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Abstract— Boolean Satisfiability (SAT) solvers have been the
subject of remarkable improvements since the mid 90s. One
of the main reasons for these improvements has been the wide
range of practical applications of SAT. Indeed, examples of
modern applications of SAT range from termination analysis
in term-rewrite systems to circuit-level prediction of crosstalk
noise. The success of SAT solvers motivated many practical
applications, but many practical applications have also provided
the examples and the challenges that allowed the development
of more efficient SAT solvers. This paper provides an overview
of some of the most well-known applications of SAT and outlines
several other successful applications of SAT. Moreover, the
improvements in SAT solvers motivated the development of new
algorithms for strategic extensions of SAT. As a result, thepaper
also provides a brief survey of recent work on extensions of SAT,
including pseudo-Boolean constraints, maximum satisfiability,
model counting and quantified Boolean formulas.

I. I NTRODUCTION

Boolean Satisfiability (SAT) is a well-known decision
problem, that consists in deciding whether a propositional
logic formula can be satisfied given suitable value assign-
ments to the variables of the formula. SAT is a widely
used modeling framework for solving combinatorial prob-
lems. SAT is also a well-known NP-complete decision prob-
lem [15]. As a result, unlessP = NP , all SAT algorithms
require worst-case exponential time. However, modern SAT
algorithms are extremely effective at coping with large
search spaces, by exploiting the problem’s structure when it
exists [38], [44], [18] (also, see [12]). The performance im-
provements made to SAT solvers since the mid 90s motivated
their application to a wide range of practical applications,
from crosstalk noise prediction in integrated circuits [10] to
termination analysis in term-rewrite systems [21]. In some
applications, the use of SAT provides remarkable perfor-
mance improvements. Examples include model-checking of
finite-state systems [8], [50], [43], design debugging [52],
AI planning [49], [46], and haplotype inference in bioin-
formatics [34]. Additional successful examples of practical
applications of SAT include knowledge-compilation [16],
software model checking [25], [14], software testing [26],
package management in software distributions [55], checking
of pedigree consistency [35], test-pattern generation in digital
systems [30], design debugging and diagnosis [52], identifi-
cation of functional dependencies in Boolean functions [31],
technology-mapping in logic synthesis [47], circuit delay
computation [41], as well as the ones mentioned above [21],
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[10]. However, this list is incomplete as the number of
applications of SAT has been on the rise in recent years
(e.g. [55], [35], [31]).

Besides practical applications, SAT has also influenced
a number of related decision and optimization problems,
which will be referred to as extensions of SAT. Most
extensions of SAT either use the same algorithmic tech-
niques as used in SAT, or use SAT as a core engine.
One of the most promising extensions of SAT is Satisfi-
ability Modulo Theories (SMT) [4], [22] (also, see [11]).
Other applications of SAT include pseudo-Boolean (PB) con-
straints [36], [19], maximum satisfiability (MaxSAT) [33],
[24], model counting (#SAT) [48], and Quantified-Boolean
Formulas (QBF) [32].

This paper provides an overview of some of the most
successful practical applications of SAT, and summarizes
some other well-known applications. The paper also briefly
surveys the use of SAT in some of its best known extensions.
The paper is organized as follows. Section II introduces the
notation used in the remainder of the paper. Afterwards, Sec-
tion III illustrates practical applications of SAT, by focusing
on a number of concrete case studies. Section IV outlines
research work in representative extensions of SAT. Finally,
the paper concludes in Section V.

II. D EFINITIONS

A. Propositional Formulas and Satisfiability

Propositional formulas1 are defined over a finite set of
Boolean variablesX . Individual variables can be represented
by lettersx, y, z, w ando, and subscripts may be used (e.g.
x1). The propositional connectives considered will be¬, ∧,
∨, →, ↔. Parenthesis will be used to enforce precedence.
Most SAT algorithms require propositional formulas to be
represented in Conjunctive Normal Form (CNF). A CNF
formula ϕ consists of a conjunction of clausesω, each
of which consists of a disjunction of literals. A literal is
either a variablexi or its complement¬xi. A CNF formula
can also be viewed as a set of clauses, and each clause
can be viewed as a set of literals. Throughout this paper
the representation used will be clear from the context. The
conversion from arbitrary propositional formulas to CNF
formulas is addressed in the next section.

