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Abstract—Network processors (NP) are designed to provide both 
performance and flexibility through parallel and programmable 
architecture, making them superior to general-purpose 
processors on performance and to hardware-based solutions on 
flexibility. But NPs also introduce new challenges. It is important 
to study the limitations of NP architectures so that one can take 
full advantage of NP resources to achieve the required 
performance for a given application. It is therefore desirable to 
develop a general framework for analyzing performance of NP-
based applications. This paper presents an analytical method for 
solving this problem. In particular, we devise a queuing network 
to model NP resources and application work flows. We then use 
queuing theory and operational analysis to obtain performance 
metrics on throughput and response time, among other things, at 
the component level as well as at the system level. We apply our 
performance model to SpliceNP, a TCP Splicing implementation 
of content-aware switches on network processors presented in 
[10], and show that the analytical results using our models match 
the experimental results from actual implementation. 

 performance model; network processor 

I.  INTRODUCTION 
A network processor is a programmable packet processing 

device that combines the advantages of low cost and flexibility 
of a RISC processor and scalability of custom silicon (i.e., 
ASIC chips) [2]. Specifically designed to store, process, and 
forward large volumes of data packets at wire speed through 
parallel and pipelining architectures, NPs are desirable building 
blocks for constructing network systems that can process data 
packets of any form. They do so through software, providing a 
flexible platform for implementing different network 
applications without the need to make new hardware. 
Moreover, software modules can easily be reused. Thus, NPs 
allows users to create and add, through software, the latest and 
best network services, and in the same time reduce 
development cost and provide quick-time-to-market products. 

Programming NPs is challenging. This challenge is on top 
of the general issues that all software developing would face. 
For example, since several choices of designs for solving the 
same problem often exist, how do we know which design of 
data flow architecture would provide the best performance? To 
answer this question we would need to obtain quantitative 
analysis results.   

Packet processors do not have operating systems. This 
means that software designers need to explicitly allocate NP 

resources when designing NP-based applications, including 
processor cycles, threads and memory units. Take memory 
units as an example, it is obvious that data structures that are 
accessed infrequently, such as packet payloads, should be 
placed in DRAM, while data structures that are accessed 
frequently, such as lookup tables, should be placed in SRAM. 
Some NPs, however, have multiple channels for the same 
memory unit, making it difficult to determine how to allocate 
an individual data structure to which memory channel to obtain 
the best performance. The decision would depend on the 
accessing pattern in the particular application we are trying to 
solve. Other functional units in NPs have the similar problem.  

Most network applications have specific performance 
requirements, including requirements on throughput and delay 
latency. How can one know whether the target NP would meet 
the requirements? If not, would an alternate NP, or an array of 
NPs, provide the required performance?  

These questions call for performance analysis tools that 
provide quantitative results. Bounding calculations and discrete 
event simulations are two common analysis methods. 
Bounding calculations, also called "back of the envelope" 
calculations, are often used to quickly assess the maximum 
throughput of a single system component. But this method has 
several serious limitations. For example, bounding calculations 
tend to yield optimistic predictions that are unrealistic, for the 
predicted performance would likely decrease when more 
details about the system are taken into consideration. For 
another example, an NP has multiple components, each of 
which has requests queued up waiting for service. Simple 
bound calculations cannot predict latency, nor can they model 
any interaction between components.  

Discrete event simulations use a global time and an event 
scheduler to measure performance of a design. Transitions are 
represented by different objects of an event. All events have 
associated timestamps. The simulation program executes the 
events one at a time in the order of increasing timestamps. The 
global time jumps from one event timestamp to the next. In 
addition to simulating the logic of the system being modeled, 
events have to update the counters used for statistics, providing 
detailed performance characteristics of the modeled system. 
Most NP vendors provide development tool sets, including a 
simulator, which can be used to provide more accurate 
performance analysis of an application. But most of the 
simulators can only perform the performance analysis after the 
application programs are implemented. We note that it is often 



impossible to implement every possible design to choose the 
best one. Thus, much time and effort will be wasted at this 
stage if it turns out that the chosen architectural design does not 
meet the performance requirements. We also note that 
simulators are designed for a specific NP model or an NP 
product line. To the best of our knowledge there has been no 
tool that allows users to compare (even if just roughly 
compare) the performance across different types of NPs. 

