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Performance Analysis of Image Compression
Using Wavelets
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Abstract—The aim of this paper is to examine a set of wavelet
functions (wavelets) for implementation in a still image compres-
sion system and to highlight the benefit of this transform relating
to today’s methods. The paper discusses important features of
wavelet transform in compression of still images, including the
extent to which the quality of image is degraded by the process
of wavelet compression and decompression. Image quality is
measured objectively, using peak signal-to-noise ratio or picture
quality scale, and subjectively, using perceived image quality.
The effects of different wavelet functions, image contents and
compression ratios are assessed. A comparison with a discrete-co-
sine-transform-based compression system is given. Our results
provide a good reference for application developers to choose a
good wavelet compression system for their application.

Index Terms—Discrete cosine transforms, image coding, trans-
form coding, wavelet transforms.

I. INTRODUCTION

I N RECENT years, many studies have been made on
wavelets. An excellent overview of what wavelets have

brought to the fields as diverse as biomedical applications,
wireless communications, computer graphics or turbulence,
is given in [1]. Image compression is one of the most visible
applications of wavelets. The rapid increase in the range and
use of electronic imaging justifies attention for systematic
design of an image compression system and for providing the
image quality needed in different applications.

A typical still image contains a large amount of spatial re-
dundancy in plain areas where adjacent picture elements (pixels,
pels) have almost the same values. It means that the pixel values
are highly correlated [2]. In addition, a still image can con-
tain subjective redundancy, which is determined by properties
of a human visual system (HVS) [3]. An HVS presents some
tolerance to distortion, depending upon the image content and
viewing conditions. Consequently, pixels must not always be
reproduced exactly as originated and the HVS will not detect
the difference between original image and reproduced image.
The redundancy (both statistical and subjective) can be removed
to achieve compression of the image data. The basic measure
for the performance of a compression algorithm is compres-
sion ratio (CR), defined as a ratio between original data size and
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compressed data size. In a lossy compression scheme, the image
compression algorithm should achieve a tradeoff between com-
pression ratio and image quality [4]. Higher compression ratios
will produce lower image quality and vice versa. Quality and
compression can also vary according to input image character-
istics and content.

Transform coding is a widely used method of compressing
image information. In a transform-based compression system
two-dimensional (2-D) images are transformed from the spa-
tial domain to the frequency domain. An effective transform
will concentrate useful information into a few of the low-fre-
quency transform coefficients. An HVS is more sensitive to en-
ergy with low spatial frequency than with high spatial frequency.
Therefore, compression can be achieved by quantizing the co-
efficients, so that important coefficients (low-frequency coef-
ficients) are transmitted and the remaining coefficients are dis-
carded. Very effective and popular ways to achieve compression
of image data are based on the discrete cosine transform (DCT)
and discrete wavelet transform (DWT).

Current standards for compression of still (e.g., JPEG [5])
and moving images (e.g., MPEG-1 [6], MPEG-2 [7]) use DCT,
which represents an image as a superposition of cosine func-
tions with different discrete frequencies [8]. The transformed
signal is a function of two spatial dimensions, and its compo-
nents are called DCT coefficients or spatial frequencies. DCT
coefficients measure the contribution of the cosine functions at
different discrete frequencies. DCT provides excellent energy
compaction, and a number of fast algorithms exist for calcu-
lating the DCT. Most existing compression systems use square
DCT blocks of regular size [5]–[7]. The image is divided into
blocks of samples and each block is transformed inde-
pendently to give coefficients. For many blocks within
the image, most of the DCT coefficients will be near zero. DCT
in itself does not give compression. To achieve the compression,
DCT coefficients should be quantized so that the near-zero co-
efficients are set to zero and the remaining coefficients are rep-
resented with reduced precision that is determined by quantizer
scale. The quantization results in loss of information, but also
in compression. Increasing the quantizer scale leads to coarser
quantization, which gives high compression and poor decoded
image quality.

The use of uniformly sized blocks simplified the compression
system, but it does not take into account the irregular shapes
within real images. The block-based segmentation of source
image is a fundamental limitation of the DCT-based compres-
sion system [9]. The degradation is known as the “blocking ef-
fect” and depends on block size. A larger block leads to more
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Fig. 1. Scaling and wavelet function.

efficient coding, but requires more computational power. Image
distortion is less annoying for small than for large DCT blocks,
but coding efficiency tends to suffer. Therefore, most existing
systems use blocks of 8 8 or 16 16 pixels as a compromise
between coding efficiency and image quality.