In the context of search algorithms for SAT, variables can
be assigneda logic value, either 0 or 1. Alternatively, vari-
ables may also beunassigned. Assignments to the problem
variables can be defined as a functionν : X → {0, u, 1},

1A more comprehensive description of Boolean Satisfiabilityand basic
algorithms is provided elsewhere [27].



whereu denotes anundefinedvalue used when a variable
has not been assigned a value in{0, 1}. Given an assignment
ν, if all variables are assigned a value in{0, 1}, thenν is
referred to as acomplete assignment. Otherwise it is apartial
assignment.

Assignments serve for computing the values of literals,
clauses and the complete CNF formula, respectively,lν,
ων andϕν . A total order is defined on the possible value
assignment,0 < u < 1. Moreover,1 − u = u. As a result,
the following definitions apply:

lν =

{

ν(xi) if l = xi

1 − ν(xi) if l = ¬xi
(1)

ων = max{lν | l ∈ ω} (2)

ϕν = min{ων |ω ∈ ϕ} (3)

The assignment functionν will also be viewed as a set of
tuples(xi, vi), with vi ∈ {0, 1}. Adding a tuple(xi, vi) to
ν corresponds to assigningvi to xi, such thatν(xi) = vi.
Removing a tuple(xi, vi) from ν corresponds to assigning
u to xi.

Given an assignment, clauses and CNF formulas can be
characterized asunsatisfied, satisfied, or unresolved. A clause
is unsatisfied if all its literals are assigned value 0. A clause
is satisfied if at least one of its literals is assigned value
1. A clause is unresolved if it is neither unsatisfied nor
satisfied. A CNF formulaϕ is satisfied iffall of its clauses
are satisfied, and it is unsatisfied iff at least one of its clauses
is unsatisfied. Otherwise it is unresolved. The SAT problem
for a CNF formulaϕ consists in deciding whether there
exists an assignment to the problem variables, such that
ϕ is satisfied, or proving that no such assignment exists.
As mentioned earlier, the satisfiability problem for general
propositional formulas is NP-complete [15] and so is the
satisfiability problem for CNF formulas.

B. Boolean Circuits

Many practical applications are often represented in some
intermediate representation, from which a CNF formula is
then generated. One of the most often used intermediate
representations are combinational Boolean circuits [49],[8],
[25], [55]. Combinational Boolean circuits are composed of
gates and connections between gates. In this paper, only
simple gates are considered and restricted to basic operations:
NOT (negation), AND (conjunction), OR (disjunction), XOR

(negated equivalence), or alternatively¯ , ·, +, ⊕. Observe
that XOR(x, y) = OR(AND(x,NOT(y)),AND(NOT(x), y)),
or alternatively x ⊕ y = x · ȳ + x̄ · y. Moreover, for
simplicity, two-input single-output gates are assumed. The
notationy = OP(x1, x2) denotes a gate with outputy and
inputsx1 andx2, and OP is one of the basic operations.