To overcome the limitations in bounding calculations and 
discrete event simulations, we introduce in this paper an 
analytical method that provides a general framework for 
analyzing NP-based applications without implementing them. 

The rest of the paper is structured as follows. In Section II 
we describe the base-line architecture common in any type of 
network processors. In Section III, we construct a queuing-
network for modeling NP computations. In Section IV, we 
compare analytical results obtained from our theoretical models 
with an actual implementation of a TCP splicing content-aware 
switch called SliceNP. We show that our analytical results are 
consistent with the actual performance analysis.   

Figure 1. General architecture of network processor 

II. GENERAL ARCHITECTURE OF NETWORK PROCESSOR 
No industry consensus exists at this point regarding what 

hardware components should be included in a network 
processor and how they should be organized on a chip. NP 
architectures from different vendors vary considerably, but 
they share the same base-line concepts and structures. In 
general, a typical NP consists of an array of programmable 
packet processors (PP) in a highly parallel architecture, a 
programmable control processor (a.k.a. core processor), 
hardware coprocessors (CP) or accelerators for common 
networking operations, high-speed memory interfaces, and 
high-speed network interfaces. Figure 1 shows the general NP 
architecture of a network processor. 

Packet processors 
Packet processors are RISC-based processors, with the 

advantage of being small, fast, inexpensive, easy to integrate 
with other hardware, and easy to program. PPs perform data-
plane tasks and provide fast-path data processing at wire speed. 

Most packets are processed by PPs. PPs use an instruction set 
that is optimized for packet processing.  

Memory I/O latencies affect performance a great deal. To 
hide memory latencies most PPs employ multi-threading 
technology on hardware to process multiple packets on a single 
PP concurrently. It minimizes the overhead of context 
switching, thus significantly increasing the overall throughput. 

Data-plane tasks include packet classification, forwarding, 
filtering, header manipulating, protocol conversion and 
policing. Most processing in network applications occurs in 
data planes.  

Control processor 
The control processor is a general-purpose processor that 

runs an embedded operating system. The control processor 
provides overall control, performs configuration management, 
and processes exception packets. Exception packets could be 
control-plane-related, or data-plane-related that may require 
extra processing such as IP packets with options. 

Coprocessors 
The coprocessors are special-purpose hardware, providing 

specific functions for carrying out common network tasks, 
including pattern matching, table lookup, buffer management, 
queue management, hashing, checksum computation, and 
encryption/decryption. Since these functions are commonly 
used in packet processing regardless which protocols are used, 
implementing them via hardware speeds up execution. 
Coprocessors can be used to simplify software creation, for 
they provide a single-instruction access to complex operations.  
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Network and fabric interfaces 
The fabric interfaces handle interaction between processors 

and fabric switch, and network interfaces handle interaction 
between processors and the physical layer of the external 
network. Most network processors also include data transfer 
units that are responsible for moving packets between MAC 
devices and memory directly. 

Memory 
High speed memory is expensive. Regular computer 

systems often use different types of memories in a hierarchical 
manner to balance between cost and speed. For example, an 
on-chip level 1 cache has the fastest speed, but with the 
smallest capacity (i.e., the number of bytes it can store). Level 
2 and level 3 caches each provide lower speed with larger 
capacity than the previous level. The main memory has the 
largest capacity but with the lowest speed. To achieve good 
performance, data that are more frequently accessed are stored 
in faster memories. 

NPs adopt a similar memory hierarchy. Since NPs are used 
to process a large volume of network packet data that 
demonstrates almost no locality, most NPs do not provide 
cache to packet processors. Some NPs provide on-chip 
memory for fast accessing. All NPs provide high-speed 
memory interface for various levels of external memory, where 



the Static RAM (SRAM) provides faster speed and the 
Dynamic RAM (DRAM) provides large storage with lower 
accessing speed. 

Unlike conventional computer systems, NP programmers 
need to explicitly choose which memory to store which data. 
Normally, SRAM is used to store configuration and status 
information, or packet headers in some cases, which needs to 
be accessed frequently. DRAM provides large space to buffer 
the payload data that are less frequently accessed.   

A number of chip makers manufacture various types of 
network processors. The most popular models include AMCC 
nPcore family [1] and Intel IXP family [5]. 