In recent times, much of the research activities in image
coding have been focused on the DWT, which has become
a standard tool in image compression applications because
of their data reduction capability [10]–[12]. In a wavelet
compression system, the entire image is transformed and
compressed as a single data object rather than block by block
as in a DCT-based compression system. It allows a uniform
distribution of compression error across the entire image. DWT
offers adaptive spatial-frequency resolution (better spatial res-
olution at high frequencies and better frequency resolution at
low frequencies) that is well suited to the properties of an HVS.
It can provide better image quality than DCT, especially on a
higher compression ratio [13]. However, the implementation of
the DCT is less expensive than that of the DWT. For example,
the most efficient algorithm for 2-D 8 8 DCT requires only
54 multiplications [14], while the complexity of calculating the
DWT depends on the length of wavelet filters.

A wavelet image compression system can be created by
selecting a type of wavelet function, quantizer, and statistical
coder. In this paper, we do not intend to give a technical
description of a wavelet image compression system. We used
a few general types of wavelets and compared the effects
of wavelet analysis and representation, compression ratio,
image content, and resolution to image quality. According to
this analysis, we show that searching for the optimal wavelet
needs to be done taking into account not only objective picture
quality measures, but also subjective measures. We highlight
the performance gain of the DWT over the DCT. Quantizers for
the DCT and wavelet compression systems should be tailored
to the transform structure, which is quite different for the DCT
and the DWT. The representative quantizer for the DCT is a
uniform quantizer in baseline JPEG [5], and for the DWT, it is
Shapiro’s zerotree quantizer [15], [16]. Hence, we did not take
into account the influence of the quantizer and entropy coder, in
order to accurately characterize the difference of compression
performance due to the transforms (wavelet versus DCT).

II. WAVELET TRANSFORM

Wavelet transform (WT) represents an image as a sum of
wavelet functions (wavelets) with different locations and scales
[17]. Any decomposition of an image into wavelets involves a
pair of waveforms: one to represent the high frequencies cor-
responding to the detailed parts of an image (wavelet function

) and one for the low frequencies or smooth parts of an image
(scaling function ).

Fig. 1 shows two waveforms of a family discovered in the late
1980s by Daubechies: the right one can be used to represent de-
tailed parts of the image and the left one to represent smooth
parts of the image. The two waveforms are translated and scaled
on the time axis to produce a set of wavelet functions at dif-
ferent locations and on different scales. Each wavelet contains
the same number of cycles, such that, as the frequency reduces,
the wavelet gets longer. High frequencies are transformed with
short functions (low scale). Low frequencies are transformed
with long functions (high scale). During computation, the an-
alyzing wavelet is shifted over the full domain of the analyzed
function. The result of WT is a set of wavelet coefficients, which
measure the contribution of the wavelets at these locations and
scales.

A. Multiresolution Analysis
WT performs multiresolution image analysis [18]. The result

of multiresolution analysis is simultaneous image representa-
tion on different resolution (and quality) levels [19]. The reso-
lution is determined by a threshold below which all fluctuations
or details are ignored. The difference between two neighboring
resolutions represents details. Therefore, an image can be rep-
resented by a low-resolution image (approximation or average
part) and the details on each higher resolution level. Let us con-
sider a one-dimensional (1-D) function . At the resolution
level , the approximation of the function is . At the
next resolution level , the approximation of the function

is . The details denoted by are included in
. This procedure can be re-

peated several times and function can be viewed as

(1)
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Fig. 2. Two-channel filter bank.

Similarly, the space of square integrable functions can
be viewed as a composition of scaling subspaces and wavelet
subspaces such that the approximation of at resolution

is in and the details are in . and
are defined in terms of dilates and translates of scaling func-
tion and wavelet function
and . and are localized in
dyadically scaled frequency “octaves” by the scale or resolu-
tion parameter (dyadic scales are based on powers of two)
and localized spatially by translation . The scaling subspace

must be contained in all subspaces on higher resolutions
( ). The wavelet subspaces fill the gaps between
successive scales: . We can start with an ap-
proximation on some scale and then use wavelets to fill in
the missing details on finer and finer scales. The finest resolu-
tion level includes all square integrable functions

(2)

Since , it follows that the scaling function for
multiresolution approximation can be obtained as the solution
to a two-scale dilational equation

(3)

for some suitable sequence of coefficients . Once has
been found, an associated mother wavelet is given by a similar-
looking formula

(4)

Some effort is required to produce appropriate coefficient se-
quences and [17].

