
version 8.6

TotalView

Setting Up
MPI Programs

Copyright © 2007–2008 by TotalView Technologies. All rights reserved
Copyright © 1998–2007 by Etnus LLC. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise without the prior written permission of TotalView Technologies.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013.

TotalView Technologies has prepared this manual for the exclusive use of its customers, personnel, and licensees. The infor-
mation in this manual is subject to change without notice, and should not be construed as a commitment by TotalView Tech-
nologies. TotalView Technologies assumes no responsibility for any errors that appear in this document.

TotalView and TotalView Technologies are registered trademarks of TotalView Technologies.

TotalView uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use these
modifications. The source code is available at http://www.totalviewtech.com/Products/TotalView/developers.

All other brand names are the trademarks of their respective holders.

Setting UP MPI Programs: version 8.6 iii

Contents

1 Setting Up MPI Debugging Sessions
Debugging MPI Programs .. 2

Starting MPI Programs .. 2
Starting MPI Programs Using File > New Program ... 2

Debugging MPICH Applications .. 3
Starting TotalView on an MPICH Job .. 4
Attaching to an MPICH Job .. 5
Using MPICH P4 procgroup Files .. 7

Debugging MPICH2 Applications .. 7
Downloading and Configuring MPICH2 .. 7

Starting the mpd Daemon .. 8
Starting TotalView Debugging on an MPICH2 Job .. 8

Starting MPI Issues .. 9
MPI Rank Display .. 10
Displaying the Message Queue Graph Window .. 10
Displaying the Message Queue ... 13

About the Message Queue Display .. 13
Using Message Operations ... 13

Diving on MPI Processes ... 14
Diving on MPI Buffers ... 14
About Pending Receive Operations .. 15
About Unexpected Messages ... 15
About Pending Send Operations .. 15

Debugging Cray MPI Applications ... 16
Debugging HP Tru64 Alpha MPI Applications ... 16

Starting TotalView on an HP Alpha MPI Job.. 16
Attaching to an HP Alpha MPI Job .. 17

Debugging HP MPI Applications ... 17
Starting TotalView on an HP MPI Job .. 17
Attaching to an HP MPI Job .. 18

Debugging IBM MPI Paralle Environment (PE) Applications ... 18
Preparing to Debug a PE Application.. 19

Using Switch-Based Communications.. 19
Performing a Remote Login .. 19

iv Contents

Setting Timeouts... 19
Starting TotalView on a PE Program ... 20
Setting Breakpoints .. 20
Starting Parallel Tasks ... 20
Attaching to a PE Job .. 21

Attaching from a Node Running poe .. 21
Attaching from a Node Not Running poe ... 21

Debugging IBM Blue Gene Applications ... 22
Debugging LAM/MPI Applications .. 23
Debugging QSW RMS Applications ... 24

Starting TotalView on an RMS Job .. 24
Attaching to an RMS Job... 24

Debugging SiCortex MPI Applications .. 25
Debugging SGI MPI Applications .. 25

Starting TotalView on an SGI MPI Job ... 25
Attaching to an SGI MPI Job ... 26

Debugging Sun MPI Applications .. 26
Attaching to a Sun MPI Job .. 27

Debugging Parallel Applications Tips .. 27
Attaching to Processes ... 27

Parallel Debugging Tips .. 30
MPICH Debugging Tips ... 32
IBM PE Debugging Tips ... 32

Overview ... 35
Customizing Your Parallel Configuration .. 36

INDEX .. 41

Setting Up MPI Programs: version 8.6 1

c
h
a
p
t
e
r

Setting Up MPI
Debugging Sessions

1

This chapter explains how to set up TotalView MPI debugging ses-
sions.

If you are using TotalView Individual, all of your MPI processes must execute on the
computer on which you installed TotalView. In addition, TotalView Individual limits you
to no more than 16 processes and threads.

This chapter describes the following MPI systems:

“Debugging MPI Programs” on page 2
“Debugging MPICH Applications” on page 3
“Debugging MPICH2 Applications” on page 7
“Debugging Cray MPI Applications” on page 16
“Debugging HP Tru64 Alpha MPI Applications” on page 16
“Debugging HP MPI Applications” on page 17
“Debugging IBM MPI Paralle Environment (PE) Applications” on page 18
“Debugging IBM Blue Gene Applications” on page 22
“Debugging LAM/MPI Applications” on page 23
“Debugging QSW RMS Applications” on page 24
“Debugging SiCortex MPI Applications” on page 25
“Debugging SGI MPI Applications” on page 25
“Debugging Sun MPI Applications” on page 26

This chapter also describes debugger features that you can use with
most parallel models:

If you’re using a messaging system, TotalView displays this infor-
mation visually as a message queue graph and textually in a Mes-
sage Queue Window. For more information, see “Displaying the
Message Queue Graph Window” on page 10 and “Displaying the Mes-
sage Queue” on page 13.
TotalView lets you decide which process you want it to attach to.
See “Attaching to Processes” on page 27.
See “Debugging Parallel Applications Tips” on page 27 for hints on
how to approach debugging parallel programs.

Debugging MPI Programs

2 Chapter 1: Setting Up MPI Debugging Sessions

Debugging MPI Programs

Starting MPI Programs

MPI programs use a starter program such as mpirun to start your program.
TotalView lets you start these MPI programs in two ways. One requires that
the starter program be under TotalView control, and the other does not. In
the first case, you will enter the name of the starter program on the com-
mand the line. In the other, you will enter program information into the File
> New Program or Process > Startup Parameter dialog boxes.

Programs started using these dialog boxes do not use the information you
set for single-process and bulk server launching. In addition, you cannot
use the Attach Subset command when entering information using these
dialog boxes.

Starting MPI programs using the dialog boxes is the recommended method.
This method is described in the next section. Starting using a started pro-
gram is described in various places throughout this chapter.

Starting MPI Programs Using File > New Program

In many cases, the way in which you invoke an MPI program within
TotalView control differs little from discipline to discipline. If you invoke
TotalView from the command line without an argument, TotalView displays
its File > New Program dialog box. (See Figure 1 on page 2.)

Figure 1: File > New
Program Dialog
Box

Debugging MPICH Applications

Setting Up MPI Programs: version 8.6 3

After entering program’s name (Start a new process should be selected by
default), select the Parallel tab. (See Figure 2 on page 3.)

You can now select the Parallel system, the number of Tasks, and Nodes. If
there are additional arguments that need to the sent to the starter process,
type them within the Additional starter arguments area. These arguments
are ones that are sent to a starter process such as mpirun or poe. They are
not arguments sent to your program.

If you need to add and initialize environment variables and command-line
options, select the Arguments tab and enter them.

In most cases, TotalView will remember what you type between invocations
of TotalView. For example, suppose you were debugging a program called
my_foo and set it up using these controls. The next time you start
TotalView, you can use the following command:

totalview my_foo

TotalView will remember what you entered so there is no need to respecify
these options.

Debugging MPICH Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

Figure 2: File > New
Program Dialog
Box: Parallel Tab

Debugging MPICH Applications

4 Chapter 1: Setting Up MPI Debugging Sessions

To debug Message Passing Interface/Chameleon Standard (MPICH) applica-
tions, you must use MPICH version 1.2.3 or later on a homogenous collec-
tion of computers. If you need a copy of MPICH, you can obtain it at no
cost from Argonne National Laboratory at www.mcs.anl.gov/mpi. (We
strongly urge that you use a later version of MPICH. The TotalView Platforms
and Systems Requirements document has information on versions that work
with TotalView.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem,
ch_lfshmem, or ch_mpl devices.

For networks of workstations, the default MPICH library is ch_p4.
For shared-memory SMP computers, use ch_shmem.
On an IBM SP computer, use the ch_mpl device.

The MPICH source distribution includes all of these devices. Choose the
device that best fits your environment when you configure and build MPICH.

When configuring MPICH, you must ensure that the MPICH library maintains all of
the information that TotalView requires. This means that you must use the
–enable-debug option with the MPICH configure command. (Versions earlier than
1.2 used the --debug option.) In addition, the <a href=”http://www.totalview-
tech.com/Support/release_notes.php”>TotalView Release Notes contains infor-
mation on patching your MPICH version 1.2.3 distribution.

For more information, see:

“Starting TotalView on an MPICH Job” on page 4
“Attaching to an MPICH Job” on page 5
“Using MPICH P4 procgroup Files” on page 7

Starting TotalView on an MPICH Job

Before you can bring an MPICH job under TotalView’s control, both
TotalView and the tvdsvr must be in your path. You can do this in a login or
shell startup script.

For version 1.1.2, the following command-line syntax starts a job under
TotalView control:

mpirun [MPICH-arguments] –tv program [program-arguments]

For example:

mpirun –np 4 –tv sendrecv

The MPICH mpirun command obtains information from the TOTALVIEW
environment variable and then uses this information when it starts the first
process in the parallel job.

For Version 1.2.4, the syntax changes to the following:

mpirun –dbg=totalview [other_mpich-args] program [program-args]

For example:

mpirun –dbg=totalview –np 4 sendrecv

Debugging MPICH Applications

Setting Up MPI Programs: version 8.6 5

In this case, mpirun obtains the information it needs from the –dbg com-
mand-line option.