Converting Boolean circuits to CNF is straightforward,
and follows the procedure first outlined by G. Tseitin [54].
Consider a gatey = OP(x1, x2). The CNF representation
captures the valid assignments between the gate inputs and
outputs, Hence,ϕ(y, x1, x2) = 1 iff the predicatey =
OP(x1, x2) holds true. The CNF representations for simple
gates is shown in Table I (observe that XOR gates can be

TABLE I

CNF REPRESENTATION OF SIMPLE GATES

Gate CNF Representation

y = NOT(x1) (¬y ∨ ¬x1) ∧ (y ∨ x1)

y = AND(x1, . . . , xk) (y ∨ ¬x1 ∨ . . . ∨ ¬xk) ∧
V

k

i=1
(xi ∨ ¬y)

y = OR(x1, . . . , xk) (¬y ∨ x1 ∨ . . . ∨ xk) ∧
V

k

i=1
(¬xi ∨ y)

replaced by NOT, AND and OR as described above). For
generality, the number of inputs considered for AND and OR

gates is unrestricted. Even though Tseitin’s transformation is
arguably the most often used, there are a number of effective
alternatives including Plaisted and Greenbaum’s [45].

Another often used technique is to exploit the sharing
of common structure in Boolean circuits. Examples of
representations that exploit structural sharing areReduced
Boolean Circuits(RBC) [1] and Boolean Expression Dia-
grams(BED) [3].

Observe that is is straightforward to represent arbitrary
propositional formulas as Boolean circuits. First, note that
¬, ∧ and∨ represents a sufficient set of connectives. Sec-
ond, associate a new Boolean variable with each level of
parenthesis in the propositional formula. As a result, it is
straightforward to represent arbitrary propositional formulas
in CNF.

C. Linear Inequalities

Linear inequalities over Boolean variables are a widely
used modeling technique. For example, with the objective of
modeling an integer variabler that can take one out ofk
values, i.e.1 ≤ r ≤ k, one often used approach is to create
k Boolean variablesx1, . . . , xk, such thatxi = 1, 1 ≤ i ≤ k,
iff r = i. In addition, sincer must take one of its possible
values, then one of thexi variables must be assigned value
1. Hence,

k
∑

i=1

xi = 1 (4)

which can be represented as:

(

k
∑

i=1

xi ≤ 1) ∧ (

k
∑

i=1

xi ≥ 1) (5)

The previous example illustrates special cases of linear
inequalities, referred to ascardinality constraints, the general
form being of the form

∑

xi ≤ k. More general constraints
are often necessary, and so it is necessary to develop solu-
tions for encoding linear inequalities of the form:

k
∑

i=1

ai xi ≤ b (6)

The encoding proposed by J. Warners [57] ensures that lin-
ear inequalities can be encoded into CNF in linear time and
space, and uses adders as the basic operator. Despite being
optimal in terms of space required, Warners’ encoding does
not guaranteearc-consistency, i.e. the ability of implying



all necessary assignments given a partial assignment. Other
encodings exist [19], [5], the most effective of which being
based on Binary Decision Diagrams (BDDs) and sorting
networks. For arbitrary linear inequalities, BDDs guarantee
arc-consistency but can require exponential space in the
worst-case. Sorting networks require polynomial space but
do not guarantee arc-consistency.

For cardinality constraints, a number of polynomial en-
codings ensure arc-consistency, including BDDs, sorting
networks [19], and sequential counters [51]. Given its
widespread use, the encoding for

∑

xi ≤ 1 using sequential
counters is given below:

(¬x1 ∨ s1) ∧ (¬xk ∨ ¬sk−1)∧
∧

1<i<k ((¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (¬xi ∨ ¬si−1))
(7)

wheresi are additional auxiliary Boolean variables. Inspec-
tion of the formula allows concluding that at most onexi

can be assigned value 1, for whichsi−1, with i > 1, is
assigned value 0 andsi is assigned value 1. For allxi, with
i > 1, for which si−1 = si, thenxi must be assigned value
0. Moreover, observe that encoding

∑

xi ≥ 1 is immediate
with a single clause and, given (7), so is the encoding of
∑

xi = 1.
Finally, more general constraints can be encoded into CNF

(e.g. [56]), albeit this is seldom used in practical settings.

III. SAT A PPLICATIONS

This section overviews the application of SAT in a number
of areas, namely combinational equivalence checking [9],
automatic test-pattern generation [30], model checking [8],
planning [49] and haplotype inference [34]. The applications
are organized by increasing complexity of the associated SAT
representation.