B. Discrete Wavelet Transform
One of the big discoveries for wavelet analysis was that per-

fect reconstruction filter banks could be formed using the coeffi-
cient sequences and (Fig. 2). The input sequence

is convolved with high-pass (HPF) and low-pass (LPF) fil-
ters and and each result is downsampled by two,
yielding the transform signals and . The signal is recon-
structed through upsampling and convolution with high and low
synthesis filters and . For properly designed filters,
the signal is reconstructed exactly ( ).

The choice of filter not only determines whether perfect re-
construction is possible, it also determines the shape of wavelet
we use to perform the analysis. By cascading the analysis filter
bank with itself a number of times, a digital signal decompo-
sition with dyadic frequency scaling known as DWT can be
formed. The mathematical manipulation that effects synthesis is
called inverse DWT. An efficient way to implement this scheme
using filters was developed by Mallat [19]. The new twist that
wavelets bring to filter banks is connection between multireso-
lution analysis (that, in principle, can be performed on the orig-
inal, continuous signal) and digital signal processing performed
on discrete, sampled signals.

DWT for an image as a 2-D signal can be derived from
1-D DWT. The easiest way for obtaining scaling and wavelet
function for two dimensions is by multiplying two 1-D func-
tions. The scaling function for 2-D DWT can be obtained by
multiplying two 1-D scaling functions: .
Wavelet functions for 2-D DWT can be obtained by multiplying
two wavelet functions or wavelet and scaling function for 1-D
analysis. For the 2-D case, there exist three wavelet functions
that scan details in horizontal ,
vertical , and diagonal directions:

. This may be represented as a
four-channel perfect reconstruction filter bank as shown in
Fig. 3. Now, each filter is 2-D with the subscript indicating the
type of filter (HPF or LPF) for separable horizontal and vertical
components. The resulting four transform components consist
of all possible combinations of high- and low-pass filtering in
the two directions. By using these filters in one stage, an image
can be decomposed into four bands. There are three types of
detail images for each resolution: horizontal (HL), vertical
(LH), and diagonal (HH). The operations can be repeated on
the low–low band using the second stage of identical filter
bank. Thus, a typical 2-D DWT, used in image compression,
will generate the hierarchical pyramidal structure shown in
Fig. 3(b). Here, we adopt the term “number of decompositions”
( ) to describe the number of 2-D filter stages used in image
decomposition.

Wavelet multiresolution and direction selective decomposi-
tion of images is matched to an HVS [20]. In the spatial domain,
the image can be considered as a composition of information
on a number of different scales. A wavelet transform measures
gray-level image variations at different scales. In the frequency
domain, the contrast sensitivity function of the HVS depends on
frequency and orientation of the details.
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Fig. 3. (a) One filter stage in 2-D DWT. (b) Pyramidal structure of a wavelet decomposition.

III. IMAGE QUALITY EVALUATION

The image quality can be evaluated objectively and subjec-
tively [21]. Objective methods are based on computable distor-
tion measures. A standard objective measure of image quality is
reconstruction error. Suppose that one has a system in which an
input image element block is re-
produced as . The reconstruction
error is defined as the difference between and

(5)

The variances of , , and are , and . In the
special case of zero-means signals, variances are simply equal to
respective mean-square values over appropriate sequence length

or (6)

A standard objective measure of coded image quality is
signal-to-noise ratio (SNR) which is defined as the ratio
between signal variance and reconstruction error variance
[mean-square error (MSE)] usually expressed in decibels (dB)

SNR(dB)
MSE

(7)

When the input signal is an -bit discrete variable, the variance
or energy can be replaced by the maximum input symbol energy
( . For the common case of 8 bits per picture element of
input image, the peak SNR (PSNR) can be defined as

PSNR(dB)
MSE

(8)

SNR is not adequate as a perceptually meaningful measure of
picture quality, because the reconstruction errors in general do
not have the character of signal-independent additive noise, and
the seriousness of the impairments cannot be measured by a
simple power measurement [22]. Small impairment of an image
can lead to a very large value of and, consequently, a very
small value of PSNR, in spite of the fact that the perceived image
quality can be very acceptable. In fact, in image compression
systems, the truly definitive measure of image quality is percep-
tual quality. The distortion is specified by mean opinion score
(MOS) [23] or by picture quality scale (PQS) [24].