In other contexts, setting this environment variable means that you can
use TotalView different versions or pass command-line options to
TotalView.

For example, the following is the C shell command that sets the TOTALVIEW
environment variable so that mpirun passes the –no_stop_all option to
TotalView:

setenv TOTALVIEW "totalview –no_stop_all"

TotalView begins by starting the first process of your job, the master process,
under its control. You can then set breakpoints and begin debugging your
code.

On the IBM SP computer with the ch_mpl device, the mpirun command
uses the poe command to start an MPI job. While you still must use the
MPICH mpirun (and its –tv option) command to start an MPICH job, the
way you start MPICH differs. For details on using TotalView with poe, see
“Starting TotalView on a PE Program” on page 20.

Starting TotalView using the ch_p4mpd device is similar to starting
TotalView using poe on an IBM computer or other methods you might use
on Sun and HP platforms. In general, you start TotalView using the
totalview command, with the following syntax;

totalview mpirun [totalview_args] –a [mpich-args] program [program-args]

As your program executes, TotalView automatically acquires the processes
that are part of your parallel job as your program creates them. Before
TotalView begins to acquire them, it asks if you want to stop the spawned
processes. If you click Yes, you can stop processes as they are initialized.
This lets you check their states or set breakpoints that are unique to the
process. TotalView automatically copies breakpoints from the master pro-
cess to the slave processes as it acquires them. Consequently, you don’t
have to stop them just to set these breakpoints.

If you’re using the GUI, TotalView updates the Root Window to show these
newly acquired processes. For more information, see “Attaching to Processes”
on page 27.

Attaching to an MPICH Job

TotalView lets you to attach to an MPICH application even if it was not
started under TotalView control.

To attach to an MPICH application:

1 Start TotalView.

CLI: totalviewcli mpirun [totalview_args] \
–a [mpich-args] program [program-args]

Debugging MPICH Applications

6 Chapter 1: Setting Up MPI Debugging Sessions

Select Attach to an existing process from within the File > New Program
dialog box. TotalView updates the dialog box so that it displays the pro-
cesses that are not yet owned.

2 Attach to the first MPICH process in your workstation cluster by diving
into it.

3 On an IBM SP with the ch_mpi device, attach to the poe process that
started your job. For details, see “Starting TotalView on a PE Program” on
page 20. The following figureFigure 3 shows this information.

Normally, the first MPICH process is the highest process with the correct
program name in the process list. Other instances of the same executable
can be:

The p4 listener processes if MPICH was configured with ch_p4.
Additional slave processes if MPICH was configured with ch_shmem or
ch_lfshmem.
Additional slave processes if MPICH was configured with ch_p4 and has
a file that places multiple processes on the same computer.

4 After you attach to your program’s processes, TotalView asks if you also
want to attach to slave MPICH processes. If you do, press Return or
choose Yes. If you do not, choose No.
If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.
As an alternative, you can use the Group > Attach Subset command to
predefine what TotalView should do. For more information, see “Attaching
to Processes” on page 27.

CLI: dattach executable pid

Figure 3: File > New
Program: Attach to
an Existing Process

Debugging MPICH2 Applications

Setting Up MPI Programs: version 8.6 7

If you are using TotalView Individual, all of your MPI processes must execute on the
computer on which you installed TotalView.

In some situations, the processes you expect to see might not exist (for
example, they may crash or exit). TotalView acquires all the processes it can
and then warns you if it can not attach to some of them. If you attempt to
dive into a process that no longer exists (for example, using a message
queue display), TotalView tells you that the process no longer exists.

Using MPICH P4 procgroup Files

If you’re using MPICH with a P4 procgroup file (by using the –p4pg option),
you must use the same absolute path name in your procgroup file and on
the mpirun command line. For example, if your procgroup file contains a
different path name than that used in the mpirun command, even though
this name resolves to the same executable, TotalView assumes that it is a
different executable, which causes debugging problems.

The following example uses the same absolute path name on the TotalView
command line and in the procgroup file:

% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun –p4pg p4group –tv /users/smith/mympichexe

In this example, TotalView does the following:

1 Reads the symbols from mympichexe only once.
2 Places MPICH processes in the same TotalView share group.
3 Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and

mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a prob-
lem occurred and you need to compare the contents of your procgroup file
and mpirun command line.

Debugging MPICH2 Applications

You should be using MPICH2 version 1.0.5p4 or higher. Earlier versions had problems
that prevented TotalView from attaching to all the processes or viewing message queue
data.

Downloading and Configuring MPICH2

You can download the current current MPICH2 version from:

http://www-unix.mcs.anl.gov/mpi/mpich/

Debugging MPICH2 Applications

8 Chapter 1: Setting Up MPI Debugging Sessions

If you wish to use all of the TotalView MPI features, you must configure
MPICH2. Do this by adding the following to the configure script that is
within the downloaded information:

- -enable-debuginfo - -enable-totalview

The configure script looks for the following file:

python2.x/config/Makefile

It fails if the file is not there.

The next steps are:

1 Run make
2 Run make install

This places the binaries and libraries in the directory specified by the
optional - -prefix option.

3 Set the PATH and LD_LIBRARY_PATH to point to the MPICH2 bin and lib
directories.

Starting the mpd Daemon

You must start the mpd daemon using the mpdboot command. For exam-
ple:

mpdboot -n 4 -f hostfile

where:

–n 4 Indicates the number of hosts upon which you wish to
run the daemon. In this example, the daemen runs of
four housrs

–f hostfile Is a list of the hosts upon which the application will
run. In this example, a file named hostfile contains this
list.

You are now ready to start debugging your application.

TotalView only supports jobs run using MPD. Using other daemons such as SMPD is
not supported.

Starting TotalView Debugging on an MPICH2 Job

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

TotalView lets you start an MPICH2 job in one of the following ways:

mpiexec mpi-args –tv program –a program-args
This command tells MPI to start TotalView. You will need
to set the TOTALVIEW environment variable to where
TotalView is located in your file system when you start a
program using mpiexec. For example:

setenv TOTALVIEW \
/opt/totalview/bin/totalview

Starting MPI Issues

Setting Up MPI Programs: version 8.6 9

This method of starting TotalView does not let you re-
start your program without exiting TotalView and you
will not be able to attach to a running MPI job.

totalview python -a `which mpiexec` \
–tvsu mpiexec-args program program-args

This command lets you restart your MPICH2 job. It also
lets you attach to a running MPICH2 job by using the
Attach to process options within the File > New
Program dialog box. You need to be careful that you at-
tach to the right instance of python as it is likely that a
few instances are running. The one to which you want to
attach has no attached children—child processes are in-
dented with a line showing the connection to the parent.

You may not see sources to your program at first. If
you do see the program, you can set breakpoints. In ei-
ther case, press the Go button. Your process will start
and TotalView displays a dialog box when your program
goes paralell that allows you to stop execution. (This is
the default behavior. You can change it using the op-
tions within File >Preferences >Parallel page.

You will also need to set the TOTALVIEW environment
variable as indicated in the previous method.

Starting MPI Issues

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

If you can’t successfully start TotalView on MPI programs, check the follow-
ing:

Can you successfully start MPICH programs without TotalView?
The MPICH code contains some useful scripts that let you verify that you
can start remote processes on all of the computers in your computers file.
(See tstmachines in mpich/util.)
You won’t get a message queue display if you get the following warning:
The symbols and types in the MPICH library used by
TotalView to extract the message queues are not as
expected in the image <your image name>. This is probably
an MPICH version or configuration problem.
You need to check that you are using MPICH Version 1.1.0 or later and that
you have configured it with the –debug option. (You can check this by
looking in the config.status file at the root of the MPICH directory tree.)
Does the TotalView Server (tvdsvr) fail to start?

MPI Rank Display

10 Chapter 1: Setting Up MPI Debugging Sessions

tvdsvr must be in your PATH when you log in. Remember that TotalView
uses rsh to start the server, and that this command doesn’t pass your cur-
rent environment to remotely started processes.
Make sure you have the correct MPI version and have applied all required
patches. See the <a href=”http://www.totalviewtech.com/Support/
release_notes.php” target=”_top”>TotalView Release Notes for up-
to-date information.
Under some circumstances, MPICH kills TotalView with the SIGINT signal.
You can see this behavior when you use the Group > Kill command as
the first step in restarting an MPICH job.

If TotalView exits and terminates abnormally with a Killed message, try set-
ting the TV::ignore_control_c variable to true.

MPI Rank Display

The Processes/Ranks Tab at the bottom of the Process Window contains a
grid that displays the status of each rank. For example, in Figure 4 on
page 10the following figure, six ranks are at a breakpoint, one is running,
and one is stopped.

Displaying the
Message Queue Graph Window

TotalView can graphically display your MPI program’s message queue state. If
you select the Process Window Tools > Message Queue Graph command,
TotalView displays a window that shows a graph of the current message
queue state. (See Figure 5.)

If you want to restrict what TotalView displays, you can select the Options
button. This is shown in Figure 6 on page 11the following figure.

