
Performance Modeling and Analysis of Web Switches

Jie Lu
BMC Software Inc.

Waltham, MA 02451

Jie Wang
University of Massachusetts

Lowell, MA 01854

A Web switch is a key component in the Web cluster architecture. It is
often built on a network processor (NP). This paper presents the first
known analytic performance model for analyzing performance of NP-
based Web switches. The model contains parameters of system
configurations, dispatching algorithms, and workload characterizations,
allowing users to troubleshoot performance bottlenecks and provision the
capacity of the Web switch.

1. Introduction

1.1 Web clusters and Web switches

A Web cluster, also known as a Web farm, is a
common architecture for providing Web services. It
uses multiple Web servers to distribute workloads
between individual servers (see Figure 1). Servers in a
Web cluster are tightly coupled in a single location.
The key component of the Web cluster architecture is
a Web switch, acting as a dispatcher to route incoming
requests to individual servers. Web clusters offer high
scalability and availability. Unlike distributed Web
systems, Web clusters are transparent to clients. Each
server masks its IP address to its clients. Only the
virtual IP address, which corresponds to the front-end
Web switch, is visible to clients.

A Web switch can be a layer-4 (L4) switch, a layer-7
(L7) switch, or a layer-4 and layer-7 combined switch
(L4-7) that works at both layers. An L4 switch performs
content-blind routing at the TCP layer. It determines
the target server when a client requests a TCP
connection with TCP SYN packet. It then assigns
packets pertaining to the same connection to the same
server. This mechanism is efficient, for packets do not

go through the application level. However, it lacks the
ability of dispatching requests according to contents.

An L7 switch, also known as a content-aware switch,
operates at the application level. It provides
application traffic management through deep packet
inspections. An L7 switch performs the standard
handshake procedure with clients at the client-side
interface without any server involved. At the server-
side interface, the switch keeps persistent TCP
connection with each individual server, thus reducing
connection establishment overheads. Figure 2
illustrates the difference between the traffic flows of an
L4 switch and an L7 switch.

A number of algorithms have been devised for L4
switches and L7 switches. They can be categorized as
static algorithms, client state aware algorithms, server
state aware algorithms, and client and server state
aware algorithms. Descriptions of these algorithms
can be found in a recent survey paper [1].

1.2 Network processors

Network processors (NP) are network devices
specifically designed to store, process, and forward
large volumes of data packets at wire speed with

Internet
Web switch

Server cluster Firewall

Figure 1: Web cluster architecture

Client Client L4 switch L7 switch Server Server
SYN

SYN/ACK

ACK

Request

SYN
SYN/ACK

ACK

Request

Figure 2: Comparison of L4 and L7 switches

strong programmability. They enable users to create
and add, through software, the latest and best network
services while maintaining high packet throughput and
low packet latency. They offer both performance and
flexibility through highly parallel, fully programmable
architecture, differentiating them from general-purpose
processors and hardware-based solutions, such as
ASIC-based switches and routers. General-purpose
processors offer programming flexibility, but they lack
packet-processing performance. ASIC-based switches
and routers offer packet-processing performance, but
they have limited or no programmability.

A typical network processor consists of an array of
programmable packet processors (PP) in a highly
parallel architecture, a programmable control
processor (a.k.a. a core processor), hardware
coprocessors or accelerators for common networking
operations, high-speed memory interfaces, and high-
speed network interfaces. Examples of network
processors include IBM’s PowerNP [5], Intel’s IXP [6],
and Motorola’s C-Port [7]. We will apply our
performance model to analyze IXP2400-based Web
switches. Figure 3 shows the functional components of
IXP2400.

2. Performance model

NP-based Web switch applications typically go
through three major pipeline stages: packet receiving,
packet processing, and packet transmitting (see
Figure 4). Packet receiving and packet transmitting
can each be implemented on a single packet
processor or on multiple packet processors in parallel.
Packet processing can be implemented on multiple
packet processors in parallel or in pipeline.

