1
devices and drivers should work in a USB 2.0 platform (see the USB 2.0 specification for
details http://www.usb.org/). USB 2.0 specific details can be addressed in a follow-on
revision of this API.

2.2.5 Internationalization (i18n)
There is the requirement to support worldwide USB solutions. This may require

management of the translation between USB LANGID codes and the i18n locales of
Java. USB devices have string descriptors that describe them and their functionality (e.g.
Manufacturer string, Product string, etc.) These strings are in UNICODE, so they can be
in any language. This must be supported.

2.2.6 Abstraction
To maximize flexibility in the use of this API, it is important that the application

be independent from the actual underlying implementation and platform. The API
specification will use mostly Java interfaces with a minimum of classes to allow
flexibility in implementation.

Page 9 of 44

3 Architecture
The Java API for USB or javax.usb is architected to meet the requirements set

forth in the Audience, Motivation and Requirement section of this document. To
reiterate, below are the general architectural goals for javax.usb:

1. The API specification should be in accordance to the USB 1.1 specification.
2. The API specification should be easily implemented on any platform that supports

the J2SE and J2ME and USB.
3. The API specification should use mostly Java interfaces with a minimum of

classes to allow flexibility in implementation.
4. Clients should be able to use any platform supporting javax.usb to create their

device services (device drivers) and be guaranteed that their services should work
on all platforms supporting the javax.usb specification.

3.1 Overview
The USB 1.1 specification’s chapter 5 (Data Flow Model) and chapter 9 (Device

Framework) define a logical model for all USB hosts and devices. Chapter 9 also
describes in detail the generic functionality and operations that are supported for all USB
devices. Using these as a guide, we have defined javax.usb to include the following
subsystems:

«subsystem»
Device model

«subsystem»
Events

«subsystem»
USB Pipes

«subsystem»
USB Requests (Operations)

«subsystem»
Descriptors

«subsystem»
OS Services

<<uses>>

<<uses>>

<<fires>>

<<fires>>

Java USB Driver<<uses>> <<listensFor>

<<uses>>

<<creates>>

Figure 3.0 High-level overview of the javax.usb architecture5

5 All subsystems are a logical set of interfaces/classes and do not always map to a Java™ package

Page 10 of 44

Together the above subsystems form the core of the javax.usb specification. They

should meet the goals and requirements already set forth.

Name Description Java Package
Device model Defines an object model for describing USB devices

(including hubs) and all of their characteristics. This
is the main facade for users of javax.usb. In the
device model we also define a hierarchy for the
different descriptors that describe USB devices.

javax.usb

Events Defines an event model (similar to the JavaBeans
event model) for USB devices and pipes.

javax.usb.event

USB Pipes and
USB I/O
Request

Packets (IRP)

Models the communications to and from USB
devices and their components. These pipes are logical
and are fashioned after the USB 1.1 specification
chapter 5 USB pipes.

javax.usb

Request and
USB

Operations

Models the type of requests that clients can send to
USB devices. These requests or operations are
fashioned after the USB 1.1 chapter 9 requests.

javax.usb

OS Services Defines the services needed from the underlying OS
and serves as part of the bootstrap that implements
javax.usb.

javax.usb.os

Table 3.0 javax.usb subsystems definition

3.1.1 Future
Although by using the current javax.usb one can access and communicate to any

kind of USB device, javax.usb does not directly address USB class device specifications
(e.g. HID, Audio, Storage, ...). This is intentional. Class devices such as HID can be
addressed specifically as extensions to javax.usb or in a future revision of this
specification. We intend that an API for these class-specific USB devices would be
architected as a layer on top of the javax.usb6.

6 This may of course possibly add some new requirements to the javax.usb but we believe that the current architecture
will stand firm, as we are able to communicate and access class-specific devices with the current javax.usb reference
implementation.

Page 11 of 44

4 Design
To specify in detail the design of javax.usb we will make heavy use of the Unified

Modeling Language (http://www.rational.com/uml). We will start with a package
diagram that shows the different packages used by javax.usb and their interdependencies.
For each logical grouping of classes/interfaces that implement the architecture
subsystems, we show detailed static and dynamic structures in the form of class,
statechart and sequence diagrams. Where appropriate we also describe the contracts of
key interfaces.

4.1 UML Package Diagram
javax.usb is specified using 4 main packages:

1. javax.usb: the core interfaces and classes modeling USB devices, descriptors,
communication pipes and requests/operations.

2. javax.usb.util: various utility classes and interfaces that are used by other classes
and interfaces in the javax.usb specification.

3. javax.usb.event: classes and interfaces implementing the Event subsystem for
USB devices and pipes.

4. javax.usb.os: classes and interfaces that specify the services that need to be
provided by the underlying OS to accommodate an implementation of javax.usb.

This UML package diagram shows the different javax.usb packages and their

inter-dependencies.
The javax.usb package is the central package where all the Device Object Model

exists. The javax.usb.os package is the bootstrap to the underlying javax.usb
implementation and the javax.usb.event and javax.usb.util are the event/listener and
utility packages respectively.

usb
(from javax)

event
(f rom usb)

util
(f rom usb)

o s
(from usb)

Figure 4.1 javax.usb package diagrams

The javax.usb API interfaces and classes are heavily documented with JavaDOC.

Please refer to the javax.usb API release.

Page 12 of 44

4.2 USB OS Services Object Model
UsbHostManager is a Singleton [Gamma95, 127] class (that is only one instance

exists per JVM) that bootstraps the implementation (the UsbServices object). This is
shown in the class diagram by an aggregation relationship between the UsbHostManager
and the UsbServices interface. The UsbHostManager uses the UsbServicesUtility to
query the UsbProperties (loaded with the contents of the jusb.properties file) for the
current implementation class for the UsbServices interface. The implementation of the
UsbServices interface must have a default constructor. The Java reflection API is
used to create the UsbServices object. The following diagram shows the Java
interfaces/classes in the javax.usb.os package:

UsbServicesUtility

<<class>> getUsbServices()

(from os)

<<utility>>

UsbTopologyServices

getUsbRootHub() : UsbRootHub
bfsUsbServices(hub : UsbHub) : UsbInfoIterator
dfsUsbDevices(hub : UsbHub) : UsbInfoIterator

(from os)

<<Interface>>

UsbServices

addUsbServicesListener()
removeUsbServicesListener()
getRequestFactory()
getUsbIrpFactory()

(from os)

<<Interface>>

<<creates>>

UsbProperties

loadProperties()
isLoaded()
getPropertyString()
getPropertyNames()

(from util)

<<Interface>>

UsbHostManager

getUsbProperties() : UsbProperties
getUsbServices() : UsbServices
<<class>> getInstance() : UsbHostManager

(from usb)

<<singleton>>

<<uses>>services

properties

This is a Singleton class meaning that there is no public
constructor and only one instance of the class exist
which is accessed by calling the getInstance static
method like: UsbHostManager.getInstance()

NOTE: In order to keep the diagrams uncluttered,
some methods are shown w/o full signature and
some methods are not shown at all (typically the
methods judged to be less important)

Figure 4.2.0 javax.usb.os class diagram

The UsbHostManager.getInstance() static method is used by clients to access the only

instance of the UsbHostManager. The current UsbHostManager implementation uses lazy
initialization whereby the first client that calls it pays the price of the bootstrap as well as
creating the instance itself. During creation of the UsbHostManager instance the
UsbServices is created as mentioned above. Once the client gets the UsbHostManager
reference it typically does the following:

1. Registers for events via the
UsbHostManager.getInstance().getUsbServices().addUsbServicesListener(
listener) to get notified when new devices are attached or current devices are
detached.

Page 13 of 44

2. Asks the UsbServices for the root USB hub, which it uses to find the devices that
it cares about.

3. Uses other utility methods that return UsbInfoIterator of the UsbDevices in
breadth-first-search and depth-first-search orders.