In addition to the commonly used PSNR, we chose to use
a perception based subjective evaluation, quantified by MOS,
and a perception-based objective evaluation, quantified by PQS.
For the set of distorted images, the MOS values were obtained
from an experiment involving 11 viewers. The viewers were al-
lowed to give half-scale grades. The testing methodology was
the double-stimulus impairment scale method with five-grade
impairment scale described in [25]. When the tests span the full
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(a) (b)

(c) (d)

Fig. 4. Frequency content of test images. (a) Peppers. (b) Lena. (c) Baboon. (d) Zebra.

range of impairments (as in our experiment), the double-stim-
ulus impairment scale method is appropriate and should be used.

The double-stimulus impairment scale method uses reference
and test conditions which are arranged in pairs such that the first
in the pair is the unimpaired reference and the second is the same
sequence impaired. The original source image without compres-
sion was used as the reference condition. The assessor is asked
to vote on the second, keeping in mind the first. The method
uses the five-grade impairment scale with proper description for
each grade: 5–imperceptible; 4–perceptible, but not annoying;
3–slightly annoying; 2–annoying; and 1–very annoying. At the
end of the series of sessions, MOS for each test condition and
test image are calculated

MOS (9)

where is grade and is grade probability.
Subjective assessments of image quality are experimentally

difficult and lengthy, and the results may vary depending on
the test conditions. In addition to MOS, we used PQS method-
ology proposed in [24], [26]. The PQS has been developed in the
last few years for evaluating the quality of compressed images.
It combines various perceived distortions into a single quanti-
tative measure. To do so, PQS methodology uses some of the
properties of HVS relevant to global image impairments, such
as random errors, and emphasize the perceptual importance of
structured and localized errors. PQS is constructed by regres-
sions with MOS, which is a five-level grading scale. PQS closely
approximates the MOS in the middle of the quality range. For
very-high-quality images, it is possible to obtain values of PQS
larger than 5. At the low end of the image quality scale, PQS can

obtain negative values (meaningless results). It was the reason
that we had to use subjective evaluation (our test includes low
quality images) but PQS helped us in some phases of our re-
search work.

IV. DWT IN IMAGE COMPRESSION

A. Image Content
The fundamental difficulty in testing an image compression

system is how to decide which test images to use for the evalu-
ations. The image content being viewed influences the percep-
tion of quality irrespective of technical parameters of the system
[9]. Normally, a series of pictures, which are average in terms
of how difficult they are for system being evaluated, has been
selected. To obtain a balance of critical and moderately crit-
ical material we used four types of test images with different
frequency content: Peppers, Lena, Baboon, and Zebra. Spectral
activity of test images is evaluated using DCT applied to the
whole image. DCT coefficients as a result of DCT show fre-
quency content of the image. Fig. 4 shows the distributions of
image values before and after DCT. The distribution of DCT co-
efficients depends on image content (white dots represent DCT
coefficients, arrows indicate the increase of horizontal and ver-
tical frequency). Moving across the top row, horizontal spatial
frequency increases. Moving down, vertical spatial frequency
increases. Images with high spectral activity are more difficult
for a compression system to handle. These images usually con-
tain large number of small details and low spatial redundancy.

Choice of wavelet function is crucial for coding performance
in image compression [27]. However, this choice should be ad-
justed to image content [28]. The compression performance for
images with high spectral activity is fairly insensitive to choice
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of compression method (for example, test image Baboon), [32].
On the other hand, coding performance for images with mod-
erate spectral activity (for example, test image Lena) are more
sensitive to choice of compression method. The best way for
choosing wavelet function is to select optimal basis for images
with moderate spectral activity. This wavelet will give satisfying
results for other types of images.

B. Choice of Wavelet Function

Important properties of wavelet functions in image compres-
sion applications are compact support (lead to efficient imple-
mentation), symmetry (useful in avoiding dephasing in image
processing), orthogonality (allow fast algorithm), regularity, and
degree of smoothness (related to filter order or filter length).