We model the packet-flow process on a network

processor as a queuing network (QN) and devise a
performance model (see Figure 5). In this model we
supply an input queue to each packet processor,
memory unit, and special resource in this model. The
control processor is not included in the model, for it is
normally used to perform configuration management
and exception handling, rather than packet
processing. In particular, this model assumes that
packet receiving and packet transmitting are each
handled by a packet processor, and packet processing
is handled by multiple packet processors in parallel.
While there are other ways to allocate resources, we
want to keep our model as simple as possible. We first
measure service rate, throughput, and response time
at the component level, using the Mean Value
Analysis (MVA) method. We then measure throughput
and response time at the system level by combining
measuring results at the component level.

It is relatively easy to measure the performance of the
packet receiving stage, for the packet receiving
component consists of only one packet processor and
two memory units. But there is a subtlety: A packet
processor contains multiple hardware threads, and so
it cannot be treated as a load-independent resource.
We model multiple threads in a packet processor
using only load-independent resources in a closed QN
model (see Figure 6). In this model, the number of
threads becomes the number of requests. We then
use the MVA algorithm [3] to measure throughput as
follows:

Residence time at resource (queue) i with n requests
in QN:

 [])1(1)(−+×= nfDnr iii , (2-1)

Receiving Transmitting

Processing

PP

SDRAM

PP

PP

PP

PP

SRAM

SU

Figure 5: Performance model of network processor

32b

Strip/bite align

DDRAM

ME
0:1

ME
0:2

ME
0:3

ME
0:4

Rbuf
64 @
128B

Tbuf
64 @ 128B

ME
1:5

ME
1:6

ME
1:7

ME
1:8

Hash
64/48/128

Scratch
16KB

CSRs
-Fast_wr -UART
-Timers -GPIO
-BootROM QDR

SRAM 1
QDR

SRAM 2

E/D Q E/D Q

G
A
S
K
E
T

Intel
XScale
Core

32K IC
32K DC

PCI
(64b)

66 MHz

72

18 18 18 18

64b

32b

Utopia 1/2/3, SP|3 or CSIX

Figure 3: Intel IXP2400 block diagram, where ME
stands for “micro engine” (i.e., packet processor)

Packet

transmitting
Packet

receiving
Packet

processing

Figure 4: Packet flow in network processor

where iD is the service demand at resource i

and)(nfi is the average number of requests
in queue i with n requests in QN.

Throughput of QN with n requests in QN:

∑
=

= K

i
i nr

nnX

1

)(
)(, (2-2)

 where K is the number of resources.

Queue length at resource i with n requests in QN:

)()()(nrnXnf ii ×= . (2-3)

Thus, we can recursively apply these formulas to
calculate the throughput)(nX of the closed model of
QN. This allows us to model each multi-threaded
processor as a single threaded processor with variable
service rate.

Now we consider the packet receiving stage as an
open QN model (Figure 5) with unbounded queues
and variable service rate. The service rate is given by

)(nX we have derived above. In this model, the
average number of requests is given by the following
formula given in [3]:

[] ,
)()1(

)1)(1(
)(1)()(

1
1

2
1









−

−++
+








−

++= ∑∑
==

K

k

KkK

k

Kk

K
J

k
k

Kk
N

βρ
ρρρλ

β
λ

ρ
ρ

β
λ

β
λ

 (2-4)

where λ is the request arrival rate,
)()2()1()(kXXXk ×××= Lβ , and

)(KXλρ = .
Finally, the response time of the packet receiving
stage can be obtained from Little’s Law:

PR

PR X
NR = . (2-5)

where PRX is the throughput of the packet
receiving stage. According to the flow
equilibrium principle, the throughput equals to
the arrival rate, i.e., λ=PRX . However, the
maximum throughput is bounded above
by)(KX .

We model the performance of the packet transmitting
stage in the same way as we model the performance
of the packet receiving stage.

In the packet processing stage, multiple packet
processors are used to handle requests (service
demands) from a single queue. A queue with m
resources and service demand D at each resource
can be replaced in the queuing network with two
resources in tandem (see Figure 7). One is a load-
independent or a load-dependent resource with mD
service demand, and the other is a delay resource
(without queue) with () mmD 1−× service demand.
This allows us to model multiple processors as a
single processor with a delay resource.

Similar to the packet receiving stage, we measure the
service rate, the throughput, and the response time in
the packet processing stage using the MVA algorithm
on the closed QN model (see Figure 8).