The following sequence diagram shows typical interactions of clients with the

UsbHostManager and UsbServices objects:

:UsbDeviceClient :UsbServices :UsbRootHub

3: getUsbRootHub():UsbRootHub

4: seach for particular UsbDevice

UsbHostManager is a Singleton class
and getInstance() is the static
Singleton class accessor method

:UsbHostManager

1: getInstance():UsbHostManager

2: getUsbServices():UsbServices

5: Use UsbDevice (i.e. look for UsbConfig, UsbInterface, UsbEndpoint)

Figure 4.2.1 javax.usb.os typical usage sequence diagram

Since there could be more then one USB controller hardware per USB host, the

UsbRootHub object returned from the UsbServices is always a virtual UsbHub. This
UsbHub has attached to it all actual root hubs that are attached to this host. For instance,
if the host has two USB host controllers, then the virtual root hub returned by calling
getUsbRootHub() will have two UsbHub objects attached to it.

Once the root hub is returned from the UsbServices object, the client may need to
search for a the particular device. This can be done in one of two ways:

1. Iteratively searching through all UsbDevices attached to the UsbRootHub or other

UsbHub
2. Using a UsbInfoVisitor filter class. An example of this method of searching for a

device is shown in section 8.5 of this document (FAQs)

Page 14 of 44

4.3 USB Device Object Model
Each USB device is composed of various components. And the different

components of a device are well structured. The USB device model shown in the class
diagram below tries to model a generic USB device with its component. It can be
understood as follows:

1. A USB device is an object whose class implements the UsbDevice interface.
Since USB hubs are also USB devices, then USB hubs are modeled with the
UsbHub interface which extends UsbDevice and also contains a set of
UsbDevices (or UsbHubs, since UsbHubs are UsbDevices). In essence, this is an
application of the GoF Composite pattern [Gamma95, 163]

2. A USB device has one or more configurations. This is modeled as an aggregate
relationship between UsbDevice interface and the UsbConfig interface. The
UsbConfig interface contains getter methods describing it. This information is
part of the descriptor for that configuration.

3. Each USB configuration for a device has a set of interfaces associated with it. The
interfaces define the exposed functionality of the USB device for that
configuration. This is model with an aggregate relationship between UsbConfig
and UsbInterface.

4. Each USB interface for each USB configuration on a USB device can have
endpoints associated with it. This is modeled again with an aggregate relationship
between UsbInterface and UsbEndpoint. A USB endpoint is a source or sink of
data to the USB device.

The following UML static class diagram shows the different Java interfaces and

classes that make up the device object model:

UsbInfo
(from usb)

UsbInfo
(from usb)

UsbInfo
(from usb)

UsbInfo
(from usb)

UsbInfo

accept(v : UsbInfoVisitor) : void

(from usb)

<<Interface>>

UsbEndpoint

getUsbPipe() : UsbPipe
getEndpointAddress() : byte
getDirection() : byte
getAttributes() : byte
getType() : byte

(f rom usb)

<<Interface>>

UsbInterface

claim() : void
release() : void
isClaimed() : boolean
getAlternateSetting(n : byte) : UsbInterface

(f rom usb)

<<Interface>>

0..n

1

0..n

1

endpoints

UsbPort

isUsbDeviceAttached() : boolean

(from usb)

<<Interface>>

UsbConfig

getConfigNumber()
getConfigDescriptor()

(f rom usb)

<<Interface>>

0..n

1

0..n

1

interfaces

UsbHub

isUsbRootHub() : boolean
getNumberOfPorts() : byte

(from usb)

<<Interface>>

1..n

1

1..n

1

parentUsbHub

UsbDevice

getActiveUsbConfig() : UsbConfig
getDeviceDescriptor() : DeviceDescriptor
getStandardOperations() : StandardOperations

(from usb)

<<Interface>>

attachedDevice

1..n1 1..n1

1

n

1

n

attachedUsbDevices

UsbInfoVisi tor
(f rom usb)

<<Interface>>
DefaultUsbInfoV

(from usb)

<<visits>>

UsbRootHub
(from usb)

<<Interface>>

The Visitor interface defines visitXyz methods for each UsbInfo sub-interface
(e.g. visitUsbDevice, ...). The default class is a convenience class that has
empty implementation of all visit methods and thus makes it easy for clients to
implement their own visitors by extending that class and only implementing the
correct visitXyz method.

UsbException
(from usb)

<<except ion>>

<<throws>>

Figure 4.3.0 javax.usb device model class diagram

Page 15 of 44

All of the different device model interfaces extend UsbInfo, which is a token
interface that facilitates keeping a typed checked list of the different interfaces7. Also
with this interface, all of the interfaces on the device model (since the hierarchy is stable)
allow Visitors [Gamma95, 331]. The UsbInfoVisitor is defined with visitXyz method for
each of the interfaces in the model. With this Visitor pattern, one can add functionality
(i.e. Methods) to the model without having to change the interfaces8

 . This also allows
easy traversal of the model objects. Note also that the model can still be traversed
and functionality added without using the visitors. Visitors just add flexibility and are
somewhat justified because the model is stable (e.g. no new device model Java interfaces
are anticipated to support version 2.0 of the USB specification).

To show how clients typically access UsbConfig, UsbInterface and other objects,
we show a simple sequence diagram accessing a particular endpoint for some interface on
the current active configuration of a UsbDevice.

Client :UsbDevice :UsbConfig :UsbInterface :UsbEnpoint

1: getActiveUsbConfig():UsbConfig

2: getUsbInterface(0): UsbInterface

3: getUsbEndpoint(someEpAddress):UsbEndpoint

4: use Endpoint object to send/receive data

Figure 4.3.1 diagram showing access to a UsbEndpoint from a UsbDevice object

Alternate settings of any UsbInterface object can be obtained by calling

getAlternateSetting(byte) method of the UsbInterface object. This method will return
the UsbInterface for the alternate setting selected.

7 Java’s lack of generic support means that typical Java list or collections keeps list of java.lang.Objects which is
somewhat unsafe. This is not a very significant issue but we felt that having UsbInfoList and UsbInfoListIterator would
keep the object model more consistent.
8 See section 8 of this document (FAQs) for an example on how to use the UsbInfoVisitor to search for a particular
device.

Page 16 of 44

4.4 Descriptor Hierarchy
The descriptor extends the device model by adding a set of interfaces that

separates the information associated with each of the USB descriptors. By themselves,
these descriptors can be used as a way to collect the device’s descriptor information and
search for specific information9.

Descriptor

getLength() : byte
getType() : byte
toBytes() : byte[]

(from usb)

<<Interface>>

DescriptorConst
(from usb)

<<Interface>>
DescriptorVisitor

(from usb)

<<Interface>>

EndpointDescriptor

getEndpointAddress() : byte
getAttributes() : byte
getMaxPacketSize() : byte
getInterval() : byte

(from usb)

<<interface>>

InterfaceDescriptor

getInterfaceNumber() : byte
getAlternateSetting() : byte
getNumEndpoints() : byte
getInterfaceClass() : byte
getInterfaceSubclass() : byte
getInterfaceProtocol() : byte
getInterfaceIndex() : byte

(from usb)

<<Interface>>

DeviceDescriptor

getBcdDevice() : short
getDeviceClass() : byte
getDeviceSubclass() : byte
getVendorId() : short
getProductId() : short
getBcdUsb() : short
getMaxPacketSize() : byte
getDeviceProtocol() : byte
getManufacturerIndex() : byte
getProductIndex() : byte
getSerialNumberIndex() : byte
getNumConfigs() : byte

(from usb)

<<Interface>>
ConfigDescriptor

getNumInterfaces() : byte
getConfigValue() : byte
getConfigIndex() : byte
getAttributes() : byte
getMaxPower() : byte

(from usb)

<<Interface>>
StringDescriptor

getString() : String

(from usb)

<<Interface>>

<<uses>> <<uses>>

DefaultDescriptorV
(from usb)

Contains various constants
(not shown) for descriptors

Has the visitXyz methods where Xyz ==
DeviceDescriptor, ConfigDescriptor, ...