A. Combinational Equivalence Checking

An essential circuit design task is to check the func-
tional equivalence of two circuits. The simplest form of
equivalence checking addresses combinational circuits. Let
CA and CB denote two combinational circuits, both with
inputsx1, . . . , xn and both withm outputs,CA with outputs
y1, . . . , ym andCB with outputsw1, . . . , wm. The function
implemented by each of the two circuits is defined as follows:
fA : {0, 1}n → {0, 1}m, andfB : {0, 1}n → {0, 1}m. Let
x ∈ {0, 1}n and definefA(x) = (fA,1(x), . . . , fA,m(x)) and
fB(x) = (fB,1(x), . . . , fB,m(x)). The two circuits arenot
equivalent if the following condition holds:

∃x∈{0,1}n∃1≤i≤m fA,i(x) 6= fB,i(x) (8)

which can be represented as the following satisfiability
problem:

n
∨

i=1

(fA,i(x) ⊕ fB,i(x)) = 1 (9)

The resulting satisfiability problem is illustrated in Fig-
ure 1, and is referred to as amiter [9]. From the results
of the previous section it is straightforward to encode
the combinational equivalence checking problem in CNF.

x1 y1

w1

wm

xn

ym

Circuit A

Circuit B

o = 1?

Fig. 1. Equivalence Checking Miter

Somewhat surprisingly, combinational equivalence checking
can be challenging for SAT solvers. Hence, a number of
techniques, including miter preprocessing and solving inter-
mediate equivalence checking problems, are often used [37],
[28].

B. Automatic Test-Pattern Generation

Fabricated integrated circuits may be subject to defects,
which may cause circuit failure. The most widely used
approach for identifying fabrication defects is automatictest-
pattern generation (ATPG) [2]. Moreover, the most often
used model for representing fabrication defects is the single
stuck-at fault model (SSF) [2], where a single connection in
the circuit is assumed to be stuck at a given logic value, either
0 or 1, denoted respectively by stuck-at 0 (or sa-0) and stuck-
at 1 (or sa-1). ATPG consists in computing input assignments
that allow demonstrating the existence or absence of each
target fault, or proving that no assignment exists (hence it
is essentially a modified satisfiability problem). When such
an assignment exists, it is said that itdetectsthe target fault.
In what follows combinational circuits are assumed, but the
same ideas can be extended to sequential circuits [2].

In order to compute an input assignment to detect a given
target faultx sa-v, two copies of the circuit are considered.
The first copy represents the circuit without the fault, as is
referred to as thegood circuit. The second copy represents
the circuit with the fault, and is referred to as thefaulty
circuit. Using the notation of the previous section, a Boolean
function is associated with each copy of the circuit: the good
circuit is described byfG : {0, 1}n → {0, 1}m, and the
faulty circuit is described byfF : {0, 1}n → {0, 1}m.
As a result, the fault will be detected iff for some input
assignment, the outputs of the two circuits differ:

∃x∈{0,1}n∃1≤i≤m fG,i(x) 6= fF,i(x) (10)

As before, this condition can be represented as the following
satisfiability problem:

n
∨

i=1

(fG,i(x) ⊕ fF,i(x)) = 1 (11)

Observe that the miter can also be used for representing the
problem of ATPG, whereA represents the good circuit and



B represents the faulty circuit. Even though equation (11)
can be encoded directly into CNF and solved with a SAT
solver, this is in general not effective. As a result, the model
is modified to provide additional structural information [30],
[53], [39]. The faulty circuit is only partially represented,
involving only the nodes whose value can differ from the
good circuit. For each such nodex, an additional variable
xS is used to denote whether the values in the two circuits
differ. xS is referred to as the sensitization variable of node
x and takes value 1 if the value ofx in the two circuits
differs. If xG is the value in the good circuit andxF is the
value in the faulty circuit, thenxS is defined as follows:

xS ↔ (xG ⊕ xF ) (12)

The use of SAT in ATPG was first proposed by
T. Larrabee [30]. Improvements based on preprocessing were
described in [53]. Additional improvements were further
proposed in [39], including the reuse of learnt clauses in
between target faults and the encoding of conditions for
unique sensitization points [2].