Finally, we can measure the throughput and the
response time of the whole network processor as

 ()PTPPPR XXXX ,,min0 = , (2-6)

 PTPPPR RRRR ++= . (2-7)

PP

SRAM

SDRAM

SHaC

Delay

Figure 8: Closed model for the
packet processing stage

1

2

m

D

D

D/m D*(m-1)/m

Figure 7: Model parallel packet processors

1

2

J

PP

SRAM

SDRAM

Figure 6: Modeling multiple threads
in packet processor

3. Performance analysis of Web switches

We now measure performance of NP-based Web
switches using the performance model we have
devised. For an NP-based Web switch, it is easy to
obtain the request arrival rate,λ , and the average
packet size, m. But it is difficult to measure the
average service demand for each request at each
resource. This is because measuring the utilization of
each packet processor is difficult. In this paper, we
estimate service demand by analyzing the pseudo
code of each application. Packet processors in
IXP2400 are RISC processors, and so most
instructions only take one clock cycle. Thus, service
demand for a packet processor can be obtained based
on the number of instructions for processing each
request. For SRAM and SDRAM, the service demand
can be obtained based on the number of memory
reference made for each request.

rateclock
latencySRAMcountreferenceDSRAM _

__ ×
= , (3-1)

rateclock
latencySDRAMcountreferenceDSDRAM _

__ ×
= , (3-2)

rateclock
latencyhashcountreferenceDSHaC _

__ ×
= , (3-3)

rateclock
countninstructioDPR _

_
= , (3-4)

rateclock
countninstructioDPT _

_
= , (3-5)

countprocessorrateclock
countninstructioDPP __

_
×

= , (3-6)

()

countprocessorrateclock
countprocessorcountninstructioDDelay __

1__
×

−×
= , (3-7)

Pseudo code, clock rates, and memory latency are
NP-dependent. As an example, we apply our
performance model to analyze performance of a Web
switch built on an Intel IXP2400 network processor.
Performance of a Web switch built on an NP with
similar architecture as IXP can be analyzed using the
same method. Listed below are a number of critical
hardware parameters of IXP2400:

• Microengine (i.e. packet processor) clock rate:
600 MHz

• The number of hardware threads in a
microengine: 8

• SRAM latency: 90 clock cycles
• SDRAM latency: 120 clock cycles

• SHaC (Scratch, Hash) latency: 16 clock cycles

3.1 Packet receiving and packet transmitting

We first investigate the packet receiving stage and the
packet transmitting stage, for they are the same
regardless what Web switch dispatching algorithms
are used. For these two stages, we follow the standard
code given in [2]. We assume that the average packet
size is 1024 bytes, decomposing to 16 mpackets by
IXP [2]. Each mpacket contains 64 bytes. IXP receives
a packet by reading one mpacket at a time (instead of
one byte) and assembles mpackets back to the
packet.

According to the standard code given in [2], when a
packet arrives it takes 864 cycles of instructions, 1
scratch pad (SHac) I/O, 1 SRAM I/O, and 16 SDRAM
I/O to receive and assemble the packet at the
receiving stage. Table 1 gives the breakdown for
instructions count and memory references for packet
receiving stages. All initializations occur only at start
time are not included here.

Steps Inst.
cycles

Scratch
Pad SRAM SDRAM Use per

pkt.
Buffer allocation 14 1 1
Prep. trd for an
mpacket to arrive 18 16

Inter-trd signals per
mpacket 8 16

Move the mpacket into
DRAM 26 1 16

Inter-trd signals per
packet 4 1

Enqueue the packet for
processing 14 1 1

Table 1: Microcode analysis for packet receiving stage

It is straightforward to see that each HTTP request
involves 6 messages between the client and the
server. For simplicity, we use a single packet
processor to handle both incoming and outgoing
packets. (Implementations that use one packet
processor for incoming traffic and a separate packet
processor for outgoing traffic can be modeled using
the same method we present here.) Thus, we can
calculate the service demand for each request at the
packet receiving processor as follows:

msDPR 0086.06
000,000,600

864
=×=

msDSHaC 00003.0
000,000,600

161
=

×
=

msDSRAM 0009.06
000,000,600

901
=×

×
=

msDSDRAM 0192.06
000,000,600

12016
=×

×
=

Applying these service demands to the model
described in Figure 6, we obtain the throughput of the
packet receiving stage in Table 2.