In our experiment, four types of wavelet families are ex-
amined: Haar Wavelet (HW), Daubechies Wavelet (DW),
Coiflet Wavelet (CW), and Biorthogonal Wavelet (BW).
Each wavelet family can be parameterized by integer that
determines filter order. Biorthogonal wavelets can use filters
with similar or dissimilar orders for decomposition ( ) and
reconstruction ( ). In our examples, different filter orders are
used inside each wavelet family. We have used the following
sets of wavelets: DW- with [17],
CW- with [17], and BW- with

, [30].
Daubechies and Coiflet wavelets are families of orthogonal
wavelets that are compactly supported. Compactly supported
wavelets correspond to finite-impulse response (FIR) filters
and, thus, lead to efficient implementation [29]. Only ideal
filters with infinite duration can provide alias-free frequency
split and perfect interband decorrelation of coefficients. Since
time localization of the filter is very important in visual signal
processing, arbitrarily long filters cannot be used. A major
disadvantage of DW and CW is their asymmetry, which can
cause artifacts at borders of the wavelet subbands. DW is
asymmetrical while CW is almost symmetrical. Symmetry
in wavelets can be obtained only if we are willing to give up
either compact support or orthogonality of wavelet (except
for HW, which is orthogonal, compactly supported, and sym-
metric). If we want both symmetry and compact support in
wavelets, we should relax the orthogonality condition and allow
nonorthogonal wavelet functions. An example is the family of
biorthogonal wavelets that contains compactly supported and
symmetric wavelets [30].

C. Filter Order and Filter Length

The filter length is determined by filter order, but relation-
ship between filter order and filter length is different for dif-
ferent wavelet families. For example, the filter length is

for the DW family and for the CW family.
HW is the special case of DW with (DW-1) and .
Filter lengths are approximately ,
but effective lengths are different for LPF and HPF used for de-
composition and reconstruction and should be determined for
each filter type. Fig. 5 shows examples of scaling and wavelet
functions from each wavelet family. Filter coefficients for some
of the examples from Fig. 5 are given in Table I. In DW, family

scaling and wavelet functions for different filter orders have dif-
ferent shapes [Fig. 5(a)–(d)]. Scaling and wavelet functions in
the CW family for all filter orders have very similar shapes
[Fig. 5(e) and (f)]. Scaling and wavelet functions for decom-
position and reconstruction in the BW family can be similar or
dissimilar. BW-2.2 is such that decomposition and reconstruc-
tion functions have different shapes [Fig. 5(g) and (h)], but for
BW-6.8 these functions are very close to each other [Fig. 5(i)
and (j)].

Higher filter orders give wider functions in the time domain
with higher degree of smoothness. Filter with a high order
can be designed to have good frequency localization, which
increases the energy compaction. Wavelet smoothness also
increases with its order. Filters with lower order have a better
time localization and preserve important edge information.
Wavelet-based image compression prefers smooth functions
(that can be achieved using long filters) but complexity of
calculating DWT increases by increasing the filter length.
Therefore, in image compression application we have to find
balance between filter length, degree of smoothness, and
computational complexity. Inside each wavelet family, we can
find wavelet function that represents optimal solution related
to filter length and degree of smoothness, but this solution
depends on image content.

D. Number of Decompositions
The quality of compressed image depends on the number of

decompositions ( ). The number of decompositions determines
the resolution of the lowest level in wavelet domain. If we use
larger number of decompositions, we will be more successful
in resolving important DWT coefficients from less important
coefficients. The HVS is less sensitive to removal of smaller
details [31].

After decomposing the image and representing it with
wavelet coefficients, compression can be performed by ig-
noring all coefficients below some threshold. In our experiment,
compression is obtained by wavelet coefficient thresholding
using a global positive threshold value. All coefficients
below some threshold are neglected and compression ratio
is computed. Compression algorithm provides two modes of
operation: 1) compression ratio is fixed to the required level
and threshold value has been changed to achieve required
compression ratio; after that, PSNR is computed; 2) PSNR
is fixed to the required level and threshold values has been
changed to achieve required PSNR; after that, CR is computed.

