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Abstract— Boolean Satisfiability (SAT) solvers have been the [10]. However, this list is incomplete as the number of

subject of remarkable improvements since the mid 90s. One gpplications of SAT has been on the rise in recent years
of the main reasons for these improvements has been the wide (e.g. [55], [35], [31]).

range of practical applications of SAT. Indeed, examples of . . L .
modern applications of SAT range from termination analysis Besides practical applications, SAT has also influenced

in term-rewrite systems to circuit-level prediction of crosstalk @ number of related decision and optimization problems,
noise. The success of SAT solvers motivated many practical which will be referred to as extensions of SAT. Most

applications, but many practical applications have also povided  extensions of SAT either use the same algorithmic tech-
the examples and the challenges that allowed the developnten niques as used in SAT, or use SAT as a core engine.

of more efficient SAT solvers. This paper provides an overvig L - . D
of some of the most well-known applications of SAT and outlies One of the most promising extensions of SAT is Satisfi-

several other successful applications of SAT. Moreover, th ability Modulo Theories (SMT) [4], [22] (also, see [11]).
improvements in SAT solvers motivated the development of ve  Other applications of SAT include pseudo-Boolean (PB) con-
algorlthm.s for strategic extensions of SAT. Asaresullt, th@aper  straints [36], [19], maximum satisfiability (MaxSAT) [33],
also provides a brief survey of recent work on extensions of A, [24], model counting (#SAT) [48], and Quantified-Boolean
including pseudo-Boolean constraints, maximum satisfiality, = ' | BF) [32 '
model counting and quantified Boolean formulas. orm_u as (QBF) [ ‘ 8 .
This paper provides an overview of some of the most
. INTRODUCTION successful practical applications of SAT, and summarizes

Boolean Satisfiability (SAT) is a well-known decisionS°Me other well-known applications. The paper also briefly

problem, that consists in deciding whether a propositiongH"vVeys the use of SAT in some of its best known extensions.
logic formula can be satisfied given suitable value assigrl-N® Paper is organized as follows. Section Il introduces the
ments to the variables of the formula. SAT is a widelytotation used in the remainder of the paper. Afterwards; Sec
used modeling framework for solving combinatorial probtion Il illustrates practical applications of SAT, by fosing
lems. SAT is also a well-known NP-complete decision prob?" @ number o.f concrete case stud|es: Section IV Ol_Jtllnes
lem [15]. As a result, unles® = N P, all SAT algorithms research work in representative extensions of SAT. Finally
require worst-case exponential time. However, modern SAH€ paper concludes in Section V.

algorithms are extremely effective at coping with large I
search spaces, by exploiting the problem’s structure when i

exists [38], [44], [18] (also, see [12]). The performance imA. Propositional Formulas and Satisfiability

provements made to SAT solvers since the mid 90s motivatedPropositional formuldsare defined over a finite set of
their application to a wide range of practical applicationsBoolean variables(. Individual variables can be represented
from crosstalk noise prediction in integrated circuits][i® by lettersz, y, z, w ando, and subscripts may be used (e.g.
termination analysis in term-rewrite systems [21]. In some,). The propositional connectives considered will heA,
applications, the use of SAT provides remarkable perfory, —, . Parenthesis will be used to enforce precedence.
mance improvements. Examples include model-checking ®ost SAT algorithms require propositional formulas to be
finite-state systems [8], [50], [43], design debugging [52]represented in Conjunctive Normal Form (CNF). A CNF
Al planning [49], [46], and haplotype inference in bioin-formula ¢ consists of a conjunction of clauses each
formatics [34]. Additional successful examples of praaitic of which consists of a disjunction of literals. A literal is
applications of SAT include knowledge-compilation [16],either a variable:; or its complement-z;. A CNF formula
software model checking [25], [14], software testing [26]can also be viewed as a set of clauses, and each clause
package management in software distributions [55], clmecki can be viewed as a set of literals. Throughout this paper
of pedigree consistency [35], test-pattern generationgitad  the representation used will be clear from the context. The
systems [30], design debugging and diagnosis [52], identifgonversion from arbitrary propositional formulas to CNF
cation of functional dependencies in Boolean functiong,[31formulas is addressed in the next section.
technology-mapping in logic synthesis [47], circuit delay In the context of search algorithms for SAT, variables can
computation [41], as well as the ones mentioned above [2Hje assigneda logic value, either 0 or 1. Alternatively, vari-
ables may also banassignedAssignments to the problem
variables can be defined as a functien X — {0, u, 1},
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where v denotes arundefinedvalue used when a variable TABLE |