C. Model Checking

Given a set of propositional symbolsΣ, a Kripke structure
is defined as a 4-tupleM = (S, I, T, L), whereS is a finite
set of states,I ⊆ S is a set of initial states,T ⊆ S × S

is a transition relation, andL : S → P(Σ) is a labelling
function, whereP(Σ) denotes the powerset over the set
of propositional symbols. Temporal logics allow describing
properties of systems. Two propositional temporal logics are
widely used: Linear-Time Logic (LTL) and Computation-
Tree Logic (CTL) [13]. In this paper temporal properties are
described in LTL, but CTL could also have been considered.
Model checking algorithms can be characterized as explicit-
state or implicit-state (or symbolic) [13]. Explicit statemodel
checking algorithms represent explicitly the states of the
transition relation, whereas symbolic model checking algo-
rithms do not. Initial symbolic model checking algorithms
were based on Binary Decision Diagrams (BDDs) [42]. Over
the last decade, a number of alternatives based on Boolean
Satisfiability (SAT) have been proposed [8], [50], [43].

Most work on SAT-based model checking assumessafety
properties GψS

2, where ψS is a purely propositional
formula. The interpretation is thatψS must hold onall
reachable states ofM. For simplicity, the Kripke structure
M = (S, I, T, L) will be represented by the 3-tuple
M = (I, T, F ), where I is a predicate representing the
initial states,T is a predicate representing the transition
relation, andF is a predicate representing the failing property
(i.e.F = ¬ψS), defined on state variables (denoted as setY ).
Moreover, the predicatesI, T or F assume the underlying
Kripke structureM = (S, I, T, L) and associated target
formulaψS . Observe that the states are not explicitly repre-
sented. A set of variablesY encodes the possible states, and
predicateT encodes whether the system can go from state
(represented with variables)Yi to stateYi+1.

2A detailed account of LTL temporal operators is given in [13].

Algorithm 1 Organization of BMC

BMC(M = (I, T, F ), µ)
1 k ← 0
2 while k ≤ µ
3 do ϕ← CNF(BMC(M, k), W )
4 if SAT(ϕ)
5 then return false � Found counterexample
6 k ← k + 1
7 return true

The use of SAT for model checking purposes entails
iteratively unfolding the transition relation, and is referred
to as bounded model checking (BMC) (where bounded
indicates that a fixed unfolding is considered). Given a safety
propertyGψS , the solution to address this problem with SAT
is to consider the complementF¬ψS of the safety property,
representing the condition thatψS will not hold in some
reachable state. The condition¬ψS will be referred to as
the failing property, and represented with a predicateF .
Bounded model checking consists of iteratively unfolding
the transition relation, while checking whether the failing
property holds. The generic Boolean formula associated with
SAT-based BMC is the following [8]:

I(Y0) ∧
∧

0≤i<k

T (Yi, Yi+1) ∧





∨

0≤i≤k

F (Yi)



 (13)

Equation (13) is referred to as BMC(M,k), and represents
the unfolding of the transition relation fork time steps, where
I(Y0) represents the initial state (at time step0), T (Yi, Yi+1)
represents the transition relation between states at time steps
i and i+ 1, respectivelyYi andYi+1, andF (Yi) represents
the failing property at time stepi. Given the proposition
formula BMC(M,k), it is straightforward to generate a CNF
formula ϕ as described earlier in the paper. The resulting
CNF formula can then be evaluated by a SAT solver.

