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A Web switch is a key component in the Web cluster architecture. It is 
often built on a network processor (NP). This paper presents the first 
known analytic performance model for analyzing performance of NP-
based Web switches. The model contains parameters of system 
configurations, dispatching algorithms, and workload characterizations, 
allowing users to troubleshoot performance bottlenecks and provision the 
capacity of the Web switch. 

 
1. Introduction 
 
1.1 Web clusters and Web switches 
 
A Web cluster, also known as a Web farm, is a 
common architecture for providing Web services. It 
uses multiple Web servers to distribute workloads 
between individual servers (see Figure 1). Servers in a 
Web cluster are tightly coupled in a single location. 
The key component of the Web cluster architecture is 
a Web switch, acting as a dispatcher to route incoming 
requests to individual servers. Web clusters offer high 
scalability and availability. Unlike distributed Web 
systems, Web clusters are transparent to clients. Each 
server masks its IP address to its clients. Only the 
virtual IP address, which corresponds to the front-end 
Web switch, is visible to clients. 
 

 
A Web switch can be a layer-4 (L4) switch, a layer-7 
(L7) switch, or a layer-4 and layer-7 combined switch 
(L4-7) that works at both layers. An L4 switch performs 
content-blind routing at the TCP layer. It determines 
the target server when a client requests a TCP 
connection with TCP SYN packet. It then assigns 
packets pertaining to the same connection to the same 
server. This mechanism is efficient, for packets do not 

go through the application level. However, it lacks the 
ability of dispatching requests according to contents. 
 
An L7 switch, also known as a content-aware switch, 
operates at the application level. It provides 
application traffic management through deep packet 
inspections.  An L7 switch performs the standard 
handshake procedure with clients at the client-side 
interface without any server involved. At the server-
side interface, the switch keeps persistent TCP 
connection with each individual server, thus reducing 
connection establishment overheads. Figure 2 
illustrates the difference between the traffic flows of an 
L4 switch and an L7 switch. 

 
 
A number of algorithms have been devised for L4 
switches and L7 switches. They can be categorized as 
static algorithms, client state aware algorithms, server 
state aware algorithms, and client and server state 
aware algorithms. Descriptions of these algorithms 
can be found in a recent survey paper [1]. 
 
1.2 Network processors 
 
Network processors (NP) are network devices 
specifically designed to store, process, and forward 
large volumes of data packets at wire speed with 
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Figure 2: Comparison of L4 and L7 switches



strong programmability. They enable users to create 
and add, through software, the latest and best network 
services while maintaining high packet throughput and 
low packet latency. They offer both performance and 
flexibility through highly parallel, fully programmable 
architecture, differentiating them from general-purpose 
processors and hardware-based solutions, such as 
ASIC-based switches and routers. General-purpose 
processors offer programming flexibility, but they lack 
packet-processing performance. ASIC-based switches 
and routers offer packet-processing performance, but 
they have limited or no programmability.  
 
A typical network processor consists of an array of 
programmable packet processors (PP) in a highly 
parallel architecture, a programmable control 
processor (a.k.a. a core processor), hardware 
coprocessors or accelerators for common networking 
operations, high-speed memory interfaces, and high-
speed network interfaces. Examples of network 
processors include IBM’s PowerNP [5], Intel’s IXP [6], 
and Motorola’s C-Port [7]. We will apply our 
performance model to analyze IXP2400-based Web 
switches. Figure 3 shows the functional components of 
IXP2400. 
 

 
2. Performance model 
 
NP-based Web switch applications typically go 
through three major pipeline stages: packet receiving, 
packet processing, and packet transmitting (see 
Figure 4). Packet receiving and packet transmitting 
can each be implemented on a single packet 
processor or on multiple packet processors in parallel. 
Packet processing can be implemented on multiple 
packet processors in parallel or in pipeline. 
 
We model the packet-flow process on a network 

processor as a queuing network (QN) and devise a 
performance model (see Figure 5). In this model we 
supply an input queue to each packet processor, 
memory unit, and special resource in this model. The 
control processor is not included in the model, for it is 
normally used to perform configuration management 
and exception handling, rather than packet 
processing. In particular, this model assumes that 
packet receiving and packet transmitting are each 
handled by a packet processor, and packet processing 
is handled by multiple packet processors in parallel. 
While there are other ways to allocate resources, we 
want to keep our model as simple as possible. We first 
measure service rate, throughput, and response time 
at the component level, using the Mean Value 
Analysis (MVA) method. We then measure throughput 
and response time at the system level by combining 
measuring results at the component level.  