Figure 4.4.0 javax.usb descriptors class diagram

Descriptor objects for each type of the USB model objects can be accessed by

calling get<Type>Descriptor() method on the actual model object. For example, to access
the InterfaceDescriptor object of some interface of the active configuration of a
UsbDevice the following snippet of code can be used:

InterfaceDescriptor iDescriptor =
someDevice.getActiveUsbConfig().getUsbInterface(iNumber).

 getInterfaceDescriptor();

Similar code can be used to access other Descriptor objects.

9 In the current release of this specification Descriptor objects are immutable. This might change to allow users to
modify descriptor information by accessing these objects and using them to submit via the
Request/StandardOperations. See section 4.9 for details about Request/StandardOperations.

Page 17 of 44

4.5 Utility Classes/Interfaces

UsbInfoIterator

hasNext() : boolean
nextUsbInfo() : UsbInfo

(from util)

<<Interface>>

UsbInfoList

addUsbInfo()
clear()
contains()
getUsbInf()
indexOf()
size()
usbInfoIterator()
removeUsbInfo()

(from util)

<<Interface>>

UsbInfoListIterator

hasPrevious() : boolean
previousUsbInfo() : UsbInfo
nextIndex() : int
previousIndex() : int
size() : int

(from util)

<<Interface>>

UsbProperties

loadProperties()
isLoaded()
getPropertyString()
getPropertyNames()

(from util)

<<Interface>>

UsbPropertiesViewer

main()

(from util)

<<application>>

TracerOutput

print()
println()

(from util)

<<Interface>>Tracer

<<class>> getInstance()
print()
println()
isOn()

(from util)

<<singleton>>

11 11

UsbInfoToStringV

getString() : String

(from util)

UsbInfoVisitor

visitUsbInfo()
visitUsbDevice()
visitUsbHub()
visitUsbPort()
visitUsbConfig()
visitUsbInterface()
visitUsbEndpoint()
visitUsbEndpoint0()

(from usb)

<<Interface>>

<<uses>>

<<creates>>

NOTE: In order to keep the diagrams uncluttered, some methods
are shown w/o full signature and some methods are not shown at
all (typically the methods judged to be less important)

Figure 4.5.0 javax.usb.util utility class diagram

As mentioned before, we have created simple List interfaces and Iterator

interfaces for all UsbInfo objects. These interfaces collect all types of UsbInfo objects.
The device model makes use of these utility interfaces/classes. Since the implementation
of these interfaces should be reusable, the javax.usb.util package contains default
implementations of both the list and iterator interfaces using the Java collection API.
The UsbProperties interface allows the OS services subsystem to capture runtime
information (such as turning on tracing or the level of tracing, etc...).

An example of using the UsbInfoVisitor is illustrated in UsbInfoToStringV,
which shows how to create a String representation of any UsbInfo object without having
to modify the toString() method for each class implementing the interfaces or having to
write code doing heavy conditional statements (i.e. if(object instanceOf
UsbInterface) {...}).

Page 18 of 44

4.6 USB Pipe Object Model
Pipes are the only method of communication between client software (the host)

and a device’s endpoints. In this specification, pipes are modeled as ‘logical’ pipes; they
are objects which belong to a specific endpoint10

 and exist for as long as the device model
exists. The special Default Control Pipe, which is present on all devices, is not directly
accessible by client software; instead, applications should use Requests. See the USB
specification section 5.3.2 for details on USB pipes.

Pipes are accessed through their associated endpoint11. There are several
conditions and actions that must be met or performed before using a pipe. First, the pipe
must be in an active state. Pipes belonging to an endpoint on an active interface setting
(and active configuration) are active; pipes on inactive interface settings (or inactive
configurations) are inactive. Active pipes must be opened before use. The diagram below
shows how to prepare a UsbPipe for use.

1. The UsbInterface that owns the UsbPipe’s UsbEndpoint must be claimed via
claim(). This call may fail if the UsbInterface is claimed by any other client (or
anything else goes wrong).

2. Get the UsbPipe object from its associated UsbEndpoint via getUsbPipe().
3. Call open() on the UsbPipe. If opening the pipe does not fail, the UsbPipe is now

ready for data submission. If the call fails, it will throw a UsbPipeException that
indicates the problem.

Client :UsbEndpoint :UsbPipe:UsbInterface

1: claim()

2: getUsbPipe()

3: open()

Figure 4.6.0 Preparing a UsbPipe for communication

10 Most pipes belong to a specific endpoint. Control pipes are slightly different. The USB specification, section 5.3.2,
states: “A USB pipe is an association between an endpoint...” and software on the host, then in a later paragraph states,
“the pipe that consists of the two endpoints with endpoint number zero is called the Default Control Pipe”. This
specification assumes a Control pipe is a single pipe that is bi-directionally connected to its single associated endpoint.
The direction bit (which is part of the endpoint bEndpointAddress) should be ignored.
11 Except the Default Control Pipe, which is not accessed directly; instead, Requests are used.

Page 19 of 44

The diagram below indicates how to submit data synchronously and asynchronously
using byte[]s. See section 4.7 for more complicated methods.

1. Create a byte[] which will be the required data buffer.
2. If the direction of communication is out (host to device), fill the byte[] with the

data you wish to send.
3. For synchronous communication, call syncSubmit(byte[]). This will block until

the submission is complete.
4. After the submission is complete, all of the UsbPipe’s listeners will receive a data

or error event (depending on whether the submission was successfully completed
or an error occurred).

5. The syncSubmit(byte[]) method will either return the number of bytes
transferred, or throw a UsbException.

Asynchronous communication is similar to synchronous, except asyncSubmit(byte[]

) is used and the call returns a SubmitResult object that can be used to track the
submission. The SubmitResult is returned immediately after the subsystem accepts the
submission. The client may call waitUntilCompleted() on the SubmitResult to block until
the submission completes.

Client :UsbPipe:UsbPipeListener :UsbPipe.SubmitResult :byte[] javax.usb Subsystem
Implementation

1: new byte[]

2: if pipe direction is out, format byte[]

3: syncSubmit(:byte[]) : int
4: :byte[] sent to subsystem 5: subsystem

processes
:byte[]

6: submission completed successfully
or

error encountered

7: dataEventOccurred(:UsbPipeDataEvent)
or

errorEventOccurred(:UsbPipeErrorEvent)

9: process
:UsbPipeEvent

8: return number of bytes transferred
or

throw UsbPipeException

10: asyncSubmit(:byte[]) : UsbPipe.SubmitResult

12: create
:SubmitResult

13: return :SubmitResult

11: byte[] sent to subsystem

15: submission completes successfully
or

error encountered
16: dataEventOccurred()

or
errorEventOccurred()

18: process
:UsbPipeEvent

17: notify
waiting client(s)

14: <optional> waitUntilCompleted()

Figure 4.6.1 UsbPipe communication using a byte[]

Page 20 of 44

4.6.1 USB Pipe Input and Output
A UsbPipe’s endpoint’s direction determines whether it may be used for input or

output12. Only pipes with a host-to-device direction endpoint may be used for output, and
only pipes with a device-to-host direction endpoint may be used for input. For input, the
provided data buffer is filled with data received from the endpoint, and for output the
provided data is sent to the endpoint. There is no minimum data size13, nor is there a
maximum data size14. If the data size is greater than the UsbPipe’s maximum packet size
the data will be sent in segments15

 as outlined in the USB specification section 5.3.2.