CLI: dfocus g ddelete

Figure 4: Ranks Tab

Displaying the Message Queue Graph Window

Setting Up MPI Programs: version 8.6 11

Using commands and controls within this window, you can either alter the
way in which TotalView displays ranks within this window—for example, as
a grid or in a circle.

Using the commands within the Cycle Detection tab tells TotalView to lets
you know about cycles in your messages. This is a quick and efficient way
to detect when messages are blocking one another and causing deadlocks.

Perhaps the most used of these tabs is Filter. (See Figure 7 on page 12.)

The button colors used for selecting messages are the same as those used to
draw the lines and arrows in the Message Queue Graph Window, as follows:

Green: Pending Sends
Blue: Pending Receives
Red: Unexpected Messages

Figure 5: Tools > Message
Queue Graph Window

Figure 6: Tools > Message
Queue Graph Options
Window

Displaying the Message Queue Graph Window

12 Chapter 1: Setting Up MPI Debugging Sessions

You can directly select which ranks you want displayed in the lower part of
the window. The Filter on specified message tags area lets you name which
tags should be used as filters. Finally, you can select a group or a communi-
cator in the group pulldown, If you have created your own communicators
and groups, they will appear here.

Changes made within the Options dialog box do not occur until after you
click the Apply button. The graph window will then change to reflect your
changes.

The message queue graph shows your program’s state at a particular
instant. Selecting the Update button tells TotalView to fetch new informa-
tion and redraw the graph.

The numbers in the boxes within the Message Queue Graph Window indi-
cate the MPI message source or destination process rank. Diving on a box
tells TotalView to open a Process Window for that process.

The numbers next to the arrows indicate the MPI message tags that existed
when TotalView created the graph. Diving on an arrow tells TotalView to dis-
play its Tools > Message Queue Window, which has detailed information
about the messages. If TotalView has not attached to a process, it displays
this information in a grey box.

You can use the Message Queue Graph Window in many ways, including the
following:

Pending messages often indicate that a process can’t keep up with the
amount of work it is expected to perform. These messages indicate
places where you may be able to improve your program’s efficiency.
Unexpected messages can indicate that something is wrong with your
program because the receiving process doesn’t know how to process the
message. The red lines indicate unexpected messages.
After a while, the shape of the graph tends to tell you something about
how your program is executing. If something doesn’t look right, you
might want to determine why.

Figure 7: Tools > Message
Queue Graph Options.
Filter Tab

Displaying the Message Queue

Setting Up MPI Programs: version 8.6 13

You can change the shape of the graph by dragging nodes or arrows. This
is often useful when you’re comparing sets of nodes and their messages
with one another. Ordinarily, TotalView doesn’t remember the places to
which you have dragged the nodes and arrows. This means that if you se-
lect the Update button after you arrange the graph, your changes are
lost. However, if you select Keep nodes as positioned from with the
Options dialog box, updating the window does not change node posi-
tioning.

Displaying the Message Queue

The Tools > Message Queue Window displays your MPI program’s message
queue state textually. This can be useful when you need to find out why a
deadlock occurred.

The MPI versions for which we display the message queue are described in
our platforms guide. This document is contained within the online help and
is also available on our web site at <a href=”http://www.totalview-
tech.com/Documentation/”>http://www.totalviewtech.com/Documenta-
tion/

For more information, see:

“About the Message Queue Display” on page 13
“Using Message Operations” on page 13

About the Message Queue Display

After an MPI process returns from the call to MPI_Init(), you can display the
internal state of the MPI library by selecting the Tools > Message Queue
command.

This window displays the state of the process’s MPI communicators. If
user-visible communicators are implemented as two internal communica-
tor structures, TotalView displays both of them. One is used for point-to-
point operations and the other is used for collective operations.

You cannot edit any of the fields in the Message Queue Window.

The contents of the Message Queue Window are only valid when a process
is stopped.

Using Message Operations

For each communicator, TotalView displays a list of pending receive opera-
tions, pending unexpected messages, and pending send operations. Each

Displaying the Message Queue

14 Chapter 1: Setting Up MPI Debugging Sessions

operation has an index value displayed in brackets ([n]). The online Help for
this window contains a description of the fields that you can display.

For more information, see:

“Diving on MPI Processes” on page 14
“Diving on MPI Buffers” on page 14
“About Pending Receive Operations” on page 15
“About Unexpected Messages” on page 15
“About Pending Send Operations” on page 15

Diving on MPI Processes
To display more detail, you can dive into fields in the Message Queue Window.
When you dive into a process field, TotalView does one of the following:

Raises its Process Window if it exists.
Sets the focus to an existing Process Window on the requested process.
Creates a new Process Window for the process if a Process Window
doesn’t exist.

Diving on MPI Buffers
When you dive into the buffer fields, TotalView opens a Variable Window. It
also guesses what the correct format for the data should be based on the
buffer length and the data alignment. You can edit the Type field within the
Variable Window, if necessary.

TotalView doesn’t use the MPI data type to set the buffer type.

Figure 8: Message Queue
Window

Displaying the Message Queue

Setting Up MPI Programs: version 8.6 15

About Pending Receive Operations
TotalView displays each pending receive operation in the Pending receives
list. Figure 9The following figure shows an example of an MPICH pending
receive operation.

TotalView displays all receive operations maintained by the IBM MPI library. Set the
environment variable MP_EUIDEVELOP to the value DEBUG if you want blocking
operations to be visible; otherwise, the library only maintains nonblocking operations.
For more details on the MP_EUIDEVELOP environment variable, see the IBM Parallel
Environment Operations and Use manual.

About Unexpected Messages
The Unexpected messages portion of the Message Queue Window shows
information for retrieved and enqueued messages that are not yet matched
with a receive operation.

Some MPI libraries, such as MPICH, only retrieve messages that have
already been received as a side effect of calls to functions such as
MPI_Recv() or MPI_Iprobe(). (In other words, while some versions of MPI
may know about the message, the message may not yet be in a queue.)
This means that TotalView can’t list a message until after the destination
process makes a call that retrieves it.

About Pending Send Operations
TotalView displays each pending send operation in the Pending sends list.

MPICH does not normally keep information about pending send opera-
tions. If you want to see them, start your program under TotalView control
and use the mpirun –ksq or –KeepSendQueue command.

Depending on the device for which MPICH was configured, blocking send
operations may or may not be visible. However, if TotalView doesn’t display
them, you can see that these operations occurred because the call is in the
stack backtrace.

Figure 9: Message Queue
Window Showing Pending
Receive Operation

Debugging Cray MPI Applications

16 Chapter 1: Setting Up MPI Debugging Sessions

If you attach to an MPI program that isn’t maintaining send queue informa-
tion, TotalView displays the following message:

Pending sends : no information available

Debugging Cray MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2

Specific information on debugging Cray MPI applications is located in our
discussion of running TotalView on Cray platforms.

Debugging HP Tru64 Alpha MPI
Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

To use TotalView with HP Tru64 Alpha MPI applications, you must use HP
Tru64 Alpha MPI version 1.7 or later.

Starting TotalView on an HP Alpha MPI Job

In most cases, you start an HP Alpha MPI program by using the dmpirun
command. The command for starting an MPI program under TotalView con-
trol is similar; it uses the following syntax:

{ totalview | totalviewcli } dmpirun –a dmpirun-command-line

This command invokes TotalView and tells it to show you the code for the
main program in dmpirun. Since you’re not usually interested in debugging
this code, use the Process > Go command to let the program run.

The dmpirun command runs and starts all MPI processes. After TotalView
acquires them, it asks if you want to stop them.

CLI: dfocus p dgo

Debugging HP MPI Applications

Setting Up MPI Programs: version 8.6 17

Problems can occur if you rerun HP Alpha MPI programs that are under TotalView con-
trol because resource allocation issues exist within HP Alpha MPI. The HP Alpha MPI
documentation contains information on using mpiclean to clean up the MPI system
state.

Attaching to an HP Alpha MPI Job

To attach to a running HP Alpha MPI job, attach to the dmpirun process
that started the job. The procedure for attaching to a dmpirun process is
the same as the procedure for attaching to other processes. You can also
use the Group > Attach Subset command which is discussed in “Attaching to
Processes” on page 27.

After you attach to the dmpirun process, TotalView asks if you also want to
attach to slave MPICH processes. If you do, press Return or choose Yes. If
you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

Debugging HP MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

You can debug HP MPI applications on a PA-RISC 1.1 or 2.0 processor. To use
TotalView with HP MPI applications, you must use HP MPI versions 1.6 or 1.7.

Starting TotalView on an HP MPI Job

TotalView lets you start an MPI program in one of the following ways:

{ totalview | totalviewcli } program –a mpi-arguments
This command tells TotalView to start the MPI process.
TotalView then shows you the machine code for the HP
MPI mpirun executable.

mpirun mpi-arguments –tv program
This command tells MPI to start TotalView. You will need
to set the TOTALVIEW environment variable to where
TotalView is located in your file system when you start a
program using mpirun. For example:

setenv TOTALVIEW \
/opt/totalview/bin/totalview

CLI: dfocus p dgo

Debugging IBM MPI Paralle Environment (PE) Applications

18 Chapter 1: Setting Up MPI Debugging Sessions

mpirun mpi-arguments –tv –f startup_file
This command tells MPI to start TotalView and then
start the MPI processes as they are defined in the
startup_file script. This file names the processes that
MPI starts. Typically, this file has contents that are simi-
lar to:

-h aurora –np 8/path/to/program
-h borealis –np 8 /path/to/program1

Your HP MPI documentation describes the contents of
this startup file. These contents include the remote
host name, environment variables, number of pro-
cesses, programs, and so on. As is described in the
previous example, you must set the TOTALVIEW envi-
ronment variable.