 

 
 
It is relatively easy to measure the performance of the 
packet receiving stage, for the packet receiving 
component consists of only one packet processor and 
two memory units. But there is a subtlety: A packet 
processor contains multiple hardware threads, and so 
it cannot be treated as a load-independent resource. 
We model multiple threads in a packet processor 
using only load-independent resources in a closed QN 
model (see Figure 6). In this model, the number of 
threads becomes the number of requests. We then 
use the MVA algorithm [3] to measure throughput as 
follows: 
 
Residence time at resource (queue) i with n requests 
in QN: 
 
 [ ])1(1)( −+×= nfDnr iii ,  (2-1) 
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where iD  is the service demand at resource i 

and )(nfi   is the average number of requests 
in queue i with n requests in QN. 

 
Throughput of QN with n requests in QN: 
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 where K is the number of resources. 
  
Queue length at resource i with n requests in QN: 
 
 )()()( nrnXnf ii ×= .   (2-3) 
 
Thus, we can recursively apply these formulas to 
calculate the throughput )(nX  of the closed model of 
QN. This allows us to model each multi-threaded 
processor as a single threaded processor with variable 
service rate. 
 

 
 
Now we consider the packet receiving stage as an 
open QN model (Figure 5) with unbounded queues 
and variable service rate. The service rate is given by 

)(nX   we have derived above. In this model, the 
average number of requests is given by the following 
formula given in [3]: 
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where λ  is the request arrival rate, 
)()2()1()( kXXXk ×××= Lβ , and 

)(KXλρ = . 
Finally, the response time of the packet receiving 
stage can be obtained from Little’s Law: 
 

 
PR

PR X
NR = .    (2-5) 

 

where PRX  is the throughput of the packet 
receiving stage. According to the flow 
equilibrium principle, the throughput equals to 
the arrival rate, i.e., λ=PRX . However, the 
maximum throughput is bounded above 
by )(KX . 

 
We model the performance of the packet transmitting 
stage in the same way as we model the performance 
of the packet receiving stage. 
 
In the packet processing stage, multiple packet 
processors are used to handle requests (service 
demands) from a single queue. A queue with m 
resources and service demand D at each resource 
can be replaced in the queuing network with two 
resources in tandem (see Figure 7). One is a load-
independent or a load-dependent resource with mD  
service demand, and the other is a delay resource 
(without queue) with ( ) mmD 1−×  service demand. 
This allows us to model multiple processors as a 
single processor with a delay resource. 
 

 
 
Similar to the packet receiving stage, we measure the 
service rate, the throughput, and the response time in 
the packet processing stage using the MVA algorithm 
on the closed QN model (see Figure 8).  
 

 
 
Finally, we can measure the throughput and the 
response time of the whole network processor as 
 
 ( )PTPPPR XXXX ,,min0 = ,  (2-6) 
 
 PTPPPR RRRR ++= .   (2-7) 
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3. Performance analysis of Web switches 
 
We now measure performance of NP-based Web 
switches using the performance model we have 
devised. For an NP-based Web switch, it is easy to 
obtain the request arrival rate,λ , and the average 
packet size, m. But it is difficult to measure the 
average service demand for each request at each 
resource. This is because measuring the utilization of 
each packet processor is difficult. In this paper, we 
estimate service demand by analyzing the pseudo 
code of each application. Packet processors in 
IXP2400 are RISC processors, and so most 
instructions only take one clock cycle. Thus, service 
demand for a packet processor can be obtained based 
on the number of instructions for processing each 
request. For SRAM and SDRAM, the service demand 
can be obtained based on the number of memory 
reference made for each request.  
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Pseudo code, clock rates, and memory latency are 
NP-dependent. As an example, we apply our 
performance model to analyze performance of a Web 
switch built on an Intel IXP2400 network processor. 
Performance of a Web switch built on an NP with 
similar architecture as IXP can be analyzed using the 
same method. Listed below are a number of critical 
hardware parameters of IXP2400: 
 

• Microengine (i.e. packet processor) clock rate: 
600 MHz 

• The number of hardware threads in a 
microengine: 8 

• SRAM latency: 90 clock cycles 
• SDRAM latency: 120 clock cycles 

• SHaC (Scratch, Hash) latency: 16 clock cycles 
 
3.1 Packet receiving and packet transmitting 
 
We first investigate the packet receiving stage and the 
packet transmitting stage, for they are the same 
regardless what Web switch dispatching algorithms 
are used. For these two stages, we follow the standard 
code given in [2]. We assume that the average packet 
size is 1024 bytes, decomposing to 16 mpackets by 
IXP [2]. Each mpacket contains 64 bytes. IXP receives 
a packet by reading one mpacket at a time (instead of 
one byte) and assembles mpackets back to the 
packet. 
 