III. QUEUING NETWORK MODEL 
Any NP-based application would typically go through three 

pipelining stages: packet receiving, packet processing, and 
packet transmitting. Packet receiving and packet transmitting 
can each be implemented on a single packet processor or on 
multiple packet processors in parallel. Packet processing can be 
implemented on multiple packet processors in parallel or in 
pipeline. 

We model packet flows on a network processor as a 
queuing network, illustrated in Figure 2. We then devise a 
performance model from it. 

Figure 2. Queuing network model of network processor 

In this queuing network model we supply a separate input 
queue to each packet processor, coprocessor, and memory unit. 
We assume three levels in the memory hierarchy: on-chip 
memory, SRAM, and DRAM. Since the control processor is 
normally used to manage configurations and handle exceptions, 
rather than processing packets on the fast data path, it has less 
impact on the overall performance of an application and so we 
do not include it in the model. We assume that packet receiving 
and packet transmitting are each handled by a packet processor, 
and packet processing is handled by multiple packet processors 
in parallel. Using the multithreading mechanism, packet 
processors do not need to be held waiting for response from 
coprocessor, thus the coprocessors are modeled in the same 
way as packet processors do. There are several ways to allocate 
resources. For simplicity, we present here a simpler model, 
which can be extended with easy modifications to meet other 
configurations. 

Critical parameters 
We identify the following parameters that are critical for 

evaluating analytical models for each resource as well as for 
the entire NP. 

• Arrival rate: It is the number of requests or packets that 
arrive per second. 

• Throughput: It is the number of requests or the number of 
packets completed per second. 

• Resource utilization: It is the percentage of time that the 
resource is busy processing requests. 

• Average response time: It is the average time duration 
that each request or packet spends inside the NP. 

The arrival rate can be easily measured externally. It can 
also be specified explicitly. If the analysis interval is large 
enough, the system throughput is, according to the flow 
equilibrium principle, the same as the system arrival rate.  

In a conventional computer system, the operating system 
measures accurately the utilization of resources, such as 
utilization of processors the utilization of memories. Naturally, 
NP-based applications should always try to achieve optimal 
performance and eliminate unnecessary overheads. There is 
usually no measurement on packet processor utilizations. 
While the measurement of queue length at each packet 
processor is relatively easy to obtain, we note that frequent 
sampling would cause significant negative performance impact. 
On the other hand, coarse sampling would cause big distortion. 
Thus, we use the service demand method. Service demands of 
each resource may be calculated via pseudo code analysis.  

We first measure service rate, throughput, and response 
time at the component level using queuing network analysis. 
We then use these measures to measure throughput and 
response time at the system level by treating the whole system 
as a black box. 

Component level modeling 
The queuing network model shown in Figure 2 is a closed 

model. We use it to analyze performance at the component 
level. There are a fixed number of requests in the system. 
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Mean Value Analysis 
We choose the Mean Value Analysis (MVA) to solve 

closed queuing network model. MVA is intuitive and is widely 
used.   

The detailed description and derivation of the MVA 
algorithm can be found, e.g., in [7]. The algorithm can be 
simplified as a procedure of recursively applying three 
equations: the residence-time equation, the throughput 
equation, and the queue length equation, as shown in Equation 
(3 – 1) to (3 – 3). 

• Residence time equation: 

[ ] resourcequeuing
resourcedelay

nQD
D

nR
ii

i
i

⎩
⎨
⎧

−+
=′

)1(1
)(  (3 – 1) 



• Throughput equation: 
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• Queue length equation: 

)()()( 0 nRnXnQ ii ′×=    (3 – 3) 

Here i denotes the index of the resource, K the total number 
of resources, and n the total number of requests reside in the 
queuing network. We assume that the service demand at each 
resource, , is known by deriving from pseudo code analysis.  iD

Residence time is the total amount of time that a request 
stays in a resource. It is the sum of the service time and the 
queuing time that the request waits for service. The residence 
time at a delay resource is the same as the service time, since 
there is no waiting queue at delay resources. The residence 
time equations for the queuing resources means that the time a 
request spends waiting in the queue is the accumulated service 
time of all requests in front of it in the queue. 