Just before mpirun starts your MPI processes, TotalView acquires them and
asks if you want to stop the processes before they start executing. If you
answer yes, TotalView halts them before they enter the main() routine. You
can then create breakpoints.

Attaching to an HP MPI Job

To attach to a running HP MPI job, attach to the HP MPI mpirun process
that started the job. The procedure for attaching to an mpirun process is
the same as the procedure for attaching to any other process.

After TotalView attaches to the HP MPI mpirun process, it displays the
same dialog box as it does with MPICH. (See step 4 on page 6 of “Attaching
to an MPICH Job” on page 5.)

Debugging IBM MPI Paralle
Environment (PE) Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

You can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of TotalView’s ability to automatically acquire processes,
you must be using release 3,1 or later of the Parallel Environment for AIX.

Topics in this section are:

“Preparing to Debug a PE Application” on page 19
“Starting TotalView on a PE Program” on page 20

Debugging IBM MPI Paralle Environment (PE) Applications

Setting Up MPI Programs: version 8.6 19

“Setting Breakpoints” on page 20
“Starting Parallel Tasks” on page 20
“Attaching to a PE Job” on page 21

Preparing to Debug a PE Application

The following sections describe what you must do before TotalView can
debug a PE application.

Using Switch-Based Communications
If you’re using switch-based communications (either IP over the switch or user
space) on an SP computer, you must configure your PE debugging session so
that TotalView can use IP over the switch for communicating with the
TotalView Server (tvdsvr). Do this by setting the –adapter_use option to
shared and the –cpu_use option to multiple, as follows:

If you’re using a PE host file, add shared multiple after all host names or
pool IDs in the host file.
Always use the following arguments on the poe command line:
–adapter_use shared –cpu_use multiple

If you don’t want to set these arguments on the poe command line, set the
following environment variables before starting poe:

setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple

When using IP over the switch, the default is usually shared adapter use and
multiple cpu use; we recommend that you set them explicitly using one of
these techniques. You must run TotalView on an SP or SP2 node. Since
TotalView will be using IP over the switch in this case, you cannot run
TotalView on an RS/6000 workstation.

Performing a Remote Login
You must be able to perform a remote login using the rsh command. You
also need to enable remote logins by adding the host name of the remote
node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries
to start the TotalView Server by using the rsh command with the switch
host name of the node.

Setting Timeouts
If you receive communications timeouts, you can set the value of the
MP_TIMEOUT environment variable; for example:

setenv MP_TIMEOUT 1200

If this variable isn’t set, TotalView uses a timeout value of 600 seconds.

Debugging IBM MPI Paralle Environment (PE) Applications

20 Chapter 1: Setting Up MPI Debugging Sessions

Starting TotalView on a PE Program

The following is the syntax for running Parallel Environment (PE) programs
from the command line:

program [arguments] [pe_arguments]

You can also use the poe command to run programs as follows:

poe program [arguments] [pe_arguments]

If, however, you start TotalView on a PE application, you must start poe as
TotalView’s target using the following syntax:

{ totalview | totalviewcli } poe –a program [arguments] [PE_arguments]

For example:

totalview poe –a sendrecv 500 –rmpool 1

Setting Breakpoints

After TotalView is running, start the poe process using the Process > Go com-
mand.

TotalView responds by displaying a dialog box—in the CLI, it prints a ques-
tion—that asks if you want to stop the parallel tasks.

If you want to set breakpoints in your code before they begin executing,
answer Yes. TotalView initially stops the parallel tasks, which also allows
you to set breakpoints. You can now set breakpoints and control parallel
tasks in the same way as any process controlled by TotalView.

If you have already set and saved breakpoints with the Action Point > Save
All command, and you want to reload the file, answer No. After TotalView
loads these saved breakpoints, the parallel tasks begin executing.

Starting Parallel Tasks

After you set breakpoints, you can start all of the parallel tasks with the
Process Window Group > Go command.

No parallel tasks reach the first line of code in your main routine until all parallel tasks
start.

Be very cautious in placing breakpoints at or before a line that calls
MPI_Init() or MPL_Init() because timeouts can occur while your program is

CLI: dfocus p dgo

CLI: dactions –save filename
dactions –load filename

CLI: dfocus G dgo
Abbreviation: G

Debugging IBM MPI Paralle Environment (PE) Applications

Setting Up MPI Programs: version 8.6 21

being initialized. After you allow the parallel processes to proceed into the
MPI_Init() or MPL_Init() call, allow all of the parallel processes to proceed
through it within a short time. For more information on this, see “Avoid
unwanted timeouts” on page 32.

Attaching to a PE Job

To take full advantage of TotalView’s poe-specific automation, you need to
attach to poe itself, and let TotalView automatically acquire the poe pro-
cesses on all of its nodes. In this way, TotalView acquires the processes you
want to debug.

Attaching from a Node Running poe
To attach TotalView to poe from the node running poe:

1 Start TotalView in the directory of the debug target.
If you can’t start TotalView in the debug target directory, you can start
TotalView by editing the tvdsvr command line before attaching to poe.

2 In the File > New Program dialog box, select Attach to an existing process,
then find the poe process list, and attach to it by diving into it. When nec-
essary, TotalView launches tvdsvrs. TotalView also updates the Root
Window and opens a Process Window for the poe process.

3 Locate the process you want to debug and dive on it. TotalView responds
by opening a Process Window for it. If your source code files are not dis-
played in the Source Pane, you might not have told TotalView where these
files reside. You can fix this by invoking the File > Search Path command
to add directories to your search path.

Attaching from a Node Not Running poe
The procedure for attaching TotalView to poe from a node that is not run-
ning poe is essentially the same as the procedure for attaching from a node
that is running poe. Since you did not run TotalView from the node running
poe (the startup node), you won’t be able to see poe on the process list in
the Root Window and you won’t be able to start it by diving into it.

To place poe in this list:

1 Connect TotalView to the startup node.
2 Select the File > New Program dialog box, and select Attach to an existing

process.
3 Look for the process named poe and continue as if attaching from a node

that is running poe.

CLI: dattach poe pid

CLI: dattach -r hostname poe poe-pid

Debugging IBM Blue Gene Applications

22 Chapter 1: Setting Up MPI Debugging Sessions

Debugging IBM Blue Gene
Applications

While the way in which you debug IBM Blue Gene MPI programs is identical
to the way in which you debug these programs on other platforms, starting
TotalView on your program differs slightly. Unfortunately, each machine is
configured differently so you’ll need to find information in IBM’s documen-
tation or in documentation created at your site.

Nevertheless, the remainder of this section will present some hints.

In general, you will either launch mpirun under debugger control or start
TotalView and attach to an already running mpirun. For example:

{ totalview | totalviewcli } mpirun –a mpirun-command-line

TotalView tells mpirun to launch TotalView Debug Servers on each Blue
Gene I/O nodes.

Because I/O nodes cannot resolve network names, TotalView must pass the
address of the front-end node interface to the servers on the I/O nodes.
This is usually not the same interface that is generally used to connect to
the front-end node. TotalView assumes that the address can be resolved by
using a name that is:

front-end-hostname-io.

For example, if the hostname of the front-end is fred, the servers will con-
nect to fred-io.

The systems at the IBM Blue Gene Capacity on Demand follow this convention. If you
are executing programs there, you will not need to set the TotalView variables described
in the rest of this section.

If the front-end cannot resolve this name, you must supply the name of the
interface using the –local_interface command-line option or by setting the
bluegene_io_interface TotalView variable. (This variable is described in the
Chapter 4 of the TotalView Reference Guide.)

Because the same version of TotalView must be able to debug both Power-
Linux programs (for example, mpirun) and Blue Gene programs, TotalView
uses a Blue Gene-specific server launch string. You can define this launch
string by setting the bluegene_server_launch_string TotalView variable or
command-line option.

You must set this variable in a tvdrc file. This differs from other TotalView launch
strings, which you can set using the File > Preferences Dialog Box.

The default value for the bluegene_server_launch_string variable is:

Debugging LAM/MPI Applications

Setting Up MPI Programs: version 8.6 23

–callback %L –set_pw %P -verbosity %V %F

In this string, %L is the address of the front-end node interface used by the
servers. The other substitution arguments have the same meaning as they
do in a normal server launch string. These substitution arguments are dis-
cussed in Chapter 7 of the TotalView Reference Guide.

Debugging LAM/MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

The following is a description of the LAM/MPI implementation of the MPI
standard. Here are the first two paragraphs of Chapter 2 of the “LAM/MPI
User’s Guide”. You can find You can obtain this document by going to the
LAM documentation page, which is: http://www.lam-mpi.org/using/docs/.