4.6.2 USB Pipe Types
There are four transfer types defined in the USB specification section 5.4 :

1. Control
2. Bulk
3. Isochronous
4. Interrupt

Except for Control pipes, the data format is determined by the client and the data

direction is determined by the endpoint.

4.6.2.1 Control Pipes
There are two types of Control pipes, normal Control pipes and the Default Control

Pipe. The Default Control Pipe is not directly accessible. Instead, Requests must be used.
Normal Control pipes may be directly accessed, but they require a specific data format.
The first eight (8) bytes of the provided data buffer is the Setup packet. The direction of
data flow is determined by the bmRequestType direction bit. Be aware that all fields are
little-endian according to the USB specification section 8.1. This means the word-sized
fields in the Setup packet must be provided by the application in little-endian order.

1. Byte 0 is the bmRequestType
2. Byte 1 is the bRequest
3. Byte 2 is the LSB of the wValue
4. Byte 3 is the MSB of the wValue
5. Byte 4 is the LSB of the wIndex
6. Byte 5 is the MSB of the wIndex
7. Byte 6 is the LSB of the wLength
8. Byte 7 is the MSB of the wLength.

12 Control pipes can be used for input and output, i.e. they are bi-directional. See this specification sec 4.6.2.1
13 Control pipes require a 8 byte setup packet which is embedded in the data. See this specification sec 4.6.2.1
14 Isochronous pipes impose a maximum data size of 1023 bytes per packet. See the USB specification section 5.6.3.
15 Isochronous pipes will not segment data; i.e. one packet per submission. See this specification section 4.6.2.2

Page 21 of 44

Also see the USB specification section 9.3 for more information on the format of the
Setup packet. The format of the actual data portion is determined by the client and
outside the scope of this specification.

4.6.2.2 Isochronous Pipes
Isochronous pipe direction is determined by its associated endpoint. Isochronous

transfers are time-sensitive and more complicated than other transfers. The USB
specification section 5.12.6 states that “when an isochronous transfer is presented to the
Host Controller, it identifies the frame number for the first frame”. Currently, this
specification does not provide a way for the application to indicate the starting frame
number; instead, each submission represents a single packet, and the implementation
should schedule the packet for the earliest possible frame, and maintain proper
scheduling of subsequent packets as long as the pipe is busy. If the pipe becomes idle the
implementation drops frame synchronization and starts over by scheduling the next
packet for the earliest possible frame. The application should provide as many packets as
possible so the implementation can maintain proper frame-synchronized packet
scheduling. Composite submissions may be used in an ‘optimized’ way by the
implementation. See the USB specification section 5.10.2 for details on isochronous
optimization of multiple submissions.

Synchronization and Feedback types [USB specification section 5.12.4.1,
5.12.4.2, and 5.12.4.3] are not addressed in this version of this specification.

4.6.3 USB Pipe State Model
A pipe exists in one of two conditions: active or inactive An inactive pipe belongs

to an inactive configuration and/or interface setting. An active pipe belongs to an active
configuration and interface setting. Only active pipes are of interest, since inactive pipes
cannot be used. For active pipes, there are two superstates : the closed state and open
state. The open state has three substates : the idle, busy and error states. All active pipes
start in the closed state16. No submissions can be made on the pipe in the closed state.
When the pipe is opened it will change into the open state.

4.6.3.1 Idle/Busy State
The idle state is the first state of the open state. Submissions can be made in this

state, and will cause the state to change to the busy state. The busy state indicates a
submission is in progress on the pipe. When there are no more submissions in progress
the state will change back to the idle state. If the pipe is closed from the idle state, it will
change to the closed state; the pipe cannot be closed from the busy state. Any persistent
pipe errors (e.g. a stalled pipe or removed device) that occur in any of the open states
cause the state to change to the error state. The pipe can only be closed from the idle state
or error state, not the busy state.

16 The Default Control Pipe is always active and open; the client may pass Requests at any time. If the Default Control
Pipe enters an error state, the device must be reset; the subsystem in some cases may automatically do this. A device’s
Default Control Pipe starts in the open (idle) state, and can never change to the closed state.

Page 22 of 44

4.6.3.2 Error State
This state indicates there is a persistent error on the pipe. No submissions are

possible in this state. When changing to this state, any submissions in progress will be
aborted with an appropriate UsbException. Action must be taken appropriate to the
original error to change from this state. Any attempts to use the pipe while in the error
state will result in a UsbException indicating the current error condition. To begin using
the pipe again, the application must close the pipe and re-open the pipe (as well as
correcting whatever error occurred). Note that if the error originated from a device
disconnect, the error is uncorrectable and the pipe will never exit this state.

4.6.4 USB Pipe Class Diagram

UsbPipeConst
(from usb)

<<Interface>>

UsbPipeEvent
(from event)

<<event>>

UsbPipe

open() : void
close() : void
isActive() : boolean
isOpen() : boolean
isClosed() : boolean
isInError() : boolean
getMaxPacketSize() : short
syncSubmit(bArray : byte[]) : void
asyncSubmit(bArray : byte[]) : SubmitResult
syncSubmit(irp : UsbIrp) : void
asyncSubmit(irp : UsbIrp) : void
abortSubmission(irp : UsbIrp) : void
abortAllSubmissions() : void
addUsbPipeListener(l : UsbPipeListener) : void
removeUsbPipeListener(l : UsbPipeListener) : void

(from usb)

<<Interface>>

UsbEndpoint

getUsbPipe()
getEndpointAddress()
getDirection()
getAttributes()
getType()

(from usb)

<<Interface>>

1
1

1
1

Contains constants from USB
1.1 spec section 5 and 9

UsbException
(from usb)

<<exception>>

SubmitResult

getNumber() : long
getData() : byte[]
getDataLength() : int
isCompleted() : boolean
waitUntilCompleted(l : long) : void
isInUsbException() : boolean
recycle() : void

(from UsbPipe)

<<interface>>

usbException

UsbIrp

getNumber() : long
getData() : byte[]
setData(bArray : byte[]) : void
getDataLength() : int
isCompleted() : boolean
isInUsbException() : boolean
waitUntilCompleted() : void
waitUntilCompleted(l : long) : void
getResubmit() : boolean
setResubmit(b : boolean) : void
getAcceptShortPacket() : boolean
setAcceptShortPacket(b : boolean) : void
recycle() : void
setResubmitDataCommand(c : ResubmitDataCommand) : void

(from usb)

<<Interface>>

<<fires>>

<<uses>>

<<inner>>

<<throws>>

<<submits>>

ResubmitDataCommand

getResubmitData(irp : UsbIrp) : byte[]

(from UsbIrp)

<<interface>>

<<inner>>

Figure 4.6.4.0 USB pipe specification class diagram

Page 23 of 44

4.6.5 USB Pipe Event Class Diagram

UsbPipeListener

errorEventOccurred()
dataEventOccurred()
statusEventOccurred()

(from event)

<<Interface>>

UsbPipeErrorEvent

getUsbException() : UsbException
getErrorCode() : int

(from event)

<<event>>
UsbPipeDataEvent

getData() : byte[]
getDataLength() : int

(from event)

<<event>>

EventObject
(from util)

EventListener
(from util)

<<Interface>>

UsbEvent
(from event)

<<event>>

UsbPipe
(from usb)

<<Interface>>
UsbPipeEvent

(from event)

<<event>> source

UsbPipeStatusEvent

getStatusCode() : int

(from event)

<<event>>

<<delivers>>

Figure 4.6.5.0 USB pipe events class diagram

Like UsbDevice, UsbPipe allows for clients to register for asynchronous events.