The typical organization of BMC for safety properties
is illustrated in Algorithm 1. The details regarding the
sets of variables associated with each propositional formula
are omitted, but are clear from the context. Moreover, the
encoding of the BMC formula to CNF is shown as function
CNF(), and uses a set of auxiliary Boolean variablesW .
Finally, µ represents an upper bound on the unfolding of
the transition relation. Experimental evidence has confirmed
SAT-based BMC to be an extremely competitive technique,
that has been used in industrial settings [7].

A key difficulty with BMC is its inability for proving that
there is no counterexample for a given safety property GψS .
Unless the recurrence (or the reachability) diameter [7] of
an automaton is known, it is not possible to pre-compute the
value of the upper bound (µ) used in Algorithm 1. In general
the recurrence diameter of an automaton is not known, and
so BMC is incomplete. Hence, if the BMC algorithm returns
true it does not imply that a counterexample cannot be identi-
fied. In recent years different approaches have been proposed



for ensuring the completeness of SAT-based model checking.
Well-known examples include the use of induction [50] and
interpolants [43].

D. Planning in Artificial Intelligence

AI planning was one of the first successful practical
applications of SAT [49]. The SAT formulation of planning
actually motivated the work on bounded model checking, de-
scribed in the previous section. As a result, the description of
planning as satisfiability is formulated similarly to bounded
model checking [46].

A deterministic transition system is a 4-tuple(S, I, T,G),
whereS is a set of states,I ∈ S is an initial state,T ⊆
S × S is a set of operators (describing changes of states),
andG ⊆ S is a set of goal states. As before the states are
encoded with a set of states variablesY .

Given a number of statesk, denoting the length of the plan,
SAT-based planning consists in deciding whether one of the
goal states can be reached ink time steps. This condition
can be represented as follows:

ψk = I(Y0) ∧
∧

0≤i<k

T (Yi, Ti+1) ∧G(Yk) (14)

SAT-based planning considers possible plans of increasing
length, starting from 0. The length is increased while the
resulting instance of SAT is unsatisfiable. Observe that, as
for most of the other applications, SAT algorithms must be
able to prove unsatisfiability.

E. Haplotyping in Bioinformatics

Haplotypes encode the genetic constitution of an individ-
ual chromosome. The genetic constitution of a chromosome
is described by a DNA sequence. A DNA sequence is
specified by four nucleotides, which can be distinguished
by the bases they contain: A (adenine), C (cytosine), T
(thymine), and G (guanine). In practice, haplotypes encode
Single Nucleotide Polymorphism (SNPs) in DNA, where
SNPs denote genetic mutations. An SNP variation occurs
when a single nucleotide replaces one of the other three
nucleotides.

The identification of haplotypes may be useful for identi-
fying specific diseases, as well as to predict patients response
to drugs. However, existing technology is unable to reveal the
actual haplotypes, providing instead genotypes. The problem
of haplotype inference consists in deriving haplotype data
from genotype data. More concretely, given a setG of n
genotypes, each of lengthm, haplotype inference consists in
finding a setH of 2 ·n haplotypes, not necessarily different,
such that for each genotypegi ∈ G there is at least one
pair of haplotypes(hk, hl), with hk, hl ∈ H, that explains
gi. The variablen denotes the number of individuals in the
sample,m denotes the number of SNP sites, andgi denotes a
specific genotype where1 ≤ i ≤ n. (Furthermoregij denotes
a specific sitej in genotypegi where1 ≤ j ≤ m.)

Without loss of generality, the two possible values of each
SNP are assumed to be either 0 or 1. Value 0 represents
the wild type and value 1 represents the mutant type. A

gi

sb
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gi1 gim
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h1mh11h1
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Fig. 2. Boolean variables used in SHIPs

haplotype is then a string over the alphabet{0,1}. Moreover,
genotypes may be represented by extending the alphabet
used to represent haplotypes to{0,1,2}. Homozygous sites
are represented by values 0 or 1 depending, respectively,
on whether both haplotypes have value 0 or 1 at that
site. Heterozygous sites are represented by value 2. Two
haplotypes(hk, hl) explain a given genotypegi iff for each
site j, if site j is homozygous, thenhkj = hlj = gij , and if
site j is heterozygous, thenhkj 6= hlj .