has not been assigned a valugin1}. Given an assignment CNFREPRESENTATION OF SIMPLE GATES

v, if all variables are assigned a value {f, 1}, thenv is

referred to as aomplete assignmer®therwise it is gartial | Gate | CNF Representation |
assignment y = NoT(z1) (~y V-z1) A (yV z1)

Assignments serve for computing the values of literals
clauses and the complete CNF formula, respectivEly,
w” and ¢”. A total order is defined on the possible value
assignment) < u < 1. Moreover,1 — u = u. As a result,
the following definitions apply:

vy = AND(z1,. -, ap) | (yVom VoV a) AN (@ Vo)

y=OR(x1,...,25) | ((yVarV...Va) AN (-2 Vy)

replaced by NT, AND and QR as described above). For

oo v(z;) if | = @ generality, the number of inputs considered fottAand CrR
1 —v(x;) if I =—x; gates is unrestricted. Even though Tseitin’s transforoma
W' = max{l’|l €w} (2) arguably the most often used, there are a number of effective

alternatives including Plaisted and Greenbaum’s [45].
Another often used technique is to exploit the sharing
The assignment function will also be viewed as a set of of common structure in Boolean circuits. Examples of

tuples (x;, v;), with v; € {0,1}. Adding a tuple(z;,v;) 10 representations that exploit structural sharing Resluced

v corresponds to assigning to x;, such thatv(z;) = v;.  Boolean Circuits(RBC) [1] and Boolean Expression Dia-

Removing a tuplez;, v;) from v corresponds to assigning grams(BED) [3].

u to z;. Observe that is is straightforward to represent arbitrary
Given an assignment, clauses and CNF formulas can Beopositional formulas as Boolean circuits. First, notatth
characterized asnsatisfiedsatisfied or unresolvedA clause -, A and Vv represents a sufficient set of connectives. Sec-
is unsatisfied if all its literals are assigned value 0. A sk Ond, associate a new Boolean variable with each level of
is satisfied if at least one of its literals is aSSigned Valuﬁarenthesis in the propositiona| formula. As a resu|t, it is

1. A clause is unresolved if it is neither unsatisfied nostraightforward to represent arbitrary propositionahfatas
satisfied. A CNF formulap is satisfied iffall of its clauses jn CNE.

are satisfied, and it is unsatisfied iff at least one of itss#au ) -

is unsatisfied. Otherwise it is unresolved. The SAT problerfy- Linear Inequalities

for a CNF formulay consists in deciding whether there Linear inequalities over Boolean variables are a widely
exists an assignment to the problem variables, such thased modeling technique. For example, with the objective of
@ is satisfied, or proving that no such assignment existsiodeling an integer variable that can take one out of

As mentioned earlier, the satisfiability problem for geheravalues, i.el < r < k, one often used approach is to create

¢’ = min{w’|w € ¢} 3)

propositional formulas is NP-complete [15] and so is thé& Boolean variables, ..., z, such thatr; = 1,1 <i <k,
satisfiability problem for CNF formulas. iff » = 4. In addition, sincer must take one of its possible
N values, then one of the; variables must be assigned value
B. Boolean Circuits 1 Hence
Many practical applications are often represented in some ’ k
intermediate representation, from which a CNF formula is in =1 (4)
then generated. One of the most often used intermediate i=1