According to the standard code given in [2], when a 
packet arrives it takes 864 cycles of instructions, 1 
scratch pad (SHac) I/O, 1 SRAM I/O, and 16 SDRAM 
I/O to receive and assemble the packet at the 
receiving stage. Table 1 gives the breakdown for 
instructions count and memory references for packet 
receiving stages. All initializations occur only at start 
time are not included here. 
 

Steps Inst. 
cycles

Scratch 
Pad SRAM SDRAM Use per 

pkt. 
Buffer allocation 14  1  1 
Prep. trd for an 
mpacket to arrive 18    16 

Inter-trd signals per 
mpacket 8    16 

Move the mpacket into 
DRAM 26   1 16 

Inter-trd signals per 
packet 4    1 

Enqueue the packet for 
processing 14 1   1 

Table 1: Microcode analysis for packet receiving stage 

 
It is straightforward to see that each HTTP request 
involves 6 messages between the client and the 
server. For simplicity, we use a single packet 
processor to handle both incoming and outgoing 
packets. (Implementations that use one packet 
processor for incoming traffic and a separate packet 
processor for outgoing traffic can be modeled using 
the same method we present here.) Thus, we can 
calculate the service demand for each request at the 
packet receiving processor as follows: 
 

msDPR 0086.06
000,000,600

864
=×=  

 

msDSHaC 00003.0
000,000,600

161
=

×
=  

 



msDSRAM 0009.06
000,000,600

901
=×

×
=  

 

msDSDRAM 0192.06
000,000,600

12016
=×

×
=  

 
Applying these service demands to the model 
described in Figure 6, we obtain the throughput of the 
packet receiving stage in Table 2. 
 
n rpr rsram rsdram rshac X npr nsram nsdram nshac

0 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00
1 8.60 0.90 19.20 0.03 34806.82 0.29 0.03 0.66 0.00
2 11.17 0.92 32.03 0.03 45286.03 0.50 0.04 1.45 0.00
3 12.95 0.93 47.05 0.03 49203.98 0.63 0.04 2.31 0.00
4 14.08 0.94 63.65 0.03 50824.65 0.71 0.04 3.23 0.00
5 14.75 0.94 81.31 0.03 51525.58 0.76 0.04 4.19 0.00
6 15.13 0.94 99.64 0.03 51834.69 0.78 0.04 5.16 0.00
7 15.34 0.94 118.36 0.03 51972.20 0.79 0.04 6.15 0.00
8 15.46 0.94 137.31 0.03 52033.60 0.80 0.04 7.14 0.00

Table 2: Throughput of QN for packet receiving stage 

 
The relationship between the arrival rate and the 
response time at this stage is calculated using the 
average number of requests and response time 
described in Section 3 (see Figure 9), where the 
arrival rate is measured by the number of packets per 
second. 
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Figure 9: Response time at the packet receiving stage 
 
According to [2], the packet transmitting stage takes 
1541 cycles of instructions, 1 Scratch pad I/O, 1 
SRAM I/O, and 16 SDRAM I/O to transmit one packet. 
Table 3 gives the breakdown for instructions count and 
memory references for packet receiving stages. Thus, 
we can calculate the service demand for each request 
at the packet transmitting processor as follows. 
 

msDPT 0154.06
000,000,600

1541
=×=  

 

msDSHaC 00003.0
000,000,600

161
=

×
=  

 

msDSRAM 0009.06
000,000,600

901
=×

×
=  

 

msDSDRAM 0192.06
000,000,600

12016
=×

×
=  

 
Steps Inst. 

cycles 
Scratch 

Pad SRAMSDRAM Use 
per pkt

Inter-trd signals 5    16 

Update TBUF in flight 12    16 
Update segmentation 
state 56 1   16 

Transfer mpacket into 
TBUF 13   1 16 

Validate TBUF 8    16 
Update local transmit 
state 2    16 

Free buffer 5  1  1 

Table 3: Microcode analysis for packet transmitting stage 

 
Similar to the packet receiving stage, we obtain the 
throughput of the packet transmitting stage in Table 4. 
 