Modeled also after the JavaBeans event model, UsbPipeEvents form a hierarchy with two
kinds of events: Error and Data. A UsbPipeErrorEvent indicates that an error has
occurred in a submission on the pipe. A UsbPipeDataEvent indicates asynchronous data
is available for the client. Pipe states are described in section 4.6.3.

Page 24 of 44

4.7 I/O Request Packets (IRPs)
Pipes provide different methods of communication. For simple communication, a

data buffer may be provided which will be used in the communication (see section 4.6.0).
For more complicated submissions, I/O Request Packets (IRPs) may be used. The USB
specification section 5.3.2 describes IRPs. In this specification, an IRP consists of the
data buffer, communication policy information, and other meta-data, in a single object.
IRPs provide much more control over the submission process than using a byte[] data
buffer. The diagram below indicates how to use UsbIrps for asynchronous
communication.

Client :UsbServices :UsbIrpFactory:UsbIrp UsbPipe javax.usb Subsystem
Implementation

:UsbPipeListener

1: getUsbIrpFactory() : UsbIrpFactory

2: createUsbIrp() : UsbIrp

3: setData(:byte[])

4: <default> setResubmit(false)

5: <default> setResubmitDataCommand(null)

6: <optional> any other UsbIrp setup

7: asyncSubmit(:UsbIrp) 8: UsbIrp sent
to subsystem

10: <optional> waitUntilCompleted()

9: process UsbIrp

11: UsbIrp completes

12: fire (data or error) event

13: notify waiting client(s)

14: process event

15: recycle()

Figure 4.7.0 UsbPipe communication using a UsbIrp

IRPs may be set to automatically resubmit themselves upon completion. This is

especially useful for input pipes (e.g. input interrupt pipe). If the IRP is set to
automatically resubmit, it will resubmit itself immediately after completion. Its status will
remain ‘active’, and any clients waiting for it to complete will not be notified. It will fire
a data event (if appropriate) or an error event (if appropriate) through its associated pipe.
Resubmission will continue until the IRP is set to not resubmit (by whatever means).

Page 25 of 44

If an IRP is set to resubmit itself, it will ask the current ResubmitDataCommand17

for the new data buffer. The default for this Command is to create a new data buffer of
equal size and copy the contents into the new buffer. Clients may set the
ResubmitDataCommand so they can handle processing the completed data buffer and
providing the new data buffer. The ResubmitDataCommand may turn off resubmission
(if the client chooses to do so). Events will still be fired normally.

Client :UsbIrp UsbPipe javax.usb Subsystem
Implementation

:UsbIrp.Resubmi
tDataCommand

:UsbPipeListen
er

The ResubmissionDataCommand may setResubmit(false) to
end the resubmission cycle. Also, any errors encountered will
disable resubmission before calling the
ResubmitDataCommand.

2: setResubmit(true)

3: setResubmitDataCommand(:ResubmitDataCommand)

7: <optional> waitUntilCompleted()

19: if resubmission is disabled
(by whatever means)
notify waiting client(s)

4: asyncSubmit(:UsbIrp) 5: UsbIrp sent
to subsystem 6: process

UsbIrp
8: UsbIrp completes

12: if previous completion was successful,
resubmit with byte[] returned from

:ResubmitDataCommand 13: process
UsbIrp

14: UsbIrp completes

18: (if resubmission is still enabled)
resubmit

1: client creates an object implementing UsbIrp.ResubmitDataCommand

10: getResubmitData() : byte[]

17: (if resubmission is still enabled)
getResubmitData() : byte[]

9: fire event

11: process event

15: fire event

16: process event

Figure 4.7.1 UsbPipe communication using a resubmitting UsbIrp

UsbIrps also allow the user to specify whether short packets should be accepted.

The details are explained in the USB specification section 5.3.2. If the client specifies not
to accept short packets for this UsbIrp, the subsystem will treat a short packet like a
communication error, and the UsbIrp will not complete successfully. The default is to
accept short packets.

4.7.1 Composite UsbIrps
A special type of UsbIrp is the UsbCompositeIrp. This object can be submitted

just like a normal UsbIrp. However, instead of containing its own data buffer, it instead
contains a list of individual UsbIrps. When submitted, those individual UsbIrps are used
for submission. The implementation ensures that those UsbIrps are submitted
uninterrupted, i.e., no other data is submitted in between two of the composite’s UsbIrps.
Additionally, the implementation may use optimization to handle the UsbIrps more

17 GoF Command pattern

Page 26 of 44

efficiently. The UsbCompositeIrp inherits all the methods present in a normal UsbIrp,
and additionally has a UsbIrpList of its individual UsbIrps. It also contains a
CompositeErrorCommand, which is executed only when one of the individual UsbIrps
encounters an error. The result of the command determines whether the remaining
UsbIrps should continue with their submissions. It also determines the status of the
UsbCompositeIrp; if the command stops submission of the remaining UsbIrps, the
UsbCompositeIrp completes with an error.

Normal operation of a UsbCompositeIrp is identical to that of a UsbIrp. The
exception is instead of setting the data on a UsbCompositeIrp, the data should be set on
UsbIrps, which are then added to the UsbCompositeIrp’s list. Once the UsbCompositeIrp
has UsbIrps added to it, it is ready for submission.

Page 27 of 44

4.8 Device Event Object Model
Each USB device can be dynamically attached and detached. Because of this

dynamic behavior, clients of a USB device must be able to receive asynchronous events
associated with a USB device. To accomplish this goal, USB devices have an event
model (patterned after the JavaBeans event model). Each USB device can have a set of
UsbDeviceListeners that register to receive UsbDeviceEvent objects. These events are
delivered asynchronously.

Figure 4.8.0 UsbDevice and UsbServices event class diagram

:UsbServicesListener :UsbServicesEvent :UsbServices javax.usb Subsystem
Implementation

Client

1: addListener(:UsbServicesListener)

2: device is attached

3: usbDeviceAttached(:UsbServicesEvent)

4: process
:UsbServicesEvent

The UsbServicesListener instance is created by
the client and passed to the UsbServices
instance. It should process UsbServicesEvents
however the client wishes.

Figure 4.8.1 typical event sequence diagram

U s b E v e n t
(f r o m e v e n t)

< < e v e n t > >

U s b D e v i c e E v e n t

g e t U s b D e v i c e () : U s b D e v i c e

(f r o m e v e n t)

< < e v e n t > >

U s b D e v i c e L i s t e n e r

u s b D e v i c e D e t a c h e d (e : U s b D e v i c e E v e n t) : v o i d

(f r o m e v e n t)

< < I n t e r f a c e > >

E v e n t O b j e c t
(f r o m u t i l)

< < r e c e i v e s > >

U s b S e r v i c e s L i s t e n e r

u s b D e v i c e A t t a c h e d (e : U s b S e r v i c e s E v e n t) : v o i d
u s b D e v i c e D e t t a c h e d (e : U s b S e r v i c e s E v e n t) : v o i d

(f rom even t)

< < I n t e r f a c e > >

U s b I n f o L i s t
(f r om u t i l)

< < I n t e r f a c e > >
U s b S e r v i c e s E v e n t

g e t U s b S e r v i c e s () : U s b S e r v i c e s
g e t U s b D e v i c e s () : U s b I n f o L i s t

(f r o m e v e n t)

< < r e c e i v e s > >

u s b D e v i c e s

E v e n t L i s t e n e r
(f r o m u t i l)

< < I n t e r f a c e > >

U s b D e v i c e D a t a E v e n t

getData()

(f r o m e v e n t)

< < e v e n t > >

U s b D e v i c e E r r o r E v e n t

g e t E r r o r C o d e ()

(f r o m e v e n t)

< < e v e n t > >

Page 28 of 44

4.9 Request/StandardOperations Object Model
The Request and USB operations provide a simple mechanism for performing

USB standard device operations as well as USB class and vendor defined operations or
requests using javax.usb. The USB specification section 9.4 specifies a series of standard
requests that all USB devices must support. These are modeled in the Request interface.
The operations that these requests represent are sent to the device using the
StandardOperations interface. The request results are made available using getter
methods from the Request objects. Since the different type of requests have different data
encoding and required values, a RequestFactory is provided to create Request objects. If
the data passed to the factory or set directly on the Request object is invalid, a
RequestException is thrown. Similarly, vendor and class specific request are created
using the RequestFactory and submitted via the appropriate UsbOperations object. In
cases where more than one Request object need to be submitted, these can be aggregated
into a RequestBundle and submitted via the UsbOperations object.