“LAM/MPI is a high-performance, freely available, open source implemen-
tation of the MPI standard that is researched, developed, and maintained
at the Open Systems Lab at Indiana University. LAM/MPI supports all of
the MPI-1 Standard and much of the MPI-2 standard. More information
about LAM/MPI, including all the source code and documentation, is
available from the main LAM/MPI web site.

“LAM/MPI is not only a library that implements the mandated MPI API, but
also the LAM run-time environment: a user-level, daemon-based run-time
environment that provides many of the services required by MPI pro-
grams. Both major components of the LAM/MPI package are designed as
component frameworks—extensible with small modules that are select-
able (and configurable) at run-time. ...

You debug a LAM/MPI program in a similar way to how you debug most MPI
programs. Use the following syntax if TotalView is in your path:

mpirun –tv args prog prog_args

As an alternative, you can invoke TotalView on mpirun:

totalview mpirun –a prog prog_args

The LAM/MPI User’s Guide discusses how to use TotalView to debug LAM/
MPI programs.

Debugging QSW RMS Applications

24 Chapter 1: Setting Up MPI Debugging Sessions

Debugging QSW RMS Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

TotalView supports automataic process acquistion on AlphaServer SC sys-
tems and 32-bit Red Hat Linux systems that use Quadrics RMS resource
management system with the QSW switch technology.

Message queue display is only supported if you are running version 1, patch 2 or later,
of AlphaServer SC.

Starting TotalView on an RMS Job

To start a parallel job under TotalView control, use TotalView as if you were
debugging prun:

{ totalview | totalviewcli } prun –a prun-command-line

TotalView starts and shows you the machine code for RMS prun. Since
you’re not usually interested in debugging this code, use the Process > Go
command to let the program run.

The RMS prun command executes and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
answer yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

Attaching to an RMS Job

To attach to a running RMS job, attach to the RMS prun process that
started the job. You attach to the prun process the same way you attach to
other processes.

After you attach to the RMS prun process, TotalView asks if you also want
to attach to slave MPICH processes. If you do, press Return or choose Yes.
If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all
MPI processes.

As an alternative, you can use the Group > Attach Subset command to pre-
define what TotalView should do. For more information, see “Attaching to
Processes” on page 27.

CLI: dfocus p dgo

Debugging SiCortex MPI Applications

Setting Up MPI Programs: version 8.6 25

Debugging SiCortex MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2

Specific information on debugging SiCortex MPI applications is located in
our discussion of running TotalView on SiCortex platforms.

Debugging SGI MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

TotalView can acquire processes started by SGI MPI applications. This MPI
is part of the Message Passing Toolkit (MPT) 1.3 and 1.4 packages.
TotalView can display the Message Queue Graph Window for these
releases. See “Displaying the Message Queue Graph Window” on page 10 for
message queue display.

Starting TotalView on an SGI MPI Job

You normally start SGI MPI programs by using the mpirun command. You
use a similar command to start an MPI program under debugger control, as
follows:

{ totalview | totalviewcli } mpirun –a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for
mpirun. Since you’re not usually interested in debugging this code, use the
Process > Go command to let the program run.

The SGI MPI mpirun command runs and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
answer Yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

If you set a verbosity level that allows informational messages, TotalView
also prints a message that shows the name of the array and the value of
the array services handle (ash) to which it is attaching.

CLI: dfocus p dgo

Debugging Sun MPI Applications

26 Chapter 1: Setting Up MPI Debugging Sessions

Attaching to an SGI MPI Job

To attach to a running SGI MPI program, attach to the SGI MPI mpirun pro-
cess that started the program. The procedure for attaching to an mpirun
process is the same as the procedure for attaching to any other process.

After you attach to the mpirun process, TotalView asks if you also want to
attach to slave MPICH processes. If you do, press Return or choose Yes. If
you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

As an alternative, you can use the Group > Attach Subset command to pre-
define what TotalView will do. For more information, see “Attaching to Pro-
cesses” on page 27.

Debugging Sun MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 2.

TotalView can debug a Sun MPI program and can display Sun MPI message
queues. This section describes how to perform job startup and job attach opera-
tions.

To start a Sun MPI application, use the following procedure.

1 Type the following command:
totalview mprun [totalview_args] –a [mpi_args]
For example:
totalview mprun –g blue –a –np 4 /usr/bin/mpi/conn.x

When the TotalView Process Window appears, select the Go button.

TotalView may display a dialog box with the following text:
Process mprun is a parallel job. Do you want to stop
the job now?

2 If you compiled using the –g option, click Yes to tell TotalView to open a
Process Window that shows your source. All processes are halted.

CLI: totalviewcli mprun [totalview_args] –a [mpi_args]

CLI: dfocus p dgo

Debugging Parallel Applications Tips

Setting Up MPI Programs: version 8.6 27

Attaching to a Sun MPI Job

To attach to an already running mprun job:

1 Find the host name and process identifier (PID) of the mprun job by typing
mpps –b. For more information, see the mpps(1M) manual page.
The following is sample output from this command:
JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc-u2-9
cre.100 12601 hpc-u2-8

2 After selecting File > New Program, type mprun in the Executable field
and type the PID in the Process ID field.

3 If TotalView is running on a different node than the mprun job, enter the
host name in the Remote Host field.

Debugging Parallel Applications Tips

This section contains information about debugging parallel programs:

“Attaching to Processes” on page 27
“Parallel Debugging Tips” on page 30
“MPICH Debugging Tips” on page 32
“IBM PE Debugging Tips” on page 32

Attaching to Processes

In a typical multi-process job, you’re interested in what’s occurring in some
of your processes and not as much interested in others. By default,
TotalView tries to attach to all of the processes that your program starts. If
there are a lot of processes, there can be considerable overhead involved
in opening and communicating with the jobs.

You can minimize this overhead by using the Group > Attach Subset com-
mand, which displays the dialog box shown in the folliwng figureFigure 10.

TotalView lets you start MPI jobs in two ways. One requires that the starter program be
under TotalView control and have special instrumentation for TotalView while the other
does not. In the first case, you will enter the name of the starter program on the com-

CLI: dattach mprun mprun-pid
For example:

dattach mprun 12601

CLI: dattach –r host-name mprun mprun-pid

Debugging Parallel Applications Tips

28 Chapter 1: Setting Up MPI Debugging Sessions

mand line. The other requires that you enter information into the File > New Program
or Process > Startup Parameters dialog boxes. The Attach Subset command is only
available if you directly name a starter program on the command line.

Selecting boxes on the left side of the list tells TotalView which processes it
should attach to. Although your program will launch all of these processes,
TotalView only attaches to the processes that you have selected.

The controls under the All and the None buttons let you limit which pro-
cesses TotalView automatically attaches to, as follows:

The Communicator control specifies that the processes must be involved
with the communicators that you select. For example, if something goes
wrong that involves a communicator, selecting it from the list tells
TotalView to only attach to the processes that use that communicator.
The Talking to Rank control further limits the processes to those that you
name here. Most of the entries in this list are just the process numbers.
In most cases, you would select All or MPI_ANY_SOURCE.
The three checkboxes in the Message Type area add yet another qualifier.
Checking a box tells TotalView to only display communicators that are in-
volved with a Send, Receive, or Unexpected message.

After you find the problem, you can detach from these nodes by selecting
None. In most cases, use the All button to select all the check boxes, then
clear the ones that you’re not interested in.

Many applications place values that indicate the rank in a variable so that
the program can refer to them as they are needed. If you do this, you can
display the variable in a Variable Window and then select the Tools > Attach
Subset (Array of Ranks) command to display this dialog box.

Figure 10: Group > Attach
Subset Dialog Box

Debugging Parallel Applications Tips

Setting Up MPI Programs: version 8.6 29

You can use the Group > Attach Subset command at any time, but you
would probably use it immediately before TotalView launches processes.
Unless you have set preferences otherwise, TotalView stops and asks if you
want it to stop your processes. When selected, the Halt control group
check box also tells TotalView to stop a process just before it begins exe-
cuting. (See Figure 11 on page 29.)

The commands on the Parallel Page in the File > Preferences Dialog Box let
you control what TotalView does when your program goes parallel. (See
Figure 12.)

TotalView only displays the preceding question box when you directly name a starter
program on the command line.

The radio button in the When a job goes parallel or calls exec() area lets
TotalView:

Stop the group: Stop the control group immediately after the processes
are created.
Run the group: Allow all newly created processes in the control group to
run freely.

Figure 11: Stop Before Going
Parallel Question Box

Figure 12: File > Preferences:
Parallel Page

Debugging Parallel Applications Tips

30 Chapter 1: Setting Up MPI Debugging Sessions

Ask what to do: Ask what should occur. If you select this option,
TotalView asks if it should start the created processes.

The radio buttons in the When a job goes parallel area let TotalView:

Attach to all: Automatically attach to all processes when they begin exe-
cuting.
Attach to none: Does not attach to any created process when it begins
executing.
Ask what to do: Asks what should occur. If you select this option,
TotalView opens the same dialog box that is displayed when you select
Group > Attach Subset. TotalView then attaches to the processes that
you have selected. This dialog box isn’t displayed when you set the pref-
erence. Instead, it controls what happens when your program creates
parallel processes.