n rpr rsram rsdram rshac X npr nsram nsdram nshac

0 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00
1 8.60 0.90 19.20 0.03 34806.82 0.29 0.03 0.66 0.00
2 11.17 0.92 32.03 0.03 45286.03 0.50 0.04 1.45 0.00
3 12.95 0.93 47.05 0.03 49203.98 0.63 0.04 2.31 0.00
4 14.08 0.94 63.65 0.03 50824.65 0.71 0.04 3.23 0.00
5 14.75 0.94 81.31 0.03 51525.58 0.76 0.04 4.19 0.00
6 15.13 0.94 99.64 0.03 51834.69 0.78 0.04 5.16 0.00
7 15.34 0.94 118.36 0.03 51972.20 0.79 0.04 6.15 0.00
8 15.46 0.94 137.31 0.03 52033.60 0.80 0.04 7.14 0.00

Table 2: Throughput of QN for packet receiving stage

The relationship between the arrival rate and the
response time at this stage is calculated using the
average number of requests and response time
described in Section 3 (see Figure 9), where the
arrival rate is measured by the number of packets per
second.

Response time of receiv ing stage

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 10000 20000 30000 40000 50000 60000

arriv al rate

re
sp

on
se

 ti
m

e

Figure 9: Response time at the packet receiving stage

According to [2], the packet transmitting stage takes
1541 cycles of instructions, 1 Scratch pad I/O, 1
SRAM I/O, and 16 SDRAM I/O to transmit one packet.
Table 3 gives the breakdown for instructions count and
memory references for packet receiving stages. Thus,
we can calculate the service demand for each request
at the packet transmitting processor as follows.

msDPT 0154.06
000,000,600

1541
=×=

msDSHaC 00003.0
000,000,600

161
=

×
=

msDSRAM 0009.06
000,000,600

901
=×

×
=

msDSDRAM 0192.06
000,000,600

12016
=×

×
=

Steps Inst.

cycles
Scratch

Pad SRAMSDRAM Use
per pkt

Inter-trd signals 5 16

Update TBUF in flight 12 16
Update segmentation
state 56 1 16

Transfer mpacket into
TBUF 13 1 16

Validate TBUF 8 16
Update local transmit
state 2 16

Free buffer 5 1 1

Table 3: Microcode analysis for packet transmitting stage

Similar to the packet receiving stage, we obtain the
throughput of the packet transmitting stage in Table 4.

n rpt rsram rsdram rshac X npr nsram nsdram nshac

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 15.40 0.90 19.20 0.03 28145.22 0.43 0.02 0.54 0.00
2 22.07 0.92 29.57 0.03 38020.49 0.83 0.03 1.12 0.00
3 28.32 0.93 40.79 0.03 42810.22 1.21 0.04 1.74 0.00
4 34.07 0.93 52.72 0.03 45574.89 1.55 0.04 2.40 0.00
5 39.31 0.93 65.33 0.03 47338.58 1.86 0.04 3.09 0.00
6 44.06 0.94 78.58 0.03 48536.79 2.13 0.04 3.81 0.00
7 48.33 0.94 92.43 0.03 49386.03 2.38 0.04 4.56 0.00
8 52.16 0.94 106.84 0.03 50006.15 2.60 0.04 5.34 0.00

Table 4: Throughput of QN for packet transmitting stage

The relationship between the arrival rate and the
response time at the packet transmitting stage is
shown in Figure 10, where the arrival rate measures
the number of packets arrived per second.

3.2 Packet processing

Assume that the remaining packet processors can be
used to implement Web switch dispatching algorithms.
We choose the Least Loaded (LL) policy for L4
switches and Locality-Aware Request Distribution

(LARD) [4] policy for L7 switches. Other schemes can
be modeled easily with minor modifications.