Fig. 6 shows comparison of reconstructed image Lena (256
256 pixels, 8 bit/pixel) for 1, 2, 3, and 4 decompositions (CR
50 : 1). In this example, DW-5 is used. It can be seen that image
quality is better for a larger number of decompositions. On the
other hand, a larger number of decompositions causes the loss of
the coding algorithm efficiency. Therefore, adaptive decompo-
sition is required to achieve balance between image quality and
computational complexity. PSNR tends to saturate for a larger
number of decompositions [Fig. 7(a)]. For each compression
ratio, the PSNR characteristic has “threshold” which represents
the optimal number of decompositions. Below and above the
threshold, PSNR decreases. For DW-5 used in this example op-
timal number of decompositions is 5 [Fig. 7(b)].
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Fig. 5. Scaling and wavelet functions for different wavelet families. (a) DW-1, � � �� � � �. (b) DW-2, � � �� � � �. (c) DW-5, � � �� � � ��.
(d) DW-10, � � ��� � � ��. (e) CW-2, � � �� � � ��. (f) CW-3, � � �� � � ��. (g) BW-2.2 for decomp, � � �� �	
�� � �, �	��� � �.
(h) BW-2.2 for recons, � � �� �	
�� � �� �	��� � �. (i) BW-6.8 for decomp, � � �� �	
�� � ��� �	��� � ��. (j) BW-6.8 for recons,
� � �� �	
�� � ��� �	��� � ��.

The optimal number of decompositions depends on filter
order. Fig. 7(b) shows PSNR values for different filter orders
and fixed compression ratio (10 : 1). It can be seen that as the
number of decompositions increases, PSNR is increased up to
some number of decompositions. Beyond that, increasing the
number of decompositions has a negative effect. Higher filter
order [for example, DW-10 in Fig. 7(b)] does not imply better
image quality because of the filter length, which becomes
the limiting factor for decomposition. Decisions about the
filter order and number of decompositions are a matter of
compromise. Higher order filters give broader function in the
time domain. On the other hand, the number of decompositions

determines the resolution of the lowest level in wavelet domain.
If the order of function gives a time window of function larger
than the time interval needed for analysis of lowest level, the
picture quality can only degrade.

E. Computational Complexity

Computational complexity of the wavelet transform for an
image size of employing dyadic decomposition is ap-
proximately [32]

(10)
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TABLE I
FILTER COEFFICIENTS FOR DW-1, DW-2, DW-5, CW-2, CW-3, BW-2.2, AND BW-6.8

Fig. 6. Reconstructed image Lena; DW-5; CR � 50 : 1. (a) � � � (PSNR � 8.40 dB). (b) � � � (PSNR � 11.76 dB). (c) � � � (PSNR � 23.39 dB). (d)
� � � (PSNR � 24.40 dB).

where and are filter length and number of decompositions,
respectively. For simplicity, we consider only the computation
required for calculating the wavelet transform. For example, for
a 256 256 image decomposed using and ,
the complexity will be approximately 3.5 million operations
(MOP).

V. DWT COMPRESSION RESULTS

The choice of optimal wavelet function in an image com-
pression system for different image types can be provided in
a few steps. For each filter order in each wavelet family, the
optimal number of decompositions can be found. The optimal
number of decompositions gives the highest PSNR values in
the wide range of compression ratios for a given filter order.
Table II shows some of the results for DW and image Lena.
For lower filter orders, better results are reached with more
decompositions than for higher filter orders. The shaded areas
in Table II show the optimal number of decompositions for a

given filter order, while bold type mark the optimal combination
of filter order and number of decompositions for image Lena (5
decompositions, filter order 5). Similar results were achieved
for other wavelet families and other test images. Table III
shows some of the results. For each wavelet family, different
filter orders are tested using different test images. For each test
image and each wavelet family, the optimal combination of
filter order and number of decompositions was found (shaded
areas in Table III).

The filter orders which give the best PSNR results inside each
wavelet family are different for different test images, except for
the BW family where filters with order 2 in decomposition and
order 2 in reconstruction (BW-2.2) give the best results for all
image types.

The comparison of PSNR values of optimal filters (shaded
areas in Table III) from each wavelet family for different test
images shows that image Peppers (low spectral activity) has the
highest PSNR values and image Zebra (high spectral activity)
has the smallest PSNR values. PSNR values depend on image
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Fig. 7. PSNR for different number of decompositions. (a) DW-5. (b) CR �
10 : 1.

type and cannot be used if we want to compare images with
different content.

Table IV compares PSNR and PQS values of optimal
wavelets (shaded areas in Table III) from each wavelet family
for different test images. Table III presents a rough comparison
for only three compression ratios. Compression ratios 50 : 1
and 100 : 1 produce very poor image qualities that cannot
be evaluated using PQS. Therefore, Table IV covers lower
compression ratios that can provide useful image qualities,
which can be measured using PQS. Shaded areas show the
best wavelets according to the PQS values. Examination of
these values reveals that BW-2.2, in most cases (14 out of 16),
results in better visual quality than other wavelets for all images
(BW-2.2 wavelet presents symmetric and smooth function of
relatively short support).