representations are combinational Boolean circuits [l8], which can be represented as:
[25], [55]. Combinational Boolean circuits are composed of
gates and connections between gates. In this paper, only (Z 2 <1)A (Z 2 > 1) (5)
simple gates are considered and restricted to basic opesati - -
NoOT (negation), AID (conjunction), r (disjunction), XoR
(negated equivalence), or alternatively-, +, &. Observe
that XoR(z,y) = OR(AND(z, NOT(y)), AND(NOT(z),y)),
or alternativelyx @ y = z -y + = - y. Moreover, for
simplicity, two-input single-output gates are assumede T
notationy = OP(z1,x2) denotes a gate with outpytand
inputsz; andxs, and Cp is one of the basic operations. k
Converting Boolean circuits to CNF is straightforward, Zai z; < b (6)
and follows the procedure first outlined by G. Tseitin [54]. =1
Consider a gategy = OP(x1,x2). The CNF representation The encoding proposed by J. Warners [57] ensures that lin-
captures the valid assignments between the gate inputs aat inequalities can be encoded into CNF in linear time and
outputs, Hencep(y,z1,22) = 1 iff the predicatey = space, and uses adders as the basic operator. Despite being
Op(z1, z2) holds true. The CNF representations for simpleptimal in terms of space required, Warners’ encoding does
gates is shown in Table | (observe thabX gates can be not guaranteearc-consistencyi.e. the ability of implying

The previous example illustrates special cases of linear
inequalities, referred to amrdinality constraintsthe general
form being of the form)_ ; < k. More general constraints
rare often necessary, and so it is necessary to develop solu-
tions for encoding linear inequalities of the form:



all necessary assignments given a partial assignmentr Othé
encodings exist [19], [5], the most effective of which being
based on Binary Decision Diagrams (BDDs) and sorting
networks. For arbitrary linear inequalities, BDDs guaesnt
arc-consistency but can require exponential space in the
worst-case. Sorting networks require polynomial space but
do not guarantee arc-consistency.

For cardinality constraints, a number of polynomial en- ; Circuit B
codings ensure arc-consistency, including BDDs, sorting i
networks [19], and sequential counters [51]. Given its
widespread use, the encoding fplz; < 1 using sequential
counters is given below:
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wheres; are additional auxiliary Boolean variables. InspecSomewhat surprisingly, combinational equivalence chregki
tion of the formula allows concluding that at most ong can be challenging for SAT solvers. Hence, a number of
can be assigned value 1, for whieh_;, with i > 1, is techniques, including miter preprocessing and solvingrint
assigned value 0 ang is assigned value 1. For at};, with  mediate equivalence checking problems, are often used [37]
i > 1, for which s;_; = s;, thenz; must be assigned value [28].

O._ Moreqver, observe that encod@g T; 2_1 is |mmed|a_te B. Automatic Test-Pattern Generation
with a single clause and, given (7), so is the encoding of ) ) . i

Sa; =1, Fabricated integrated circuits may be subject to defects,

Finally, more general constraints can be encoded into CN’f‘—LhiCh may cause <_:ircuit fgilu_re. The m(_)st Widely_ used
(e.g. [56]), albeit this is seldom used in practical setiing approach for identifying fabrication defects is autométist-
pattern generation (ATPG) [2]. Moreover, the most often

[1l. SAT APPLICATIONS used model for representing fabrication defects is thelsing

This section overviews the application of SAT in a numbeptuck-at fault model (SSF) [2], where a single connection in
of areas, namely combinational equivalence checking [9 he circuit is assumed to be stuck at a given logic valuegeith
automatic test-pattern generation [30], model checkirg [80 Or 1. denoted respectively by stuck-at 0 (or sa-0) and stuck
planning [49] and haplotype inference [34]. The applicagio at 1 (or sa-1). ATPG consists in computing input assignments
are organized by increasing complexity of the associated gAhat allow demonstrating the existence or absence of each

representation. target fault, or proving that no assignment exists (hence it
o _ _ is essentially a modified satisfiability problem). When such
A. Combinational Equivalence Checking an assignment exists, it is said thatlétectsthe target fault.