Response time of transmitting stage

-2.00E+07

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

0 10000 20000 30000 40000 50000 60000

arriv al rate

re
sp

on
se

 ti
m

e

Figure 10: Response time at the packet transmitting stage

3.2.1 L4 switch

Listed below are the primary steps for processing an
incoming packet at an L4 switch.

 Steps Inst.

cycles SHaC SRAM SDRAM

1 Dequeue a packet from source 46 1 1

2 Validate Ethernet packet 53 1 1

3 Strip Ethernet header 19 1

4 Retrieve IP header 104 1

5 Retrieve TCP header 104 1

6 Generate hash value 12 1

7 SYN: Get least load server 60 2

8 SYN: Add binding entry 100 4

9 FIN and REQ: Search binding
table 31 2

10 REQ: Get destination server 50 1

11 FIN: Remove binding entry 80 2

12 Update IP header 26 1

13 Add Ethernet header 123 2 2

14 Enque the packet for transmit 12 1

Table 5: Pseudo code analysis for L4 packet processing

Processing an outgoing packet is much simpler, for
the only processing involved is masking the source
address. The above steps can be reused by
eliminating step 5 through step 11.

Note that the error condition handlings are not listed
here.

We compose IXP2400 pseudo code for these steps
and estimate service demand at each step as shown
in Table 5.

According to our estimates, the service demand for
incoming and outgoing packets consists of 2998
cycles of instructions, 15 SHaC access, 31 SRAM I/O,
and 45 SDRAM I/O. Thus, we can calculate the
service demand for each request at L4 switch
processing stage as following:

msDPP 0050.0
000,000,600

2998
==

msDSRAM 0047.0
000,000,600

9031
=

×
=

msDSDRAM 0090.0
000,000,600

12045
=

×
=

msDSHaC 0004.0
000,000,600

1615
=

×
=

Suppose that 4 packet processors are used for
dispatching packets in parallel. Applying the above
parameters to the model in Figure 8, we obtain the
throughput at the packet dispatching stage in Table 6.
The relationship between the response time and the
arrival rate is shown in Figure 11.

n rPP rSRAM rSDRAM rSHaC X nPP nSRAM nSDRAM nSHaC
0 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00
1 1.25 4.70 9.00 0.40 65147 0.08 0.31 0.59 0.03
2 1.35 6.14 14.28 0.41 90179 0.12 0.55 1.29 0.04
3 1.40 7.30 20.59 0.41 100988 0.14 0.74 2.08 0.04
4 1.43 8.17 27.71 0.42 106041 0.15 0.87 2.94 0.04
5 1.44 8.77 35.45 0.42 108522 0.16 0.95 3.85 0.05
6 1.45 9.17 43.62 0.42 109775 0.16 1.01 4.79 0.05
7 1.45 9.43 52.10 0.42 110417 0.16 1.04 5.75 0.05
8 1.45 9.60 60.77 0.42 110750 0.16 1.06 6.73 0.05

Table 6: Throughput of QN for L4 processing

Response time of L4 dispatching stage

-2.00E-06

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

0 10000 20000 30000 40000 50000 60000 70000

arrival rate

re
sp

on
se

 ti
m

e

Figure 11: Response time at the dispatching stage on

an L4 switch

3.2.1 L7 switch

Packet processing on an L7 switch differs from an L4
switch in a number of ways. An L7 switch acts as a
proxy between clients and the Web cluster. It makes
handshake with clients without any server involved.
Table 7 lists the primary steps for processing an
incoming packet.

 Steps Inst.

cycles SHaC SRAMSDRAM

1 Dequeue a packet from
source 46 1 1

2 Validate Ethernet packet 53 1 1

3 Strip Ethernet header 19 1

4 Retrieve IP header 104 1

5 Retrieve TCP header 104 1

SYN6 Create handshake packet 24 1 1

SYN7 Add Ethernet header 123 2 2

SYN8 Enque the packet for transmit 12 1

SYN9 Generate hash of client info 12 1

SYN10 Add client entry 120 4

ACK6 Generate hash of client info 12 1

ACK7 Get client entry 70 3

ACK8 Update client status 30 1

REQ6 Parse client request 960 10 16

REQ7 Generate hash of target
object 12 1

REQ8 Get target server from
binding table 80 3

REQ9 Update IP header 26 1

REQ10 Add Ethernet header 123 2 2

REQ11 Enque the packet for transmit 12 1

FIN6 Generate hash value of client
info 12 1

FIN7 Remove client entry 80 2

Table 7: Pseudo code analysis for L7 incoming packet
processing

 Steps Inst.