Fig. 8 compares visual quality of image Lena compressed
with optimal wavelet functions from each wavelet family.
PSNR values are the same for all images (36 dB), but PQS
values are different. It means that comparison, which is based
on PQS, shows different results than comparison based on
PSNR. The best PQS results from Fig. 8 are achieved using
BW-2.2. Table III shows that, for test images Zebra and
Baboon, the best results are achieved using CW-2 and CW-3,
but Table IV shows that the best visual quality is achieved using
BW-2.2. The last column in Table III shows computational
complexity for each wavelet. It can be seen that DW-1 (HW)
has the lowest computational complexity. However, DW-1

introduces a very annoying blocking effect for CR 10 : 1. For
example, PSNR results for test image Baboon show that DW-1
gives similar results as other wavelets, but with respect to
visual image quality, this wavelet introduce blocking artifacts,
that cannot be evaluated using PSNR (Fig. 9). Hence, we can
conclude that BW-2.2 is the best choice of optimal wavelet
function, not only according to visual quality (PQS), but also
according to very low computational complexity (1.4 MOP).

Therefore, if we want to find the best wavelet for some image
compression application, we have to take into account visual
quality [34]. If we consider only the PSNR values, we can make
wrong decisions. BW-2.2 provides the best visual image quality
for all images. For that reason, BW-2.2 is used in further anal-
ysis and comparison with DCT.

The comparative study of wavelet coders for still images
performed in [13] shows that the set partitioning in hierarchical
trees (SPIHT) coder described in [16] has better performance
than other coders. The SPIHT coder uses 9/7 biorthogonal
wavelet filter (9/7-BW) and 5 decompositions. Therefore,
we implemented 9/7-BW in our compression scheme and we
compared compression results with the results achieved with
BW-2.2. Compression results for both wavelets are given in
Table V. From Table V, we can see that PSNR values are better
for 9/7-BW for all images except Peppers. On the contrary, PQS
results show that BW-2.2 produces better visual picture quality,
which is of higher importance for the viewer than PSNR values.
Hence, the usage of BW-2.2 in the wavelet coder described in
[13] can improve visual image quality. Once again, we want to
emphasize that PSNR cannot be used as a definitive measure of
picture quality in an image compression system. Additionally,
computational complexity of 9/7-BW is 2.8 MOP, that is, 2
more operations compared with BW-2.2, which again proves
that BW-2.2 is a better choice for wavelet image compression.

A. Comparative Study of DCT and DWT
A comparison of PSNR values for 8 8 DCT and DWT

(BW-2.2) is shown in Fig. 10. Compression results for DCT
are taken from [33]. For compression ratios below 30 : 1, 8
8 DCT gives similar results as DWT. For higher compression
ratios ( 30 : 1) the quality of images compressed using DWT
slowly degrades, while the quality of standard DCT compressed
images deteriorates rapidly. Computational complexity for 8
8 DCT is approximately 0.5 MOP [14]. For lower compression
ratios, DCT should be used, because implementation of DCT is
less expensive than that of the DWT. For the higher compression
ratio ( 30 : 1), DCT cannot be used because of very poor image
quality.

For higher compression ratios, the compression performance
of DWT is superior to that of 8 8 DCT and the visual quality
of reconstructed images is better, even if the PSNR are the same.
There are noticeable blocking artifacts in the DCT images.
Fig. 11 shows the visual quality for DCT and DWT compressed
images with the same PSNR (26 dB) and reconstruction error
for both images. The comparison demonstrates the different
nature of reconstruction error in DCT and DWT compression
systems. Even for relatively high compression ratios ( 30 : 1),
DWT-based compression gives good results according to both
visual quality and PSNR.
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TABLE II
OPTIMAL NUMBER OF DECOMPOSITIONS FOR DIFFERENT FILTER ORDERS IN DW FAMILY

TABLE III
PSNR RESULTS IN DECIBELS FOR DIFFERENT WAVELET FAMILIES AND DIFFERENT COMPRESSION RATIOS

On the other hand, PSNR values depend very much on image
content. PSNR of image Lena is through all compression ra-
tios for about 3 dB higher than PSNR for image Zebra. The dif-
ference between PSNR plots for DCT and DWT in Fig. 10(a)
and (b) is much larger than the difference between PSNR plots
in Fig. 10(c). The reason is different spectral activities of these
three test images (Fig. 4). Image Zebra has high spectral activity.
This type of image is less sensitive to the choice of compression
method than images with low and moderate spectral activity.
Compression performances for images with moderate spectral
activity are sensitive to the choice of compression method. It
is the reason image Lena is often used in the process of opti-
mizing a compression system. The content of image Baboon is

very difficult for the DCT coder to handle, especially for higher
compression ratios [Fig. 10(d)]. The reason is that image Ba-
boon contains a narrow range of luminance levels and a large
number of details.