One approach for haplotype inference is based on pure
parsimony [23]. Given a set of genotypes, the haplotype
inference by pure parsimony (HIPP) finds a solution to the
haplotype inference problem such that the total number of
distinct haplotypes used is minimum. The HIPP problem is
NP-hard (e.g. see [29]).

One possible approach for solving the HIPP problem is to
use SAT, one concrete example being SHIPs [34]. The SAT-
based HIPP solution algorithm starts from a lower boundlb

on the number of haplotypes necessary to explain the set of
genotypes; a trivial value forlb is 1. The algorithm searches
for the smallest least valuer such that there exists a setH
of haplotypes withr = |H|, which explain all genotypes in
G. Observe that the value ofr is guaranteed to satisfylb ≤
r ≤ 2n, since a solution with2n haplotypes is guaranteed
to exist. For each value ofr considered, a CNF formulaϕr

is created, and a SAT solver is invoked.
In what follows we assumen genotypes each withm sites.

The same indexes will be used throughout:i ranges over the
genotypes andj over the sites, with1 ≤ i ≤ n and1 ≤ j ≤
m. In addition,r candidate haplotypes are considered, each
with m sites, and with1 ≤ r ≤ 2n. An additional index
k is associated with haplotypes, such that1 ≤ k ≤ r. As a
result,hkj ∈ {0, 1} denotes thejth site of haplotypek.

For a given value ofr, the SHIPs model considersr
haplotypes and seeks to associate two haplotypes (possibly
corresponding to the same haplotype) with each genotype
gi, where1 ≤ i ≤ n. The Boolean variables used by SHIPs
are depicted in Figure 2. For each genotypegi the model
usesselector variables for selecting which haplotypes are
used for explaininggi. Since the genotype is to be explained
by two haplotypes, the model uses two sets,a and b, of r
selector variables, respectivelysa

ki andsb
ki with k = 1, . . . , r.

Hence, genotypegi is explained by haplotypeshk1
andhk2

if sa
k1i = 1 andsb

k2i = 1. Clearly,gi is also explained by the
same haplotypes ifsa

k2i = 1 andsb
k1i = 1.

We can now derive the conditions for the SHIPs model:
• If a site gij is 0 (resp. 1), and if haplotypek is selected

for explaining genotypei, either by thea or the b



representative, then the value of haplotypek at site j
mustbe 0 (resp. 1). In CNF, if sitegij is 0, the model
includes(¬sa

ki∨¬hkj)∧(¬sb
ki∨¬hkj), and if sitegij is

1, then the model includes(¬sa
ki ∨hkj)∧ (¬sb

ki ∨hkj),
in both cases fork = 1, . . . , r.

• Otherwise, one requires that the haplotypes explaining
the genotypegi have opposing values at sitei. This
is done by creating a variabletij ∈ {0, 1} such that
site j of the haplotype selected by thea representative
selector assumes the same value astij , and sitej of
the haplotype selected by theb representative selector
assumes the complementary value oftij . As a result
the model requires(hkj ∨ ¬tij ∨ ¬sa

ki) ∧ (¬hkj ∨ tij ∨
¬sa

ki) ∧ (hkj ∨ tij ∨ ¬sb
ki) ∧ (¬hkj ∨ ¬tij ∨ ¬sb

ki) for
k = 1, . . . , r. Observe thathkj equalstij if sa

ki = 1,
andhkj equals¬tij if sb

ki = 1.