An essential circuit design task is to check the funclnh what follows combinational circuits are assumed, but the
tional equivalence of two circuits. The simplest form ofsame ideas can be extended to sequential circuits [2].
equivalence checking addresses combinational circuigs. L In order to compute an input assignment to detect a given
C4 and Cz denote two combinational circuits, both with target faultz saw, two copies of the circuit are considered.
inputsz, . .., z,, and both withm outputs,C'4 with outputs The first copy represents the circuit without the fault, as is
y1,...,ym and Cg with outputsws, ..., w,,. The function referred to as thgoodcircuit. The second copy represents

implemented by each of the two circuits is defined as followshe circuit with the fault, and is referred to as tfeulty
fa : {0,1}" — {0,1}™, andfg : {0,1}"* — {0,1}™. Let circuit. Using the notation of the previous section, a Baale

x € {0,1}" and definefa (x) = (fa.1(x), ..., fa.m(x)) and function is associated with each copy of the circuit: thedjoo
fg(x) = (fB.1(X)...., fB.m(x)). The two circuits arenot ~ circuit is described byfg : {0,1}" — {0,1}™, and the
equivalent if the following condition holds: faulty circuit is described byfp : {0,1}" — {0,1}™.
As a result, the fault will be detected iff for some input
Fxeqoyr Ficicm fa4(X) # [B.4(%) (8) assignment, the outputs of the two circuits differ:
whiglh can be represented as the following satisfiability Teeroyn Ji<icm fai(X) # fri(x) (10)
roblem:
P n As before, this condition can be represented as the follpwin
\ (fai(x) @ fpi(x) =1 (9) satisfiability problem:
i=1 n
The resulting satisfiability problem is illustrated in Fig- \ (foi(x) @ fri(x)) =1 (11)
ure 1, and is referred to as raiter [9]. From the results i=1

of the previous section it is straightforward to encod@bserve that the miter can also be used for representing the
the combinational equivalence checking problem in CNFproblem of ATPG, whered represents the good circuit and



B represents the faulty circuit. Even though equation (1#4lgorithm 1 Organization of BMC
can be encoded directly into CNF and solved with a SAT -
solver, this is in general not effective. As a result, the elod BMC(M = (LT, F), )

is modified to provide additional structural informatior0]3 5 Wﬁeok <u

[53], [39]. The faulty circuit is only partially represemte 3 do ¢ — CNF(BMC(M, k), W)

involving only the nodes whose value can differ from thes if SAT(¢)

good circuit. For each such node an additional variable 5 then return false > Found counterexample
zg is used to denote whether the values in the two circuit® k—k+1

differ. x5 is referred to as the sensitization variable of nodd 'etum true

z and takes value 1 if the value aof in the two circuits
differs. If z¢ is the value in the good circuit andr is the
value in the faulty circuit, them:s is defined as follows:

The use of SAT for model checking purposes entails
x5 < (xg D ap) (12) iteratively unfolding the transition relation, and is nefsd
] ] to as bounded model checking (BMC) (where bounded
The use of SAT in ATPG was first proposed byingicates that a fixed unfolding is considered). Given atgafe
T. Larrabee [30]. Improvements based on preprocessing Weig,nertyG 1, the solution to address this problem with SAT
described in [53]. Additional improvements were furthelg g consider the complemeRt-s of the safety property,
proposed in [39], including the reuse of learnt clauses inpresenting the condition thats will not hold in some
between target faults and the encoding of conditions fQgachaple state. The conditiomys will be referred to as
unique sensitization points [2]. the failing property, and represented with a predicate
C. Model Checking Bounded.rnodel checking_consists.of iteratively unfolq.ing
the transition relation, while checking whether the fajlin

~ Given a set of propositional symbdls a Kripke structure - prqnerty holds. The generic Boolean formula associatel wit
is defined as a 4-tuplet = (S, I, T, L), whereS' is afinite  gaT.pased BMC is the following [8]:

set of states/ C S is a set of initial states]' C S x S

is a transition relation, and. : S — P(X) is a labelling

function, whereP(X) denotes the powerset over the set  I(Yp) A /\ T(Y;,Yis1) A \/ FY?) (13)
of propositional symbols. Temporal logics allow descripin 0<i<k 0<i<k

properties of systems. Two propositional temporal logies a ) )