The throughput equation is derived from Little’s Law (see, 
e.g., [3]). The end-to-end response time of a request going 
through the queuing network is the summation of the time it 
spends at each resource, which is the residence time. 

The average queue length at resource i when there are n 
requests in the system, Qi(n), is the average number of requests 
at the resource. Thus, the queue length equation can be derived 
from Little’s Law and the Forced Flow Law [3]. 

Throughput bound 
To make the MVA algorithm converge, we need to find the 

bound of the system throughput. The maximum throughput of a 
system is determined by the bottlenecked device.  

According to the Service Demand Law [3], we have 
Di=Ui/X0, where Ui is the utilization of resource i, and X0 is the 
throughput of the entire system. Since the utilization of any 
resource can never exceed 100%, we have iDX 10 ≤  for any 
resource i. Then we have, 
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Intuitively, the maximum throughput the system can ever 
achieve is bounded by the resource with largest service 
demand. Therefore the resource with the largest service 
demand is the bottlenecked resource in the queuing network. 

Parallel processor modeling 

In the queuing network model shown in Figure 2, there are 
multiple packet processors handling data in parallel in the 
packet processing stage. In this case, there are multiple 
resources serving requests from a single queue. The basic 
operational analysis equations does not account for this case.  

Seidmann [9] proposed an approximation method for 
analyzing parallel server stations with a single server under 

medium to heavy utilizations. The idea is to convert the 
configuration of parallel servers into the configuration of 
serialized servers. Assume that there are m parallel resources 
taking requests from a single queue, and the service demand on 
each individual resource is D. Then all m resources can be 
replaced with a single resource that is m times faster than each 
individual’s original resource. Therefore, the service demand 
on this new resource is D/m. In this way, the waiting time on 
the queue is close to the waiting time in the system with m 
parallel resources. A second resource is added in tandem to 
rectify the mean-time-in-station estimates by assuring that the 
total service remains the same. Hence, the second resource can 
be viewed as a delay resource without waiting queues. The 
service demand on the delay resource is D*(m-1)/m. 

Requests under light load spend no waiting time in the 
queue. Thus, the average response time for a request in the new 
configuration is D/m + D*(m-1)/m = D. This matches the 
average response time for a request in the original parallel 
configuration. 

Resources under heavy load are busy most of the time. The 
dominant part of the average response time is the waiting time 
spent in the queue. The time delay from the delay resource 
becomes negligible. The average waiting time in the queue of 
the single resource is the same as the average waiting time in 
the queue of the m parallel resources. 

Using this approximation, the parallel packet processors in 
Figure 2 are replaced with a single queuing resource plus a 
delay resource, as illustrated in Figure 3. 

Figure 3. Approximate modeling on parallel processors 
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System level modeling 
From the viewpoint of an outside observer, the whole 

queuing network in Figure 2 can be treated as a black box. It 
takes requests, or packets, one by one from its input queue and 
completes them as output. This black box presents no 
difference from a queuing resource discussed before. It is 
therefore a perfect example of an open queuing network model. 
Unlike most other resources, the service rate varies depending 
on the number of requests in the system. Thus the service rate it 
can be treated as a load-dependent resource.  

Using analysis at the component level, we may obtain an 
array of throughput based on different numbers of requests, k, 
in the system. Then the variable service rate can be derived 
from them as below. 
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Here J is the number of requests in the system when it 
reaches the maximum throughput. It can be found using the 
MVA algorithm. 

Assume that the requests arrive at a constant rate, λ, and the 
input queue of the network processor system is unbounded. 
The equilibrium probability [8] can be rewritten as follows: 
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Here  and ( ) ( ) ( ) ( )kXXXk ×××= L21β ( )JXλρ = .  

Then the average number of requests in the system can be 
further derived as below. 

( )
( )

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−+

+= ∑
−

=
2

1

0
0 1

1
ρβ

ρρλ
β

λ
J

JJ
k

kpN
JJ

k

k
  (3 – 8) 

In the open queuing network model, the arrival rate has to 
be less than the maximum throughput, that is, ( )JX<λ . 
Otherwise, the waiting queue may grow to infinity. So does the 
average response time. According to the equilibrium principle 
of open queuing network, the throughput is equal to the arrival 
rate, λ=X . Applying Little’s Law we may obtain the average 
response time as follows: 
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Bounded input queue length 
The assumption of unbounded queue length in previous 

section is unrealistic in a real network system, for the size of 
the input buffer of any system is bounded. Once the input 
buffer is full, any new incoming packets will be dropped.  