Figure 4.9.0 javax.usb Request and StandardOperations class diagram

RequestFactory

create<RequestType>Request(...) : Request
createVendorRequest(...) : Request
createClassRequest(...) : Request
recycle() : void

(from usb)

<<Interface>>

RequestException
(from usb)

<<exception>>

UsbException
(from usb)

<<exception>>

RequestConst
(from usb)

<<Interface>>

Contains Request constants as defined by
USB 1.1 spec section 9.4 (not shown)

<RequestType> == ClearFeature, GetConfiguration, ... (all the
standard requests defined in the USB 1.1 spec section 9.4)

<requestType> ==
clearFeature,
getConfiguration, ... (all the
requests defined in the
USB 1.1 spec section 9.4)

StandardOperations

<requestType>(...) : Request

(from usb)

<<Interface>>

UsbOperations

syncSubmit()
asyncSubmit()

(from usb)

<<Interface>>

UsbDevice
(from usb)

<<Interface>>

11..n 11..n

SubmitResult

getNumber()
getRequest()
getData()
getDataLength()
isCompleted()
waitUntilCompleted()
waitUntilCompleted()
getUsbException()
isInUsbException()
recycle()

(from UsbOperations)

<<interface>>

VendorOperations

vendorRequest()

(from usb)

<<Interface>>
ClassOperations

classRequest()

(from usb)

<<Interface>>

HubClassOperations

<hubclassRequest>() : Request

(from usb)

<<Interface>>

<<throws>>

RequestBundle

iterator()
isEmpty()
add()
remove()
size()
recycle()

(from usb)

<<Interface>>

<<submits>>
Request

getRequestType() : byte
getRequest() : byte
getValue() : short
getIndex() : short
getLength() : short
getData() : byte[]
toBytes() : byte[]
recycle() : void

(from usb)

<<Interface>>

<<creates>>

<<uses>>

<<submits>>

1..n

11

1..n

<<creates>>

<<inner>>

RequestIterator

nextRequest()
hasNext()

(from util)

<<Interface>>

<<returns>>

Page 29 of 44

4.9.1 Requests and USB Device Operations Usage - Dynamic Model
To execute standard USB device operations, use the Request/Standard Operations

mechanism. This is accomplished by the following steps (also illustrated below in the
UML sequence diagram):

a. Get the UsbServices object from the UsbHostManager.
b. Get the RequestFactory object from the UsbServices object.
c. Create the appropriate Request object via the factory in step b (above).
d. Fill in the required data for the request. Setting data that is not appropriate for the

Request object might result in a RequestException to be thrown. See the USB
specification section 9.4 for details on data required for each Request type.

e. Get the StandardOperations object from the UsbDevice.
f. Submit the Request object via the StandardOperations object.
g. Read the result of Request using the appropriate getter methods in the Request

object.
h. Recycle the Request object via the recycle() method. Note: a Request object

should no longer be used after being recycled. A new object should be obtained
from the factory (which could be recycled objects) if new Requests are required.

Client UsbHostManager :UsbServices :RequestFactory :Request :UsbDevice :StandardOperations

1: getInstance()

2: getUsbServices()

3: getRequestFactory()

4: create<RequestType>()

5: setup/initialize Request data

6: getRootUsbHub()

Search for UsbDevice of
interest

7: getStandardOperations()

8: submit(:Request)

9: read results with getter methods

10: recycle()

Figure 4.9.1 javax.usb Request and StandardOperations sequence diagram

Page 30 of 44

5 Sample Usage: Client Application Examples

5.1 USB View Application
The javax.usb USB View application is a pure-Java application that showcases

the javax.usb API. Just as other USB view applications on native platforms (like the USB
View Windows application that ships with the Windows DDK), you can use it to view
the current USB topology on the host and see configuration(s), interfaces and endpoints
of the attached devices.

The application is written using the Swing API. The “Topology” tab shows the
current USB topology on the host and the “Hub list” and “Device list” tabs filter out the
hubs or devices. This is done by creating and using the sample javax.usb.util Visitor
classes. Press the “Refresh” button to refresh the topology or run it in “auto-refresh”
mode.

Figure 5.1.0 javax.usb USB View application main window

5.2 UsbPipe Test Application
The UsbPipeTest is an add-on tool to the USB view application, written in 100%

Java, using javax.usb, that allows clients to create and use UsbPipes. It allows the user to
graphically select a UsbInterface and UsbEndpoint, create and open a pipe to it and
submit any USB requests to that opened pipe.

Page 31 of 44

Figure 5.2.0 UsbPipe Test application showing an Interrupt pipe

Page 32 of 44

6 Conclusion
The javax.usb specification is meant to enable USB on the Java platform. This

specification is targeted at the J2SE and J2ME platforms. This specification only assumes
that the underlying platform fully supports the USB 1.1 specification. Using the javax.usb
specification, developers should be able to create services (or drivers) for their USB
devices. These would allow third party applications and applets to use their USB
devices. Both the device services and third party application should be portable to all
javax.usb enabled platforms. The following diagram illustrates this concept:

Java Application Signed Java Applets

USB Java Device Service

javax.usb

javax.usb Implementation

JVM

Java

Java/JNI/C/C++
Native

Linux
2.4 Kernel Win2000 Solaris

Other
USB

enabled
OS

JNI

Figure 6.0.0 Java application/applets, device service and javax.usb layers

As part of the JCP process, this specification is provided as the underlying
architecture and design for the javax.usb. The following are (or will be) provided as part
of the JCP process:

1. The full set of classes and interfaces for this specification with intensive JavaDOC
documentation.

2. A reference implementation for the Linux OS platform (originally by IBM).
3. Various utilities and tools that use javax.usb. These tools, like device services for

javax.usb, will work on all Java enabled platforms with a javax.usb
implementation.

4. A full set of test cases that can verify that an implementation follows the
semantics of this specification.

Page 33 of 44

We believe that this specification, in the spirit of the Java “Write Once, Run

Anywhere™” mantra, will enable USB for the Java platform and thus open the Java
community to a whole new set of applications that otherwise would not be possible.

Page 34 of 44

7 Appendix A: Design Considerations and Future
Releases

7.1 J2ME
The Java Micro Edition (J2ME) is the Java platform targeted for personal, portable

devices. There are two configurations in J2ME, namely CLDC (Connected Limited
Device Configuration) and CDC (Connected Device Configuration), and multiple profiles
defined for J2ME to allow the system integrator to choose the minimum specific function
required to use for a particular solution. Javax.usb will run on the CDC profile18.

The Foundation Profile is a set of Java APIs, which, together with the CDC, provides
a J2ME application runtime environment for consumer electronic and embedded devices.
More study is required to identify any specific requirements that javax.usb may have on
the classes in the Foundation Profile.

From a pragmatic standpoint, at this time PersonalJava is a prevailing standard for
companies developing Java enabled consumer devices. Since J2SE requires more
resources than these devices provide, EmbeddedJava is suitable for closed systems only,
and the complement of J2ME profiles are just beginning to be defined to provide for the
full matrix of requirements. More study is required to determine if the CLDC profile can
be supported as well.