Clearly, for each genotypegi, and fora or b, it is necessary
that exactly one haplotype is used, and so exactly one selector
variable can be assigned value 1. This can be captured with
the following cardinality constraints:

(

r
∑

k=1

sa
ki = 1

)

∧

(

r
∑

k=1

sb
ki = 1

)

(15)

As shown in Section II, these cardinality constraints can be
encoded in CNF in linear space, by introducing additional
auxiliary variables. Besides the basic model outlined above,
SAT-based haplotyping requires the inclusion of a number
of effective techniques, including lower bounds and identifi-
cation of symmetries [34].

IV. EXTENSIONS OFSAT

A number of extensions of SAT allow greater modeling
flexibility than plain SAT. Purely Boolean examples in-
clude Quantified Boolean Formulas (QBF), Pseudo-Boolean
(PB) solving and optimization, and Maximum Satisfiability
(MaxSAT) and variants. The most effective algorithmic tech-
niques used in SAT have also been applied in most extensions
of SAT, thus enabling significant practical applications. This
section briefly surveys these extensions of SAT.

Pseudo-Boolean (PB) constraints generalize SAT by con-
sidering linear inequalities over Boolean variables instead
of clauses. Moreover, a linear cost function can be consid-
ered [6]. The problem of optimizing PB-constraints is NP-
hard. Moreover, as in the case of SAT, a number of effective
algorithms have been proposed [36], [19] that integrate and
extend the most effective SAT techniques.

The maximum satisfiability (MaxSAT) problem can be
stated as follows. Given an instance of SAT represented in
Conjunctive Normal Form (CNF), compute an assignment
to the variables that maximizes the number of satisfied
clauses. Variations of the MaxSAT problem include the
partial MaxSAT, the weighted MaxSAT problem and the
weighted partial MaxSAT problem. In the partial MaxSAT
problem some clauses (i.e. thehard clauses) must be sat-
isfied, whereas others (i.e. thesoft clauses) may not be
satisfied. In the weighted MaxSAT problem, each clause has

a given weight, and the objective is to maximize the sum
of the weights of satisfied clauses. Finally, in the weighted
partial MaxSAT, the hard clauses must be satisfied, a weight
is associated with each soft clause, and the objective is
to maximize the sum of the weights of satisfied clauses.
MaxSAT and variants provide a versatile modeling solution
and a growing number of practical applications [24], [33],
including the ability to solve PB optimization problems.
Despite the potential applications, the most effective SAT
techniques cannot be applied directly in algorithms for
MaxSAT. As a result, the best performing algorithms use
branch and bound search with sophisticated bounding [24],
[33]. Recent work has shown how to iteratively use SAT for
solving MaxSAT [20], [40].

One SAT-related decision problem is Quantified Boolean
Formulas (QBF), a well-known example of PSPACE-
complete decision problems. QBF finds a large number
of potential practical applications, including model check-
ing [17]. A QBF formula is a CNF formula where the
Boolean variables are quantified, and is of the form:

Q1 x1 Q2 x2 . . . Qn xn ϕ (16)

where Qi ∈ {∃, ∀} and ϕ is a CNF formula. Recent
algorithms for QBF have integrated and extended the most
effective SAT techniques [32]. Nevertheless, the performance
improvements in QBF solvers has not been as significant as
in SAT solvers.

Besides extensions of SAT based on Boolean domains, a
number of extensions exist, including Satisfiability Modulo
Theories [4], [22] (also, see [11]).

V. CONCLUSIONS

SAT is an NP-complete decision problem, and all existing
algorithms require worst-case exponential time in the size
of the problem representation. Nevertheless, modern SAT
algorithms are remarkably efficient, capable of solving large
complex examples from real applications. The efficiency of
SAT algorithms has motivated their use in an ever increasing
number of practical applications, ranging from crosstalk
noise prediction in integrated circuits to termination analysis
of term-rewrite systems, and including model checking of
hardware and software systems. This paper provides an
overview of some of the most successful applications of SAT,
and highlights other representative applications. In addition,
examples of well-known extensions of SAT are summarized.
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