n rpt rsram rsdram rshac X npr nsram nsdram nshac

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 15.40 0.90 19.20 0.03 28145.22 0.43 0.02 0.54 0.00
2 22.07 0.92 29.57 0.03 38020.49 0.83 0.03 1.12 0.00
3 28.32 0.93 40.79 0.03 42810.22 1.21 0.04 1.74 0.00
4 34.07 0.93 52.72 0.03 45574.89 1.55 0.04 2.40 0.00
5 39.31 0.93 65.33 0.03 47338.58 1.86 0.04 3.09 0.00
6 44.06 0.94 78.58 0.03 48536.79 2.13 0.04 3.81 0.00
7 48.33 0.94 92.43 0.03 49386.03 2.38 0.04 4.56 0.00
8 52.16 0.94 106.84 0.03 50006.15 2.60 0.04 5.34 0.00

Table 4: Throughput of QN for packet transmitting stage 

 
The relationship between the arrival rate and the 
response time at the packet transmitting stage is 
shown in Figure 10, where the arrival rate measures 
the number of packets arrived per second. 
 
3.2 Packet processing 
 
Assume that the remaining packet processors can be 
used to implement Web switch dispatching algorithms. 
We choose the Least Loaded (LL) policy for L4 
switches and Locality-Aware Request Distribution 



(LARD) [4] policy for L7 switches. Other schemes can 
be modeled easily with minor modifications. 
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Figure 10: Response time at the packet transmitting stage 

 
 
3.2.1 L4 switch 
 
Listed below are the primary steps for processing an 
incoming packet at an L4 switch. 
 
 Steps Inst. 

cycles SHaC SRAM SDRAM

1 Dequeue a packet from source 46 1  1 

2 Validate Ethernet packet 53  1 1 

3 Strip Ethernet header 19   1 

4 Retrieve IP header 104   1 

5 Retrieve TCP header 104   1 

6 Generate hash value 12 1   

7 SYN: Get least load server 60  2  

8 SYN: Add binding entry 100  4  

9 FIN and REQ: Search binding 
table 31  2  

10 REQ: Get destination server 50  1  

11 FIN: Remove binding entry 80  2  

12 Update IP header 26   1 

13 Add Ethernet header 123  2 2 

14 Enque the packet for transmit 12 1   

Table 5: Pseudo code analysis for L4 packet processing 

 
Processing an outgoing packet is much simpler, for 
the only processing involved is masking the source 
address. The above steps can be reused by 
eliminating step 5 through step 11. 
 
Note that the error condition handlings are not listed 
here. 
 
We compose IXP2400 pseudo code for these steps 
and estimate service demand at each step as shown 
in Table 5. 

 
According to our estimates, the service demand for 
incoming and outgoing packets consists of 2998 
cycles of instructions, 15 SHaC access, 31 SRAM I/O, 
and 45 SDRAM I/O. Thus, we can calculate the 
service demand for each request at L4 switch 
processing stage as following: 
 

msDPP 0050.0
000,000,600

2998
==  

 

msDSRAM 0047.0
000,000,600

9031
=

×
=  

 

msDSDRAM 0090.0
000,000,600

12045
=

×
=  

msDSHaC 0004.0
000,000,600

1615
=

×
=  

 
Suppose that 4 packet processors are used for 
dispatching packets in parallel. Applying the above 
parameters to the model in Figure 8, we obtain the 
throughput at the packet dispatching stage in Table 6. 
The relationship between the response time and the 
arrival rate is shown in Figure 11. 
 

n rPP rSRAM rSDRAM rSHaC X nPP nSRAM nSDRAM nSHaC 
0 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00
1 1.25 4.70 9.00 0.40 65147 0.08 0.31 0.59 0.03
2 1.35 6.14 14.28 0.41 90179 0.12 0.55 1.29 0.04
3 1.40 7.30 20.59 0.41 100988 0.14 0.74 2.08 0.04
4 1.43 8.17 27.71 0.42 106041 0.15 0.87 2.94 0.04
5 1.44 8.77 35.45 0.42 108522 0.16 0.95 3.85 0.05
6 1.45 9.17 43.62 0.42 109775 0.16 1.01 4.79 0.05
7 1.45 9.43 52.10 0.42 110417 0.16 1.04 5.75 0.05
8 1.45 9.60 60.77 0.42 110750 0.16 1.06 6.73 0.05

Table 6: Throughput of QN for L4 processing 
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Figure 11: Response time at the dispatching stage on 

an L4 switch 
 



3.2.1 L7 switch 
 
Packet processing on an L7 switch differs from an L4 
switch in a number of ways. An L7 switch acts as a 
proxy between clients and the Web cluster. It makes 
handshake with clients without any server involved. 
Table 7 lists the primary steps for processing an 
incoming packet. 
 