7.2 USB 2.0
The current installed base of system units supporting USB and the USB

peripherals themselves are largely ones conforming to the USB 1.1 specification. The
follow-on USB 2.0 should support this prevalent standard. The USB 2.0 design point is to
be a transparent superset from a functional basis, which means that USB 1.1 devices and
drivers should work on a USB 2.0 platform. So we therefore expect that the current
specification and implementations of javax.usb should be applicable to USB 2.0 hosts
and stack. USB 2.0 specific functions can be addressed in follow-on revisions of this
API.

7.3 Claiming Interface using Policies
The javax.usb 1.0 release provides a simple API for controlling access to a device

so that only one client can use a particular device interface at a time. The advantage to
this claim() and release() interface is that it is simple to use and effectively protects an
application’s access to a claimed USB interface from interference from another
application running in another JVM. This mechanism does not, however, help the
application to control access if multiple applications are started in a single JVM. Any
application in the JVM will be able to access the USB interface of a device claimed by
any other application in the same JVM.

18 http://www.sun.com/software/communitysource/j2me/cdc

Page 35 of 44

This issue has been considered and there is a proposal under consideration to
expand the claiming mechanisms to use a sort of Policy object that would give more
control to the application. With this API extension, the application would provide its
own policy object thus customizing the control of claiming and releasing of USB
interfaces by the client application. This will allow finer granularity of control to the
client application.

7.4 Support for Isochronous Transfer
Isochronous Data Transfers occupy a pre-negotiated amount of USB bandwidth

with a pre-negotiated delivery latency (also called streaming real time transfers).
Isochronous transfers are complicated, time-sensitive, and may not be applicable to all
hardware environments.

The API currently provides support for Isochronous data transfer types for
platform implementations that can provide this level of capability. It is considered by the
Expert Group, that a platform can be compliant to the javax.usb API without providing
this function, if it adequately responds to such API requests with the appropriate
exceptions.

Page 36 of 44

8 Appendix B: Frequently Asked Questions (FAQs)

8.1 What Diagnostic Capabilities are provided for use with this API?
Various utilities and tools that use the javax.usb interfaces are also provided with

the reference implementation. PipeView and the UsbView utilities are available in a
package named javax.usb.tools. These utilities are written in Java for use with any
reference implementation. They are indispensable as example code for reference
implementations as well as for diagnostics for applications using the API. UsbView can
be used to identify the current USB ports that are attached and the endpoints and
interfaces for the devices present.

There are tab selectors for “Topology” showing the current USB topology on the
host, the “Hub list” to list the attached hubs, and “Device list” filtering out the connected
devices. Also supported are the “Refresh” function to refresh the topology and an “auto-
refresh” mode. The UsbView is also designed as a JavaBean allowing integration of its
functionality into other tools.

The PipeView tool allows the user to create USB pipes and exercise the device
access. It allows the user to graphically select a USB device interface and endpoint,
create and open a pipe to it, and submit any USB requests to that opened pipe. Since the
tool actually communicates to the device, the input/output stream delivery can be tested
via the specific device responses. The PipeView also shows how to integrate the
UsbView into another application.

8.2 Why not create a Java communication API for all device
communications via the Java 2 platform that would include, for
instance, Bluetooth, rather than a specific API for USB?

The most direct answer to this question is in the realm of performance and
pragmatism. An API to talk to communication devices needs to have the least amount of
overhead. Many (like us at IBM) will be creating middleware that is used by application
writers to talk to attached devices. This API must have minimal path overhead and at the
same time expose all device functionality in a manner that fits the type of device
attached. In addition, there has already been an expert group (JSR 82) formed to create a
low level Java API for bluetooth technology. See

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_082_bluetooth.html
for details on the work in progress for bluetooth.

It is also notable that it would be possible to create a middleware layer by
providing a wrapper class to abstract all of the device accesses to the different APIs to
meet this need. This would be useful to applications that want to use a middleware driver
without caring about the underlying connectivity issues. In other words, the middleware
driver would use the connectivity specific API and expose another API to the application.

Page 37 of 44

The javax.comm design point was RS232/Parallel and it is not a good design base
for other bus architectures. It would most likely need to be changed to come up with a
unified serial approach. This would not be acceptable to the industry since there is
extensive javax.comm device support already in place.

As far as a unified serial API, we have given it some thought and here are some
issues with that idea. The issues are captured in the list of alternatives given below and
the problems that occur with each approach. This analysis supports our conclusion that
each connection type (e.g. RS232/Parallel, USB, FireWire, Bluetooth, etc) will most
likely need its own API. There are 3 possible approaches that could be used to make a
unified serial API:

1. Design to the lowest common denominator (which could be RS232). This would
limit the features exposed by the generic API. For example, USB devices can
have multiple sub-devices (called USB interfaces) and each interface can have
multiple endpoints, which can all have communication channels (called USB
pipes) open to them. There is no adequate mapping of this structure of interfaces
and endpoints to serial-like communication.

2. Design a complex API that supports all serial communications and enables the
correct functions for the type of device attached. There are various issues with
this:

a. This is a questionable design approach since the API for a particular bus
would only implement a subset of the whole API, which clients need. For
instance, USB devices are dynamically configured but RS232 devices are
statically configured.

b. Since clients would talk to a small subset of the big API, why not separate
them? Clients would need to know what type of device they are talking to
and select the correct API functions.

c. This complex API would take time to reach agreement and would delay
the implementation.

d. It is not clear that we would have a workable solution in a reasonable
amount of time. USB is just now being supported on most platforms (e.g.
GNU/Linux, Solaris, AIX, etc). FireWire is also in its infancy on many
platforms other than the Mac OS and Win32, and it would be premature to
implement an API for it now.

3. Take the opposite approach of (2) and design a very abstract API that each
particular bus API would extend to add its particular features. The approach is
actually the most feasible; however, there are a few issues that makes it
undesirable:

a. This would require incompatible changes to the javax.comm, which is
already in use.

b. The various buses are different enough that this abstract API would not be
useful in and of itself, and users would need to access the particular bus
API. If that is the case, then why not have separate APIs?

Page 38 of 44

c. This would also mean that in creating this abstract API we would need to
foresee the future and support all future communication APIs. This would
be impractical.

This line of reasoning leads to the conclusion that a separate API is the most

practical and likely to succeed. The JSR 80 specification and working reference
implementation will attest to the validity of this approach.

8.3 What are the expected performance characteristics of a Java
API for USB?

USB's actual throughput is a function of many variables. One of these is certainly
the efficiency of the API implementation; however other significant ones are the target
device's ability to source or sink data, the bandwidth consumption of other devices on the
bus, and the efficiency of the underlying operating system’s USB software stack. In some
cases, PCI latencies and processor loading can also be critical. Performance of device
handling software written in Java should approximate the speed of the same function
written in C++ on the same platform. This is based on the assumption of an appropriate
JIT (Just in Time) compiler for the platform and adequate memory to minimize paging.

Assuming that only the target endpoint consumes a significant amount of bus
bandwidth and both the target and the host are able to source or sink data as fast as USB
can move it, the maximum attainable bandwidth is a function of the transfer type and
signaling rate. These bandwidths are given in chapter 5 of the USB specification. In
practice, most hosts can reach the maximum isochronous and interrupt bandwidths with a
single target endpoint. With bulk transfers, typical transfer rates are around 900 kb/s to a
single endpoint, increasing to near ideal transfer rates with multiple endpoints.

8.4 What is the design language used in this specification?
The UML used in this specification was done using Rational Rose 2000e.

Two main categories of UML diagrams are used in this specification:

1. Static structure diagrams: these are typically class and package diagrams. They
show the static relationships (that is relationship that are constant with time) of
classes/interfaces with other classes/interfaces.