In many cases, the network system utilization is not too 
high, or the average service rate is much greater than the 
average arrival rate. Then the waiting queue would not grow 
too long. If the input buffer is reasonably large, dropping 
packets is not an issue. The analysis model with unbounded 
queue length is sufficient for modeling such systems. 

In designing NP-based applications, it is important to find a 
good balance between the input buffer size and the packet 
dropping rate. If certain packet dropping rate is acceptable, it 
would be reasonable to limit the queue length for achieving 
better average response time. 

For network systems that expect to reach the queue length 
bound, the analysis model with unbounded queue length is not 
sufficient. The queue length bound has to be factored in. 

Bounded queue length means that there are a bounded 
number of states in the state transition diagram. Suppose K is 

the maximum number of requests allowed in the system, the 
variable service rate in equations (3 – 5), (3 – 6) and (3 – 7) can 
be rewritten separately for when  and when JK ≥ JK < . 

When JK < , 
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Then, the average number of requests in the system can be 
derived by applying the following equation: 
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In systems with bounded queue length, the performance 
modeling concerns not only the throughput and average 
response time, but also the packet dropping rate. The 
proportion of the dropped packets is the fraction of time when 
there are K requests in the system. Based on equations (3 – 12) 
and (3 – 15), we have 
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Multiple class workloads 
The analysis model described in previous sections deals 

with a single workload class only. Unlike a standard computer 
system, a network processor is dedicated to a specific 
application in many cases. There is only one workload running 
on it. The single class analysis model is sufficient for such 
systems. However, the analysis model can be easily extended 
to handle multiple workload classes, for the situations that 
multiple applications run on a single NP. The detail analysis for 
multiple-class workload is omitted in this paper. 



For simplicity, our analysis model currently considers only 
the simple case of NP being a “multiplexer”. We leave the 
extension to “concentrator” function to future work. 

IV. APPLICATION ANALYSIS 

SpliceNP 
To validate our analytical model we apply it to actual NP-

based applications. In particular, we choose SpliceNP [10] as 
an example. SpliceNP implements TCP Splicing for a content 
aware switch using an Intel IXP2400 network processor. It 
processes data using four components: packet receiving, packet 
transmitting, processing of packet from client, and processing 
of packet from server. Each component is assigned with a 
dedicated packet processor called a microengine (ME) in the 
IXP technology.  

When the switch receives a connection start request (SYN) 
from the client, it establishes a TCP connection with the client 
using the handshake protocol. Once receiving the HTTP 
request, it parses the request and matches it with preset policy 
to find the target server. After the target server is identified, it 
establishes another TCP connection with the server using the 
handshake protocol again. Then the two connections are 
spliced together. Unlike most Layer-7 switches, SpliceNP 
creates a brand new TCP connection with target server for each 
connection from the client.  Table 1 summarizes the packet 
interaction sequence for each HTTP request. 

From client From server To client To server 
SYN  SYN/ACK  

ACK/Request  ACK SYN 
 SYN/ACK ACK/Request  
 Response Response  

ACK   ACK 
 … …  

…   … 
FIN   FIN 

 FIN/ACK FIN/ACK  
ACK   ACK 

Table 1. Packet sequence in switch for each HTTP request 

The shaded entries are packet interactions after the two 
TCP connections are spliced. If the request file size is larger 
than the MTU, the file is broken into multiple packets, and so 
there are multiple pairs of response and ACK packets for that 
file. 