widely used: Linear-Time Logic (LTL) and Computation- Equation (13) is referred to asM& (M, k), and represents
Tree Logic (CTL) [13]. In this paper temporal properties ardhe unfolding of the trgqgltlon relatlor! fértime steps, where
described in LTL, but CTL could also have been considered(Y0) represents the initial state (at time st9p7'(Y;, Yi11)
Model checking algorithms can be characterized as explickePresents the transition relation between states at tieps s
state or implicit-state (or symbolic) [13]. Explicit stateodel ¢ @ndi + 1, respectivelyy; andY;.,, and '(Y;) represents
checking algorithms represent explicitly the states of thif'® failing property at time step. Given the proposition

transition relation, whereas symbolic model checking algdormula BUc(M, k), itis straightforward to generate a CNF

rithms do not. Initial symbolic model checking algorithmsformula ¢ as described earlier in the paper. The resulting

were based on Binary Decision Diagrams (BDDs) [42]. OvefrNF formula can then be evaluated by a SAT solver.
the last decade, a number of alternatives based on Boolean! € typical organization of BMC for safety properties
Satisfiability (SAT) have been proposed [8], [50], [43]. is illustrated in Algorithm 1. The details regarding the

Most work on SAT-based model checking assursafety sets of variables associated with each propositional famu
properties Gis 2, where v is a purely propositional ar€ omitted, but are clear from the context. Moreover, the

formula. The interpretation is thabs must hold onall encoding of the BMC formula to CNF is shown as function

reachable states of1. For simplicity, the Kripke structure CNF(), and uses a set of auxiliary Boolean variablés

M = (S, I,T, L) will be represented by the 3-tuple Finally, 1 _represer_wts an upper bound_on the unfoldmg of
M = (I, T, F), where is a predicate representing thethe transition relation. Experimental ewdencg _has coraa‘u_fm
initial states, T’ is a predicate representing the transitior>A1-0ased BMC to be an extremely competitive technique,
relation, andF is a predicate representing the failing propertynat has been used in industrial settings [7].

(i.e. F = —pg), defined on state variables (denoted as9et A key difficulty with BMC is its inability for proving that
Moreover, the predicates, T or F assume the underlying there is no counterexample for a given safety propertysG
Kripke structureM = (S, I, T, L) and associated target Unless the recurrence (_or_ the reach_ability) diameter [7] of
formulavg. Observe that the states are not explicitly repre2n automaton is known, it is not possible to pre-compute the
sented. A set of variables encodes the possible states, andalue of the upper boundij used in Algorithm 1. In general

predicateT” encodes whether the system can go from staf§® recurrence diameter of an automaton is not known, and
(represented with variable3) to stateY;, ;. so BMC is incomplete. Hence, if the BMC algorithm returns

true it does not imply that a counterexample cannot be identi
2A detailed account of LTL temporal operators is given in [13] fied. In recent years different approaches have been prdpose



for ensuring the completeness of SAT-based model checkirhj.\ by
Well-known examples include the use of induction [50] and
interpolants [43].

D. Planning in Artificial Intelligence hy

Al planning was one of the first successful practical
applications of SAT [49]. The SAT formulation of planning Fig. 2. Boolean variables used in SHIPs
actually motivated the work on bounded model checking, de-
scribed in the previous section. As a result, the descripifo
planning as satisfiability is formulated similarly to bowad haplotype is then a string over the alphab@tl}. Moreover,
model checking [46]. genotypes may be represented by extending the alphabet
A deterministic transition system is a 4-tuglé, I, 7, G), used to represent haplotypes {0,1,2;. Homozygous sites
where S is a set of states] € S is an initial state,l C are represented by values 0 or 1 depending, respectively,
S x S is a set of operators (describing changes of stateg)d whether both haplotypes have value 0 or 1 at that
andG C S is a set of goal states. As before the states asite. Heterozygous sites are represented by value 2. Two
encoded with a set of states variablés haplotyped i, h;) explain a given genotype; iff for each
Given a number of statds denoting the length of the plan, site j, if site j is homozygous, theh; = h;; = g;;, and if
SAT-based planning consists in deciding whether one of ttgite j is heterozygous, thehy; # hy;.
goal states can be reachedntime steps. This condition  One approach for haplotype inference is based on pure
can be represented as follows: parsimony [23]. Given a set of genotypes, the haplotype
inference by pure parsimony (HIPP) finds a solution to the
e =I0Y0) A N\ T(Yi,Tiz1) AG(Yk)  (14)  haplotype inference problem such that the total number of
0=i<k distinct haplotypes used is minimum. The HIPP problem is