Parallel Debugging Tips

The following tips are useful for debugging most parallel programs:

Setting Breakpoint behavior
When you’re debugging message-passing and other multi-process pro-
grams, it is usually easier to understand the program’s behavior if you
change the default stopping action of breakpoints and barrier break-
points. By default, when one process in a multi-process program hits a
breakpoint, TotalView stops all the other processes.
To change the default stopping action of breakpoints and barrier break-
points, you can set debugger preferences. The online Help contains infor-
mation on these preference. These preferences tell TotalView whether to
continue to run when a process or thread hits the breakpoint.
These options only affect the default behavior. You can choose a behavior
for a breakpoint by setting the breakpoint properties in the File >
Preferences Action Points Page.
Synchronizing Processes
TotalView has two features that make it easier to get all of the processes
in a multi-process program synchronized and executing a line of code.
Process barrier breakpoints and the process hold/release features work
together to help you control the execution of your processes.
The Process Window Group > Run To command is a special stepping com-
mand. It lets you run a group of processes to a selected source line or
instruction.
Using group commands
Group commands are often more useful than process commands.

CLI: dset TV::parallel_stop

CLI: dset TV::parallel_attach

Debugging Parallel Applications Tips

Setting Up MPI Programs: version 8.6 31

It is often more useful to use the Group > Go command to restart the
whole application instead of the Process > Go command.

You would then use the Group > Halt command instead of Process > Halt
to stop execution.

The group-level single-stepping commands such as Group > Step and
Group > Next let you single-step a group of processes in a parallel.

Stepping at Process-level
If you use a process-level single-stepping command in a multi-process pro-
gram, TotalView may appear to hang (it continuously displays the watch
cursor). If you single-step a process over a statement that can’t complete
without allowing another process to run, and that process is stopped, the
stepping process appears to hang. This can occur, for example, when you
try to single-step a process over a communication operation that cannot
complete without the participation of another process. When this happens,
you can abort the single-step operation by selecting Cancel in the Waiting
for Command to Complete Window that TotalView displays. As an alterna-
tive, consider using a group-level single-step command.

TotalView Technologies receives many bug reports about processes being hung. In
almost all cases, the reason is that one process is waiting for another. Using the Group
debugging commands almost always solves this problem.

Determining which processes and threads are executing
The Root Window helps you determine where various processes and
threads are executing. When you select a line of code in the Process Win-
dow, the Root Window updates to show which processes and threads are
executing that line.
Viewing variable values
You can view the value of a variable that is replicated across multiple pro-
cesses or multiple threads in a single Variable Window.
Restarting from within TotalView
You can restart a parallel program at any time. If your program runs past
the point you want to examine, you can kill the program by selecting the

CLI: dfocus g dgo
Abbreviation: G

CLI: dfocus g dhalt
Abbreviation: H

CLI: dfocus g dstep
Abbreviation: S
dfocus g dnext
Abbreviation: N

CLI: Type Ctrl+C

Debugging Parallel Applications Tips

32 Chapter 1: Setting Up MPI Debugging Sessions

Group > Kill command. This command kills the master process and all the
slave processes. Restarting the master process (for example, mpirun or
poe) recreates all of the slave processes. Start up is faster when you do
this because TotalView doesn’t need to reread the symbol tables or
restart its tvdsvr processes, since they are already running.

MPICH Debugging Tips

The following debugging tips apply only to MPICH:

Passing options to mpirun
You can pass options to TotalView using the MPICH mpirun command.
To pass options to TotalView when running mpirun, you can use the
TOTALVIEW environment variable. For example, you can cause mpirun to
invoke TotalView with the –no_stop_all option, as in the following C shell
example:
setenv TOTALVIEW "totalview –no_stop_all"
Using ch_p4
If you start remote processes with MPICH/ch_p4, you may need to change
the way TotalView starts its servers.
By default, TotalView uses rsh to start its remote server processes. This is
the same behavior as ch_p4 uses. If you configure ch_p4 to use a different
start-up mechanism from another process, you probably also need to
change the way that TotalView starts the servers.

IBM PE Debugging Tips

The following debugging tips apply only to IBM MPI (PE):

Avoid unwanted timeouts
Timeouts can occur if you place breakpoints that stop other processes
too soon after calling MPI_Init() or MPL_Init(). If you create “stop all”
breakpoints, the first process that gets to the breakpoint stops all the
other parallel processes that have not yet arrived at the breakpoint. This
can cause a timeout.
To turn the option off, select the Process Window Action Point >
Properties command while the line with the stop symbol is selected. After
the Properties Dialog Box appears, select the Process button in the When
Hit, Stop area, and also select the Plant in share group button.

Control the poe process
Even though the poe process continues under debugger control, do not
attempt to start, stop, or otherwise interact with it. Your parallel tasks
require that poe continues to run. For this reason, if poe is stopped,
TotalView automatically continues it when you continue any parallel task.
Avoid slow processes due to node saturation

CLI: dfocus g dkill

CLI: dbarrier location –stop_when_hit process

Debugging Parallel Applications Tips

Setting Up MPI Programs: version 8.6 33

If you try to debug a PE program in which more than three parallel tasks
run on a single node, the parallel tasks on each node can run noticeably
slower than they would run if you were not debugging them.
In general, the number of processes running on a node should be the
same as the number of processors in the node.
This becomes more noticeable as the number of tasks increases, and, in
some cases, the parallel tasks does not progress. This is because PE uses
the SIGALRM signal to implement communications operations, and AIX
requires that debuggers must intercept all signals. As the number of par-
allel tasks on a node increases, TotalView becomes saturated and can’t
keep up with the SIGALRM signals being sent, thus slowing the tasks.

Debugging Parallel Applications Tips

34 Chapter 1: Setting Up MPI Debugging Sessions

Setting Up MPI Programs: version 8.6 35

c
h
a
p
t
e
r

MPI Startup

2

Overview

TotalView Technologies products know about different MPI implementa-
tions. Because so many implementations are standard, our products usu-
ally do the right thing. Unfortunately, subtle differences in your environ-
ment or an implementation can cause difficulties that prevent our products
from automatically starting your program. In these cases, you must declare
what needs to be done.

The following explanation is for TotalView and MemoryScape.

The only way MemoryScape users can alter the way an MPI program stars
up is by altering the parallel_support.tvd file, which is contained within the
totalview/lib installation directory area. TotalView users can also alter this
file and they can create a local definition.

If you are using a locally-installed MPI implementation, you should add it to
your PATH variable. By default, our products use the information in PATH to
find the parallel launcher (for example, mpirun, mpiexec, poe, srun, prun,
dmpirun, and so on). Generally, if you can run your parallel job from a com-
mand line, TotalView and MemoryScape can alo run it.

If you have multiple installed MPI systems—for example, multiple versions
of MPICH installed on a common file server—only one can be in your path.
In this case, you would need to specify an absolute path to launch it, which
means you will need to customize the TV::parallel_configs list variable or
the parallel_support.tvd file contained within your installation directory so
that it does not rely on your PATH variable.

The easiest way to create your own startup configuration is to copy a simi-
lar configuration from the TV::private::parallel_configs_base variable to the
TV::parallel_configs variable, then make changes.

Customizing Your Parallel Configuration

36 Chapter 2: MPI Startup

When you add configurations, they are simply added to a list. This means
that if TotalView Technologies supplies a definition named foo and you cre-
ate a definition named foo, both exist and your product chooses the first
one in the list. Because both are displayed, you must be careful to give
each new definition a unique names.

Customizing Your Parallel
Configuration

The File > New dialog box (TotalView) or the Add parallel program screen
(MemoryScape) lets you select a parallel configuration. If the default con-
figurations that TotalView Technologies provides do not meet your needs,
you can either overwrite these configurations or create new ones by setting
the TV::parallel_configs variable. Here are three examples:

dset TV::parallel_configs {
 #Argonne MPICH
 name: MPICH;
 description: Argonne MPICH;
 starter: mpirun -tv -ksq %s %p %a;
 style: setup_script;
 tasks_option: -np;
 nodes_option: -nodes;
 env_style: force;
 pretest: mpichversion;

 #Argonne MPICH2
 name: MPICH2;
 description: Argonne MPICH2;
 starter: $mpiexec -tvsu %s %p %a;
 style: manager_process;
 tasks_option: -n;
 env_option: -env;
 env_style: assign_space_repeat;
 comm_world: 0x44000000;
 pretest: mpich2version

 # AIX POE
 name: poe - AIX;
 description: IBM PE - AIX;
 tasks_option: -procs;
 tasks_env: MP_PROCS;
 nodes_option: -nodes;
 starter: /bin/poe %p %a %s;
 style: bootstrap;
 env: NLSPATH=/usr/lib/nls/msg/%L/%N/: \
 /usr/lib/nls/msg/%L/%N.cat;
 service_tids: 2 3 4;

Customizing Your Parallel Configuration

Setting Up MPI Programs: version 8.6 37

 comm_world: 0;
 pretest: test -x /bin/poe
 msq_lib: /usr/lpp/ppe.poe/lib/%m
 }

All lines (except for comments) end with a semi-colon (;). Add spaces freely to
make what you enter readable as TotalView and MemoryScape ignore them.