Analysis method 

For a Layer-7 switch, it is easy to obtain the request arrival 
rate and the average packet size. But it is difficult to measure 
the average service demand for each request or the number of 
packets in the queue at each resource. In our study we estimate 
service demand by analyzing the pseudo code of each 
application. MEs in IXP2400 are RISC processors, and so most 
instructions only take one clock cycle. Thus, service demand 
for an ME can be obtained based on the number of instructions 
for processing each request. For memory access, the service 
demand can be obtained based on the average access latency 
and the number of memory reference made for each request. 

rateclock
countninstructioDME _

_
=    (4 – 1) 

rateclock
latencySRAMcountreferenceDSRAM _

__ ×
=   (4 – 2) 

rateclock
latencyDRAMcountreferenceDDRAM _

__ ×
=   (4 – 3) 

rateclock
latencySHaCcountreferenceDSHaC _

__ ×
=   (4 – 4) 

When using multiple MEs in parallel at the processing 
stage, the MEs are replaced with two resources in the model 
shown in Figure 3. Therefore, the service demands for the 
aggregated resource and delay resource are different from those 
of a single ME. 

countMErateclock
countninstructioDaME __

_
×

=    (4 – 5) 

( )
countMErateclock

countMEcountninstructioDdME __
1__

×
−×

=   (4 – 6) 

The related hardware parameters for an IXP2400 network 
processor are listed in Table 2 [4]. 

Latency (processor clock cycles) ME Clock 
Rate (MHz)

ME 
Threrads SHaC SRAM DRAM 

600 8 16 90 120 
Table 2. Intel IXP2400 parameters 

SHaC is a functional unit providing on-chip memory 
(called scratchpad), hashing, and control status registers. 

Pseudo code analysis 
According to the design description of SpliceNP, we derive 

pseudo code modules and summarize estimated service 
demands in Table 3. 

We obtain estimated service demands for the modules with 
* from the standard microblocks that come with the Intel IXA 
SDK. 

Not every packet goes through all modules. The modules in 
the shaded area are only executed for certain specific packet 
types. All packets are processed by Data Forward after the two 
connections are spliced.  

Based on Tables 1 and 3 we can derive the service demand 
on each resource for one HTTP request. The number of packets 
for HTTP request and response vary, depending on the request 
file size. In our experiment, we assume that the request is small 
enough to fit into one packet, and the MTU for the response 
packet is 1500 bytes for Ethernet.  

Module Inst. 
Cycles 

SHaC 
Ref. 

SRAM 
Ref. 

DRAM 
Ref. 

Packet Rx* 86 1 1 1 
DL Source* 33 1  1 
Ethernet Decap* 20    
IP Validate 100    
Ctrl Block Lookup 64 1 3  
TCP Validate 100    
Client SYN 31  16  
Client ACK/Request 120  72 1 
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Client FIN 1  2  
Server FIN/ACK 2  8  
Ethernet Encap* 60    
DL Sink* 54 1  1 
Packet Tx* 92 1 2 1 

Table 3. Pseudo code summary of SpliceNP design 

In order to compare the analytical results obtained from our 
performance model with the actual measured results from 
SpliceNP implementation, we choose the same set of request 
file sizes to obtain the maximum throughput. We then convert 
the throughput results in terms of requests into bytes, based on 
Table 1. The left chart of Figure 4 shows the results. Our 
analytical results match the measured results from actual 
implementations presented in [10], which is shown in the right 
chart of Figure 4 (The only discrepancy is when request file 
size is small). This validates our approach. 

 

 

 

 

 

 

Figure 4. Throughput result comparison 

When the switch reaches its maximum throughput, the 
average response time is often unacceptable. Figure 5 
illustrates how the average response time changes according to 
the throughput. This could provide a guideline to the 
application designer. In our experiment we fix the request file 
size to 16KB. The response time reaches to 1.19 second when 
the throughput reaches the maximum of 22000 requests.  

Figure 5. Response time vs. arrival rate  

Bounding the input queue length is an easy way to 
significantly improve the response time at the price of dropping 
requests. The quantified results will help to determine if it is 
acceptable. Figure 6 shows that the response time is improved 
tremendously while the request dropping rate is still kept low. 

We observe that adding additional MEs makes no 
significant performance improvement. This is because the 
bottleneck of the application is on SRAM access. In order to 
significantly improve performance, one has to either reduce I/O 
reference to SRAM or distribute SRAM to multiple channels if 
they are available.  

V. CONCLUSION 
In this paper, we propose and validate a general analytical 

framework for measuring the performance of NP-based 
application designs. It allows application designers to evaluate 
the performance of a design with accuracy to determine 
whether it meets the performance requirement, and thus it saves 
designers’ time and effort from the need of actually 
implementing the design to obtain performance measurements 
from simulations. 
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Figure 6. Response time and request dropping rate with 
limited Q length 
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