2. Dynamic diagrams: these are sequence diagrams and state chart diagrams. These
diagrams show the dynamic relationship (that is relationship over time) of objects
with other objects or within one object.

Interfaces are either shown using the lollipop symbol or a box symbol adorned

with the <<interface>> stereotype. A UML interface maps directly to a Java interface.

All other boxes are classes. They typically are plain classes (i.e. not adorned) or
adorned with an <<event>> or <<utility>> stereotype. The <<event>> stereotype
indicates an event class and the <<utility>> indicates a class that typically has static
methods used as services by other classes. Classes typically do not show attributes since

Page 39 of 44

that would violate encapsulation. Showing attributes also gives too much information
about the class implementation; and furthermore, the attributes of a class can be inferred
from the relationships of a class with other classes. The operation compartment of a class
or interface typically shows critical operations only. This is done to keep the static
structure diagrams simple.

Classes show an inheritance relationship (for instance, a relationship) with a open
arrow pointing from the subclass to the superclass. This is a straightforward “extends” in
Java. Implementation of interfaces is shown just like inheritance except that the line of
the arrow is dashed.

Classes and interfaces show aggregation relationship (i.e. containment, whole-part
relationship) with a line between the two classes. The “whole” class has its side of the
line adorned with a diamond. The other class (the “part” class) either has an arrow or
nothing. Multiplicity of containment is indicated by numbers or * to indicate 0 or many.

Relationships between classes can also be shown by a dashed line arrow between
the classes/interfaces. This is a dependency relationship. This means that the
class/interface on the start of the arrow depends on the other. That dependency can be
further refined by indicating a stereotype like <<uses>> or <<creates>> which as the
name suggests, means that one class/interface uses the other (in some way, like for
instance a Const interface, an interface defining constant objects, is typically used by
various classes/interfaces) or means that one class/interface creates instances of the other.
This could indicate that the class/interface is a factory for the other.

There is a general philosophical note by Booch, Rumbaugh and Jacobson in the
various UML books listed in the References section of this document. UML is a
modeling language, it is not meant to execute on the machine, it just allows quick,
efficient overview and creation of complex models to a level of abstraction that is higher
than looking at source code. That said, it is a great tool to create, explain, specify,
introduce a complex (or non obvious) piece of software to other engineers. In other
words, it is a way to communicate. However, UML cannot (and is not meant to) replace
code. Once the big UML picture is communicated, engineers should refer to the source
files or the JavaDOC (which is the closest thing to source files).

In sequence diagrams, method calls between objects that terminates in : <Type>

implies that a instance of <Type> is returned to the caller.

For a quick, gentle and short introduction to the UML, see Martin Fowler’s book
listed below “UML Distilled”.

Page 40 of 44

8.5 How do I use the UsbInfoVisitor interface?
The Visitor pattern allows an external client to add methods to a hierarchy of

classes/interfaces without having access or modifying the sources. The hierarchy has to
be stable otherwise the Visitor code will need to change. For a complete and thorough
discussion of the Visitor pattern including advantages/disadvantages as well as where its
use is applicable, please refer to Design Pattern book [Gamma95, 331].

The best explanation of how to use the UsbInfoVisitor is to look at a simple
example of filtering the UsbRootHub for a particular device that one is looking for. For
that we will:

1. Create a FilterUsbDeviceV visitor. This class will extend DefaultUsbInfoV and
add two setter methods (set the vendor and product ID) and one getter method to
return the UsbDevice found (if any)

2. Show a code snippet that uses that visitor by:
a. Create an instance of FilterUsbInfoV
b. Set the vendor and product ID of the device that needs to be searched

for (filtered)
c. Get the UsbRootHub from the UsbServices
d. Visit the UsbRootHub to filter out the device
e. Get the resulting filtered device if found

Page 41 of 44

import javax.usb.*;

public class FilterUsbDeviceV extends DefaultUsbInfoV
{
 public UsbDevice getUsbDevice() { return usbDevice; }

 public void setVendorId(short vId) { vendorId = vId; }

 public void setProductId(short pId) { productId = pId; }

 public void visitUsbDevice(UsbInfo usbInfo)
 {
 UsbDevice device = (UsbDevice)usbInfo;

 if(device.getVendorId() == vendorId && device.getProductId() == productId
)
 usbDevice = device;
 }

 public void visitUsbHub(UsbInfo usbInfo)
 {
 UsbHub hub = (UsbHub)usbInfo;

 UsbInfoIterator iterator = hub.getAttachedUsbDevices().usbInfoIterator();

 while(iterator.hasNext())
 iterator.nextUsbInfo().accept(this);
 }

 private UsbDevice usbDevice = null;

 private short vendorId = 0;
 private short productId = 0;
}

<client-code-snippet>
//...

FilterUsbDeviceV visitor = new FilterUsbDeviceV();

visitor.setVendorId(0x1234);
visitor.setProductId(0x5678);

UsbRootHub rootHub = UsbHostManager.getInstance().
 getUsbServices().getUsbRootHub();

rootHub.accept(visitor);

UsbDevice device = visitor.getUsbDevice();

//...

</client-code-snippet>

Of course this is a simple example which assumes, for instance, that there is only
one such <vendorId, productId> device attached to the hub, but nevertheless, it clearly
shows the power of visitors.

Page 42 of 44

9 Appendix C: Change Summary
Changes resulting in document revisions will be summarized in this table in

reverse chronological sequence. Revision bars (|) will highlights the text changed in the
new document versions.

Version Date Change Description
0.9.0 6/29/2001 1. Some minor improvements and clarifications

on the Pipe section
2. Request section has be improved (diagrams

and a bit of text)

0.8.0 4/5/2001 1. Added more illustrative UML static structure
diagrams

2. Added more dynamic structure diagrams
3. Expanded the FAQ section
4. Added a “Future Consideration” section
5. Various improvements to existing

paragraphs to make them flow better

0.0.3 12/15/2000 1. More spelling/grammar errors fixed (when
the technical content of paragraphs have not
changed due to spelling/grammar error,
revision bars “|” are not used)

2. Using Dewy dotted decimal notation in
entire specification

3. Some UML diagrams improvements,
especially showing key method names and
signatures

4. Added info and UML diagrams about USB
request and operations

0.1.0 02/19/2001 1. Spelling/grammar errors fixed
2. Added more English description for each

UML diagrams
3. Added an appendix for explaining the usage

of UML in this document
4. Added explanation on the UsbPipe model

and how to use it

Page 43 of 44

5. Added various description on the different
sections

0.0.1 10/2000 Original

Page 44 of 44

10 References

10.1 Web
[W1] “JSR-80, Java API for USB”
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_080_usb.html

[W2] “JavaPOS Specification” Sun, IBM, NCR, Epson, Fujitsu-ICL, NRF, Datafit,
MGV, RCS, et al., http://www.javapos.com

[W3] “UML Document” http://www.rational.com/uml/

[W4] “USB 1.1 Specification” http://www.usb.org/developers/data/usbspec.zip

[W5] “USB 2.0 Specification” http://www.usb.org/developers/data/usb_20.zip

[W6] “Linux USB Project” http://www.linux-usb.org

[W7] “Java Communication API” http://java.sun.com/products/javacomm/index.html

10.2 Books

[Gamma95] E. Gamma et al. “Design Patterns: Elements of Reusable O-O Software”
Addison Wesley 1995.

[Lea00] D. Lea “Concurrent Programming in Java: Design Principles and Patterns”
second edition, Addison Wesley 2000.

[Booch98] Booch, G. et al “The Unified Modeling Language: User Guide” Addison
Wesley 1998.

[Rumbaugh99] Rumbaugh, J. et al “The Unified Modeling Language: Reference”
Addison Wesley, 1999.

[Fowler99] Fowler, M. et al “UML Distilled” Addison Wesley 1999, second edition.