Notice that the MPICH2 definition contains the $mpiexec variable. This
variable is defined elsewhere in the parallel_support.tvd file as follows:

 set mpiexec mpiexec;

There is no limit to how many definitions you can place within the
parallel_support.tvd file or within a variable. The definitions you create will
appear in the Parallel system pulldown list in the File > New dialog box
(TotalView) or the Add parallel program screen (MemoryScape) and can be
used an argument to the –mpi option of the CLI's dload command.

When running TotalView, you can set this variable in two places:

Your system's .tvdrc file. If you set this variable here, everyone using this
TotalView version will see the definition.
Your .totalview/tvdrc file. You will be the only person to see this definition
when you start TotalView.

The fields that you can set are as follows:

comm_world Only use this option when style is set to bootstrap. This
variable is the definition of MPI_COMM_WORLD in C and
C++. MPI_COMM_WORLD is usually a #define or enum
to a special number or a pointer value. If you do not
include this field, TotalView and MemoryScape cannot
acquire the rank for each MPI process.

description (optional) A string describing what the configuration is
used for. There is no length limit.

env (optional) Defines environment variables that are placed
in the starter program's environment. (Depending on how
the starter works, these variables may not make their way
into the actual ranked processes.) If you are defining
more than one environment variable, define each in its
own env clause.

The format to use is:

variable_name=value

env_option (optional) Names the command-line option that exports
environment variables to the tasks started by the
launcher program. Use this option along with the
env_style field.

env_style (optional) Contains a list of environment variables that
are passed to tasks.

assign: The argument to be inserted to the command-line
option named in env_option is a comma-separated list of
environment variable name=value pairs; that is,

Customizing Your Parallel Configuration

38 Chapter 2: MPI Startup

NAME1=VALUE1,NAME2=VALUE2,NAME3=VALUE3

This option is ignored if you do not use an env_option
clause.

assign_space_repeat: The argument after env_option is a
space-separated name/value pair that is assigned to an
environment variable. The command within env_option is
repeated for each environment variable; that is, suppose
you enter:

–env NAME1 VALUE1 –env NAME2 VALUE2
–env NAME3 VALUE3

This mode is primarily used for the mpiexec.py MPICH2
starter program.

excenv: ???

export: The argument to be inserted after the command
named in env_option. This is a comma-separated list of
environment variable names; that is,

NAME1,NAME2,NAME3

This option is ignored if you do not use the env_option
clause.

force: Environment variables are forced into the ranked
processes using a shell script. TotalView or MemoryScape
will generate a script that launches the target program. The
script also tells the starter to run that script. This clause
requires that your home directory be visible on all remote
nodes. In most cases, you will use this option when you
need to dynamically link memory debugging into the tar-
get. While this option does not work with all MPI imple-
mentations, it is the most reliable method for MPICH1.

none: No argument is inserted after env_option.

msq_lib (optional) Names the dynamically loaded library that
TotalView and MemoryScape use when it needs to locate
message queue information. You can name this file using
either a relative or full pathname.

name A short name describing the configuration. This name
shows up in such places as the File > New dialog box and
in the Process > Startup Parameter's Parallel tab in
TotalView and the Add parallel program screen in
MemoryScape. TotalView and MemoryScape remember
which configuration you use when starting a program so
that they can automatically reapply the configuration when
you restart the program.

Because the configuration is associated with a program's
name, renaming or moving the program destroys this
association.

nodes_option Names the command-line option (usually –nodes) that
sets the number of nodes upon which your program runs.

Customizing Your Parallel Configuration

Setting Up MPI Programs: version 8.6 39

This statement does not define the value that is the argu-
ment to this command-line option.

Only omit this statement if your system doesn't allow you
to control the number of nodes from the command line. If
you set this value to zero (“0”), this statement is omitted.

pretest (optional) Names a shell command that is run before the
parallel job is launched. This command must run quickly,
produce a timely response, and have no side-effects. This
is a test, not a setup hook.

TotalView or MemoryScape may kill the test if it takes too
long. It may call it more than once to be sure if everything
is OK. If the shell command exit is not as expected,
TotalView or Memoryscape complains and asks for permis-
sion before continuing,

pretext_exit The expected error code of the pretest command. The
default is zero.

service_tids (optional) The list of thread IDs that TotalView and
MemoryScape marks as service threads. When using
TotalView, you can use the View > Display Managers com-
mand to tell TotalView to display them.

A service thread differs from a system manager thread in
that it is created by the parallel runtime and are not cre-
ated by your program. POE for example, often creates
three service threads.

starter Defines a template that TotalView and MemoryScape use
to create the command line that starts your program. In
most cases, this template describes the relative position
of the arguments. However, you can also use it to add
extra parameters, commands, or environment variables.
Here are the three substation parameters:

%a: Replaced with the command-line arguments passed
to rank processes.

%p: Replaced with the absolute pathname of the target
program.

%s: Replaced with additional startup arguments. These are
parameters to the starter process, not the rank processes.

For example:

starter: mpirun -tv -all-local %s %p %a;

When the user selects a value for the option indicated by
the nodes_option and tasks_options, the argument and
the value are placed within the %s parameter. If you enter
a value of 0 for either of these, MemoryScape and
TotalView omit the parameter. In MemoryScape, 0 is the
default.

style MPI programs are launched in two ways: either by a man-
ager process or by a script. Use this option to name the
method, as follows:

Customizing Your Parallel Configuration

40 Chapter 2: MPI Startup

manager_process: The parallel system uses a binary man-
ager process to oversee process creation and process
lifetime. Our products attach to this process and commu-
nicate with it using its debug interface. For example, IBM's
poe uses this style.

style: manager_process;

setup_script: The parallel system uses a script—which is
often mpirun—to set up the arguments, environment,
and temporary files. However, the script does not run as
part of the parallel job. This script must understand the
–tv command-line option and the TOTALVIEW environ-
ment variable.

bootstrap: The parallel system attempts to launch an
uninstruemented MPI by interposing TotalView or
MemoryScape inside the parallel launch sequence in
place of the target program. This does not work for
MPICH and SGI MPT.

tasks_env The name of an environment variable whose value is the
expected number of parallel tasks. This is consulted when
the user does not explicitly specify a task count.

tasks_option (sometimes required) Lets you define the option (usually -
np or -procs) that controls the total number of tasks or
processes.

Only omit this statement if your system doesn't allow you
to control the number of tasks from the command line. If
you set this to 0, this statement is omitted.

Setting Up MPI Programs: version 8.6 41

Index

Symbols
$mpiexec variable 37
.rhosts file 19

A
acquiring processes 21
Action Point > Properties command

32
Action Point > Save All command 20
Action Points Page 30
adapter_use option 19
Add parallel program screen 36
Additional starter arguments area 3
array services handle (ash) 25
ash (array services handle 25
ash (array services handle) 25
Attach Page 21
Attach Subset command 27, 28
Attach Subset command, when not

usable 2
attaching

restricting 27
restricting by communicator 28
selective 27
to all 29
to HP MPI job 18
to job 21
to MPI tasks 30
to MPICH application 5
to MPICH job 5
to none 29
to PE 21
to poe 21
to processes 21, 27
to RMS processes 24
to SGI MPI job 26

attaching to processes preference 30
automatic process acquisition 5, 18

B
blocking send operations 15

BlueGene, see IBM BlueGene 22
bluegene_io_interface variable 22
bluegene_server_launch variable 22
breakpoints

and MPI_Init() 20
automatically copied from master

process 5
changing for parallelization 30
copy, master to slave 5
default stopping action 30
entering 25
reloading 20
set while running parallel tasks 20
setting 20

C
ch_lfshmem device 4
ch_mpl device 4
ch_p4 device 4, 6, 32
ch_shmem device 4, 6
CLI commands

dactions –load 20
dactions –save 20
dattach 6, 21, 27
dattach mprun 27
dbarrier –stop_when_hit 32
ddelete 10
dgo 16, 20, 25, 31
dhalt 31
dkill 32
dnext 31
dstep 31

CLI variables
parallel_attach 30
parallel_configs 35, 36
parallel_stop 30

commands
Action Point > Properties 32
Action Point > Save All 20
dmpirun 16, 17
File > New Program 2

File > Search Path 21
Group > Attach 24, 26
Group > Attach Subset 27
Group > Go 20, 31
Group > Halt 31
Group > Kill 10
Group > Next 31
Group > Run To 30
Group > Step 31
group or process 30
mpirun 18, 22, 25
poe 5, 19
Process > Go 16, 17, 20, 24, 25,