The comparison of PSNR and PQS values for a compression
ratio below 10 : 1 is shown in Table VI. For the low compression
ratios, 8 8 DCT and DWT show very similar characteristics
(DCT produces slightly better results) for all images.

Measurements based on PQS cannot cover the wide range of
compression ratios from 2 : 1 to 100 : 1. PQS quantifies some
perceptual characteristics of a compression system, but PQS has
some disadvantages. For higher compression ratios, PQS values
turn out to be increasingly sharp, fall out of the valid range, and
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TABLE IV
PSNR AND PQS VALUES OF OPTIMAL WAVELETS FROM TABLE III FOR FIXED CRS

Fig. 8. Comparison of optimal wavelet functions for image Lena (PSNR � 36 dB). (a) Original. (b) DW-5 (PQS � 2.93). (c) CW-3 (PQS � 3.10). (d) BW-2.2
(PQS � 3.20).

Fig. 9. Comparison of visual image quality for the detail from test image Baboon and fixed compression ratio 20 : 1. (a) Original. (b) DW-1. (c) CW-3. (d)
BW-2.2.

become meaningless. Thus, we have to use subjective testing to
complete results of visual image quality. The results of subjec-
tive measurements are contained in Table VII. Images are com-
pressed using DWT and 8 8 DCT with four different com-
pression ratios: 4 : 1, 10 : 1, 30 : 1, and 50 : 1 (we have to use a
small number of compression ratios to reduce the time needed
for subjective testing). MOS results show that human observers
have more tolerance for moderately distorted images than PQS.
The results are strongly influenced by image content. MOS in-
cludes psychological effects of the HVS that cannot be included
in PQS. For HVS, the DWT coder works better than DCT at
higher compression ratios for all types of images.

VI. CONCLUSIONS

In this paper, we presented results from a comparative study
of different wavelet-based image compression systems. The ef-
fects of different wavelet functions, filter orders, number of de-
compositions, image contents, and compression ratios are ex-
amined. The final choice of optimal wavelet in image com-
pression application depends on image quality and computa-
tional complexity. We found that wavelet-based image compres-
sion prefers smooth functions of relatively short length. A suit-
able number of decompositions should be determined by means
of image quality and less computational operation. Our results
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TABLE V
PSNR AND PQS VALUES OF 9/7 BW [13] AND BW-2.2

Fig. 10. Comparison of PSNR values for DCT and DWT of test images. (a) Peppers. (b) Lena. (c) Zebra. (d) Baboon.

show that the choice of optimal wavelet depends on the method,
which is used for picture quality evaluation. We used objec-
tive and subjective picture quality measures. The objective mea-
sures such as PSNR and MSE do not correlate well with sub-
jective quality measures. Therefore, we used PQS as an objec-
tive measure that has good correlation to subjective measure-
ments. Our results show that different conclusions about an op-
timal wavelet can be achieved using PSNR and PQS. Each com-
pression system should be designed with respect to the charac-
teristics of the HVS. Therefore, our choice is based on PQS,
which takes into account the properties of the HVS. We ana-

lyzed results for a wide range of wavelets and found that BW-2.2
provides the best visual image quality for different image con-
tents. Additionally, BW-2.2 has very low computational com-
plexity in comparison with the other wavelets. BW-2.2 is used in
analysis and comparison with DCT. Although DCT processing
speed and compression capabilities are good, there are notice-
able blocking artifacts at high compression ratios. However,
DWT enables high compression ratios while maintaining good
visual quality. Finally, with the increasing use of multimedia
technologies, image compression requires higher performance
as well as new features that can be provided using DWT.
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Fig. 11. Reconstructed image and reconstruction error for image Lena (PSNR � 26 dB). (a) DCT. (b) BW-2.2.

TABLE VI
PSNR AND PQS VALUES FOR COMPRESSION RATIO BELOW 10 : 1

TABLE VII
MOS FOR 8 � 8 DCT AND DWT
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