 Steps Inst. 

cycles SHaC SRAMSDRAM

1 Dequeue a packet from 
source 46 1  1 

2 Validate Ethernet packet 53  1 1 

3 Strip Ethernet header 19   1 

4 Retrieve IP header 104   1 

5 Retrieve TCP header 104   1 

SYN6 Create handshake packet 24  1 1 

SYN7 Add Ethernet header 123  2 2 

SYN8 Enque the packet for transmit 12 1   

SYN9 Generate hash of client info 12 1   

SYN10 Add client entry 120  4  

ACK6 Generate hash of client info 12 1   

ACK7 Get client entry 70  3  

ACK8 Update client status 30  1  

REQ6 Parse client request 960  10 16 

REQ7 Generate hash of target 
object 12 1   

REQ8 Get target server from 
binding table 80  3  

REQ9 Update IP header 26   1 

REQ10 Add Ethernet header 123  2 2 

REQ11 Enque the packet for transmit 12 1   

FIN6 Generate hash value of client 
info 12 1   

FIN7 Remove client entry 80  2  

Table 7: Pseudo code analysis for L7 incoming packet 
processing 

 
 Steps Inst. 

cycles SHaC SRAMSDRAM

1 Dequeue a packet from source 46 1  1 

2 Validate Ethernet packet 53  1 1 

3 Strip Ethernet header 19   1 

4 Retrieve IP header 104   1 

5 Update IP header 26   1 

6 Add Ethernet header 123  2 2 

7 Enque the packet for transmit 12 1   

Table 8: Pseudo code analysis for L7outgoing packet 
processing 

 
An L7 switch keeps persistent TCP connection with 

each individual server in the cluster, reducing 
handshake overheads. Processing response packets 
from a server is straightforward as listed in Table 8. 
 
We again compose IXP2400 pseudo code for these 
steps and estimate server demand at each step as 
shown in Table 7 and Table 8. According to our 
estimates, the service demand for each request is 
3835 cycles of instructions, 40 SRAM I/O, 58 SDRAM 
I/O, and 15 SHaC accesses. Thus, 
 

msDPP 0064.0
000,000,600

3835
==  

 

msDSRAM 0060.0
000,000,600

9040
=

×
=  

 

msDSDRAM 0116.0
000,000,600

12058
=

×
=  

 

msDSHaC 0004.0
000,000,600

1615
=

×
=  

 
Applying the above parameters to the model in Figure 
8, we obtain L7 throughput in Table 9. The relationship 
between the response time and the arrival rate is 
shown in Figure 12. 
 
n rPP rSRAM rSDRAM rSHaC X nPP nSRAM nSDRAM nSHaC

0 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00
1 1.60 6.00 11.60 0.40 51020 0.08 0.31 0.59 0.02
2 1.73 7.84 18.47 0.41 70321 0.12 0.55 1.30 0.03
3 1.79 9.31 26.66 0.41 78585 0.14 0.73 2.10 0.03
4 1.83 10.39 35.91 0.41 82420 0.15 0.86 2.96 0.03
5 1.84 11.14 45.93 0.41 84289 0.16 0.94 3.87 0.03
6 1.85 11.63 56.51 0.41 85226 0.16 0.99 4.82 0.04
7 1.85 11.95 67.46 0.41 85702 0.16 1.02 5.78 0.04
8 1.85 12.14 78.67 0.41 85947 0.16 1.04 6.76 0.04

Table 9: Throughput of QN for L4 processing 
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Figure 12: Response time at the dispatching stage on 

an L7 switch 



 
 
4. Conclusion 
 
We present a performance model for network 
processors and a theoretical method for analyzing NP-
based Web switch performance. Results of such 
analysis may be used to help configure Web clusters. 
They may also be used for Web switch developers to 
better allocate resources. 
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