SAT-based planning considers possible plans of increasify-hard (e.g. see [29]).
length, starting from 0. The length is increased while the One possible approach for solving the HIPP problem is to
resulting instance of SAT is unsatisfiable. Observe that, &€ SAT, one concrete example being SHIPs [34]. The SAT-
for most of the other applications, SAT algorithms must b&ased HIPP solution algorithm starts from a lower botind

able to prove unsatisfiability. on the number of haplotypes necessary to explain the set of
S _ genotypes; a trivial value fdb is 1. The algorithm searches
E. Haplotyping in Bioinformatics for the smallest least value such that there exists a skt

Haplotypes encode the genetic constitution of an individ®f haplotypes withr = [, which explain all genotypes in
ual chromosome. The genetic constitution of a chromoson$e Observe that the value ofis guaranteed to satisfp <
is described by a DNA sequence. A DNA sequence is < 27, since a solution witf2 n haplotypes is guaranteed
specified by four nucleotides, which can be distinguishet® exist. For each value of considered, a CNF formula”
by the bases they contain: A (adenine), C (cytosine), & created, and a SAT solver is invoked.
(thymine), and G (guanine). In practice, haplotypes encode In what follows we assume genotypes each with: sites.
Single Nucleotide Polymorphism (SNPs) in DNA, whereThe same indexes will be used throughautanges over the
SNPs denote genetic mutations. An SNP variation occuggnotypes and over the sites, with <i <nandl <j <
when a single nucleotide replaces one of the other three. In addition,r candidate haplotypes are considered, each
nucleotides. with m sites, and withl < r < 2n. An additional index

The identification of haplotypes may be useful for identi% is associated with haplotypes, such that k <r. As a
fying specific diseases, as well as to predict patients resmo result,hi; € {0,1} denotes thg'" site of haplotype.
to drugs. However, existing technology is unable to reveal t For a given value ofr, the SHIPs model considers
actual haplotypes, providing instead genotypes. The probl haplotypes and seeks to associate two haplotypes (possibly
of haplotype inference consists in deriving haplotype datgorresponding to the same haplotype) with each genotype
from genotype data. More concretely, given a §ebf n ¢i, Wherel <i <n. The Boolean variables used by SHIPs
genotypes, each of length, haplotype inference consists in are depicted in Figure 2. For each genotypethe model
finding a set of 2-n haplotypes, not necessarily different,usesselectorvariables for selecting which haplotypes are
such that for each genotypg € G there is at least one used for explaining;. Since the genotype is to be explained
pair of haplotypeg iy, h;), with hy, h; € H, thatexplains by two haplotypes, the model uses two setsand b, of r
g;. The variablen denotes the number of individuals in theselector variables, respectivelf, ands}, with k = 1,.
sample;n denotes the number of SNP sites, andenotes a Hence, genotype; is explained by haplotypes;, and hk2
specific genotype where< i < n. (Furthermorey;; denotes if sf,; = 1 ands} ; = 1. Clearly,gl is also explained by the
a specific sitej in genotypeg; wherel < j < m.) same haplotypes i, =1ands} , =1.