31
Process > Halt 31
prun 24
rsh 19
Tools > Attach Subset 28
Tools > Message Queue 12, 13
Tools > Message Queue Graph 10
totalview command 16, 20, 22, 25
totalviewcli command 22, 25

configure command 4
cpu_use option 19
Cycle Detection tab 11

D
dactions command

–load 20
–save 20

dattach command 6, 21, 27
mprun command 27

dbarrier command
–stop_when_hit 32

ddelete command 10
deadlocks

message passing 13
–debug, using with MPICH 9
debugging

PE applications 19
QSW RMS 24

E

42 Setting Up MPI Programs: version 8.6

debugging techniques 9, 27
defining MPI startup implementations

35
detaching 28
detecting cycles 11
dgo command 16, 20, 25, 31
dhalt command 31
diving 12, 21

into MPI buffer 14
into MPI processes 14

dkill command 32
dmpirun command 16, 17
dnext command 31
dstep commands 31

E
environment variables

before starting poe 19
MP_ADAPTER_USE 19
MP_CPU_USE 19
MP_EUIDEVELOP 15
TOTALVIEW 4, 5, 32

F
File > New Program command 2
File > Preferences command

Action Points page 30
Parallel page 29

File > Search Path command 21
files

.rhosts 19
hosts.equiv 19

G
Go command 16, 20, 24, 25, 31
going parallel 30
Group > Attach Subset command 24,

26, 27
Group > Go command 20, 31
Group > Halt command 31
Group > Kill command 10, 32
Group > Next command 31
Group > Run To command 30
Group > Step command 31
group commands 30
groups

running 29
stopping 29

H
–h localhost option for HP MPI 18
Halt command 31
hosts.equiv file 19

I
IBM BlueGene

bluegene_io_interface 22
bluegene_server_launch 22
starting TotalView 22
starting tvdsvrs 22

IBM MPI 18

IBM SP machine 4, 5
IP over the switch 19

K
–KeepSendQueue command-line op-

tion 15
Kill command 32
–ksq command-line option 15

L
LAM/MPI 23

starting 23

M
master process, recreating slave pro-

cesses 31
message passing deadlocks 13
Message Passing Interface/Chame-

leon Standard, see MPICH
Message Queue command 12, 13
message queue display 9, 25
Message Queue Graph 12

diving 12
rearranging shape 13
updating 12

Message Queue Graph command 10
message-passing programs 30
messages

envelope information 15
operations 13
unexpected 15

MP_ADAPTER_USE environment vari-
able 19

MP_CPU_USE environment variable 19
MP_EUIDEVELOP environment vari-

able 15
MP_TIMEOUT 19
MPI

attaching to 26
attaching to HP job 18
attaching to running job 17
buffer diving 14
communicators 13
LAM 23
library state 13
on IBM 18
on SGI 25
on SiCortex 25
on Sun 26
process diving 14
rank display 10
starting 2
starting on Cray 16
starting on HP Alpha 16
starting on HP machines 17
starting on SGI 25
starting processes 16, 24
starting processes, SGI 25
troubleshooting 9

MPI startup 35
mpi tasks, attaching to 30

MPI_Init() 13, 20
breakpoints and timeouts 32

MPI_Iprobe() 15
MPI_Recv() 15
MPICH 4, 5

and SIGINT 10
and the TOTALVIEW environment

variable 4
attach from TotalView 5
attaching to 5
ch_lfshmem device 4, 6
ch_mpl device 4
ch_p4 device 4, 6
ch_shmem device 6
ch_smem device 4
configuring 4
debugging tips 32
diving into process 6
MPICH/ch_p4 32
mpirun command 4
naming processes 7
obtaining 4
P4 7
–p4pg files 7
starting TotalView using 4
–tv command-line option 4
using –debug 9

mpirun command 4, 18, 22, 25, 32
examples 18
for HP MPI 17
options to TotalView through 32
passing options to 32

mpirun process 26
MPL_Init() 20

and breakpoints 20
mprun command 26, 27
MQD, see message queue display

N
naming MPICH processes 7
New Program command 2
Next command 31
–no_stop_all command-line option 32
nodes, attaching from to poe 21
nodes, detaching 28

P
p4 listener process 6
–p4pg files 7
–p4pg option 7
parallel debugging tips 27
Parallel Environment for AIX, see PE
Parallel page 29
parallel program, restarting 31
Parallel tab, File > New Program 3
parallel tasks, starting 20
parallel_attach variable 30
parallel_configs variable 35, 36
parallel_stop variables 30
parallel_support.tvd file 35
pathnames, setting in procgroup file 7

W

Setting Up MPI Programs: version 8.6 43

PE 21
adapter_use option 19
and slow processes 33
applications 18
cpu_use option 19
debugging tips 32
from command line 20
from poe 20
options to use 19
switch-based communication 19

PE applications 19
pending messages 12
pending receive operations 13, 15
pending send operations 13, 15

configuring for 15
pending unexpected messages 13
poe

and mpirun 5
and TotalView 20
arguments 19
attaching to 21
interacting with 32
on IBM SP 6
placing on process list 21
required options to 19
running PE 20
TotalView acquires poe processes

21
process

synchronization 30
Process > Go command 16, 17, 20,

24, 25, 31
Process > Halt command 31
processes

acquiring 5, 7
acquisition in poe 21
apparently hung 31
attaching to 21
copy breakpoints from master

process 5
diving into 21
master restart 31
MPI 14
slave, breakpoints in 5
stepping 31
stopping spawned 5

process-level stepping 31
procgroup file 7

using same absolute path names 7
Properties command 32
prun command 24

Q
QSW RMS applications 24

attaching to 24
debugging 24
starting 24

Quadrics RMS 24

R
rank display 10

ranks 10
ranks tab 10
reloading breakpoints 20
remote login 19
restarting

parallel programs 31
RMS applications 24

attaching to 24
starting 24

Root Window
Attached Page 21
Unattached page 6

rsh command 19
Run To command 30
running groups 29

S
Search Path command 21
setting

breakpoints 20
timeouts 19

setting up, parallel debug session 1
SIGALRM 33
SIGINT signal 10
signals

SIGALRM 33
SMP machines 4
spawned processes

stopping 5
starting

parallel tasks 20
TotalView 20

starting LAM/MPI programs 23
starting MPI programs 2
Step command 31
stepping

apparently hung 31
processes 31
Run (to selection) Group com-

mand 30
stopping

groups 29
spawned processes 5

subset attach command 28
Sun MPI 26
switch-based communication 19

for PE 19

T
Talking to Rank control 28
tasks

starting 20
timeouts

avoid unwanted 32
during initialization 20
TotalView setting 19

timeouts, setting 19
Tools > Attach Subset command 28
Tools > Message Queue command

12, 13

Tools > Message Queue Graph com-
mand 10

TotalView
and MPICH 4
starting 20

totalview command 16, 20, 22, 25
for HP MPI 17

TOTALVIEW environment variable 4, 5,
32

totalviewcli command 22, 25
troubleshooting

MPI 9
–tv command-line option 4
tvdsvr

editing command line for poe 21
fails in MPI environment 9

U
Unattached page 6
unexpected messages 12, 15

V
variables

bluegene_io_interface 22
bluegene_server_launch 22

verbosity level 25

W
Waiting for Command to Complete

window 31
When a job goes parallel or calls exec()

radio buttons 29
When a job goes parallel radio buttons

30

W

44 Setting Up MPI Programs: version 8.6

	Contents
	Setting Up MPI Debugging Sessions
	Debugging MPI Programs
	Starting MPI Programs
	Starting MPI Programs Using File > New Program

	Debugging MPICH Applications
	Starting TotalView on an MPICH Job
	Attaching to an MPICH Job
	Using MPICH P4 procgroup Files

	Debugging MPICH2 Applications
	Downloading and Configuring MPICH2
	Starting the mpd Daemon
	Starting TotalView Debugging on an MPICH2 Job

	Starting MPI Issues
	MPI Rank Display
	Displaying the Message Queue Graph Window
	Displaying the Message Queue
	About the Message Queue Display
	Using Message Operations
	Diving on MPI Processes
	Diving on MPI Buffers
	About Pending Receive Operations
	About Unexpected Messages
	About Pending Send Operations

	Debugging Cray MPI Applications
	Debugging HP Tru64 Alpha MPI Applications
	Starting TotalView on an HP Alpha MPI Job
	Attaching to an HP Alpha MPI Job

	Debugging HP MPI Applications
	Starting TotalView on an HP MPI Job
	Attaching to an HP MPI Job

	Debugging IBM MPI Paralle Environment (PE) Applications
	Preparing to Debug a PE Application
	Using Switch-Based Communications
	Performing a Remote Login
	Setting Timeouts

	Starting TotalView on a PE Program
	Setting Breakpoints
	Starting Parallel Tasks
	Attaching to a PE Job
	Attaching from a Node Running poe
	Attaching from a Node Not Running poe

	Debugging IBM Blue Gene Applications
	Debugging LAM/MPI Applications
	Debugging QSW RMS Applications
	Starting TotalView on an RMS Job
	Attaching to an RMS Job

	Debugging SiCortex MPI Applications
	Debugging SGI MPI Applications
	Starting TotalView on an SGI MPI Job
	Attaching to an SGI MPI Job

	Debugging Sun MPI Applications
	Attaching to a Sun MPI Job

	Debugging Parallel Applications Tips
	Attaching to Processes
	Parallel Debugging Tips
	MPICH Debugging Tips
	IBM PE Debugging Tips

	MPI Startup
	Overview
	Customizing Your Parallel Configuration

	Index