cycles SHaC SRAMSDRAM

1 Dequeue a packet from source 46 1 1

2 Validate Ethernet packet 53 1 1

3 Strip Ethernet header 19 1

4 Retrieve IP header 104 1

5 Update IP header 26 1

6 Add Ethernet header 123 2 2

7 Enque the packet for transmit 12 1

Table 8: Pseudo code analysis for L7outgoing packet
processing

An L7 switch keeps persistent TCP connection with

each individual server in the cluster, reducing
handshake overheads. Processing response packets
from a server is straightforward as listed in Table 8.

We again compose IXP2400 pseudo code for these
steps and estimate server demand at each step as
shown in Table 7 and Table 8. According to our
estimates, the service demand for each request is
3835 cycles of instructions, 40 SRAM I/O, 58 SDRAM
I/O, and 15 SHaC accesses. Thus,

msDPP 0064.0
000,000,600

3835
==

msDSRAM 0060.0
000,000,600

9040
=

×
=

msDSDRAM 0116.0
000,000,600

12058
=

×
=

msDSHaC 0004.0
000,000,600

1615
=

×
=

Applying the above parameters to the model in Figure
8, we obtain L7 throughput in Table 9. The relationship
between the response time and the arrival rate is
shown in Figure 12.

n rPP rSRAM rSDRAM rSHaC X nPP nSRAM nSDRAM nSHaC

0 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00
1 1.60 6.00 11.60 0.40 51020 0.08 0.31 0.59 0.02
2 1.73 7.84 18.47 0.41 70321 0.12 0.55 1.30 0.03
3 1.79 9.31 26.66 0.41 78585 0.14 0.73 2.10 0.03
4 1.83 10.39 35.91 0.41 82420 0.15 0.86 2.96 0.03
5 1.84 11.14 45.93 0.41 84289 0.16 0.94 3.87 0.03
6 1.85 11.63 56.51 0.41 85226 0.16 0.99 4.82 0.04
7 1.85 11.95 67.46 0.41 85702 0.16 1.02 5.78 0.04
8 1.85 12.14 78.67 0.41 85947 0.16 1.04 6.76 0.04

Table 9: Throughput of QN for L4 processing

Response time of L7 dispatching stage

0.00E+00

2.00E-02
4.00E-02

6.00E-02

8.00E-02
1.00E-01

1.20E-01

1.40E-01
1.60E-01

1.80E-01

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

arrival rate

re
sp

on
se

Figure 12: Response time at the dispatching stage on

an L7 switch

4. Conclusion

We present a performance model for network
processors and a theoretical method for analyzing NP-
based Web switch performance. Results of such
analysis may be used to help configure Web clusters.
They may also be used for Web switch developers to
better allocate resources.

References

[1] V. Cardellini, E. Casalicchio, M. Colajanni, and P.

S. Yu. The state of the art in locally distributed
web-server systems. ACM Computing Surveys,
34(2):263-311, 2002.

[2] E. Johnson and A. Kunze. IXP2400/2800

Programming: The Complete Microengine Coding
Guide. Intel Press, 2003.

[3] D. A. Menasce and V. A. F. Almeida. Capacity

Planning for Web Services: metrics, models, and
methods. Prentice Hall, 2002.

[4] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P.

Druschel, W. Zwaenepoel, and E. Nahum.
Locality-aware request distribution in cluster-
based network servers. In Proc. of the 8th ACM
Conference on Architectural Support for
Programming Languages and Operating Systems,
San Jose, Oct. 1998.

[5] IBM PowerNP Network Processors. http://www-

3.ibm.com/chips/techlib/techlib.nsf/productfamilies/
PowerNP_Network_Processors.

[6] Intel Network Processors,

http://www.intel.com/design/network/products/npfa
mily/

[7] Motorola C-Port Network Processors, http://e-

www.motorola.com/webapp/sps/site/homepage.js
p?nodeId=03DnXMx1Ks