Without loss of generality, the two possible values of each We can now derive the conditions for the SHIPs model:
SNP are assumed to be either O or 1. Value O represents If a site g;; is O (resp. 1), and if haplotypeis selected
the wild type and value 1 represents the mutant type. A for explaining genotype, either by thea or the b



representative, then the value of haplotypat site j
mustbe O (resp. 1). In CNF, if sitg;; is 0, the model
includes(—s¢; V—hg; ) A(—st, V—hy;), and if siteg;; is

a given weight, and the objective is to maximize the sum
of the weights of satisfied clauses. Finally, in the weighted
partial MaxSAT, the hard clauses must be satisfied, a weight
1, then the model includess¢, V hi;) A (—sh, V hyj), is associated with each soft clause, and the objective is
in both cases fok =1,...,r. to maximize the sum of the weights of satisfied clauses.
« Otherwise, one requires that the haplotypes explainingdaxSAT and variants provide a versatile modeling solution
the genotypeyg; have opposing values at site This and a growing number of practical applications [24], [33],
is done by creating a variablg; € {0,1} such that including the ability to solve PB optimization problems.
site j of the haplotype selected by therepresentative Despite the potential applications, the most effective SAT
selector assumes the same valuetgsand sitej of  techniques cannot be applied directly in algorithms for
the haplotype selected by tlerepresentative selector MaxSAT. As a result, the best performing algorithms use
assumes the complementary valuetgf As a result branch and bound search with sophisticated bounding [24],
the model requireshy; V —it;; V —s¢;) A (mhg; Vit Vo [33]. Recent work has shown how to iteratively use SAT for
=88 ) A (hj V tij V =sh) A (mheg V ity Vv —st) for - solving MaxSAT [20], [40].
k =1,...,r. Observe thaty; equalst;; if s, = 1, One SAT-related decision problem is Quantified Boolean
andhy; equals—t;; if sb. = 1. Formulas (QBF), a well-known example of PSPACE-
Clearly, for each genotypg, and fora or b, it is necessary complete decision problems. QBF finds a large number
that exactly one haplotype is used, and so exactly one selecPf Potential practical applications, including model ckec

variable can be assigned value 1. This can be captured wifly [17]. A QBF formula is a CNF formula where the
the following cardinality constraints: Boolean variables are quantified, and is of the form:

r r Qi1 Q212... Quay @ (16)
<Z S = 1) A <Z szi = 1)
k=1

where Q; € {3,V} and ¢ is a CNF formula. Recent

=1 algorithms for QBF have integrated and extended the most
As shown in Section II, these cardinality constraints can beffective SAT techniques [32]. Nevertheless, the perforoea
encoded in CNF in linear space, by introducing additionamprovements in QBF solvers has not been as significant as
auxiliary variables. Besides the basic model outlined abovin SAT solvers.
SAT-based haplotyping requires the inclusion of a number Besides extensions of SAT based on Boolean domains, a
of effective techniques, including lower bounds and identi number of extensions exist, including Satisfiability Maalul
cation of symmetries [34]. Theories [4], [22] (also, see [11]).

V. CONCLUSIONS

A number of extensions of SAT allow greater modeling SAT IS an NP-complete decision problem, and all existing
fleibility than plain SAT. Purely Boolean examples in_algonthms require worst—ca§e exponential time in the size
clude Quantified Boolean Formulas (QBF), Pseudo-BooIeam th? problem representatlo_n_. Nevertheless, mo‘?'em SAT
(PB) solving and optimization, and Maximum Satisfiabiliwalgor'thms are remarkably eff|C|en_t, cgpable of soly|_ng;dar
(MaxSAT) and variants. The most effective algorithmic techCOMPIex examples from real applications. The efficiency of
niques used in SAT have also been applied in most extension&! algorithms has motivated their use in an ever increasing
of SAT, thus enabling significant practical applicationkist "umber of practical applications, ranging from crosstalk
section briefly surveys these extensions of SAT. noise prediction in integrated circuits to termination Iges

Pseudo-Boolean (PB) constraints generalize SAT by cor‘?]c term-rewrite systems, and '”C'”d'”g model checklng of
sidering linear inequalities over Boolean variables iadte hardV\_/are and software systems. This paper _prowdes an
of clauses. Moreover, a linear cost function can be consi§Ve"view of some of the most successful applications of SAT,
ered [6]. The problem of optimizing PB-constraints is Np2Nd highlights other representative applications. In i
hard. Moreover, as in the case of SAT, a number of effectiv?—:-xamples of well-known extensions of SAT are summarized.
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