
Analytical Performance Analysis of Network-
Processor-Based Application Designs

Jie Lu
BMC Software Inc.

Waltham, MA

Jie Wang
University of Massachusetts

Lowell, MA

Abstract—Network processors (NP) are designed to provide both
performance and flexibility through parallel and programmable
architecture, making them superior to general-purpose
processors on performance and to hardware-based solutions on
flexibility. But NPs also introduce new challenges. It is important
to study the limitations of NP architectures so that one can take
full advantage of NP resources to achieve the required
performance for a given application. It is therefore desirable to
develop a general framework for analyzing performance of NP-
based applications. This paper presents an analytical method for
solving this problem. In particular, we devise a queuing network
to model NP resources and application work flows. We then use
queuing theory and operational analysis to obtain performance
metrics on throughput and response time, among other things, at
the component level as well as at the system level. We apply our
performance model to SpliceNP, a TCP Splicing implementation
of content-aware switches on network processors presented in
[10], and show that the analytical results using our models match
the experimental results from actual implementation.

 performance model; network processor

I. INTRODUCTION
A network processor is a programmable packet processing

device that combines the advantages of low cost and flexibility
of a RISC processor and scalability of custom silicon (i.e.,
ASIC chips) [2]. Specifically designed to store, process, and
forward large volumes of data packets at wire speed through
parallel and pipelining architectures, NPs are desirable building
blocks for constructing network systems that can process data
packets of any form. They do so through software, providing a
flexible platform for implementing different network
applications without the need to make new hardware.
Moreover, software modules can easily be reused. Thus, NPs
allows users to create and add, through software, the latest and
best network services, and in the same time reduce
development cost and provide quick-time-to-market products.

Programming NPs is challenging. This challenge is on top
of the general issues that all software developing would face.
For example, since several choices of designs for solving the
same problem often exist, how do we know which design of
data flow architecture would provide the best performance? To
answer this question we would need to obtain quantitative
analysis results.

Packet processors do not have operating systems. This
means that software designers need to explicitly allocate NP

resources when designing NP-based applications, including
processor cycles, threads and memory units. Take memory
units as an example, it is obvious that data structures that are
accessed infrequently, such as packet payloads, should be
placed in DRAM, while data structures that are accessed
frequently, such as lookup tables, should be placed in SRAM.
Some NPs, however, have multiple channels for the same
memory unit, making it difficult to determine how to allocate
an individual data structure to which memory channel to obtain
the best performance. The decision would depend on the
accessing pattern in the particular application we are trying to
solve. Other functional units in NPs have the similar problem.

Most network applications have specific performance
requirements, including requirements on throughput and delay
latency. How can one know whether the target NP would meet
the requirements? If not, would an alternate NP, or an array of
NPs, provide the required performance?

These questions call for performance analysis tools that
provide quantitative results. Bounding calculations and discrete
event simulations are two common analysis methods.
Bounding calculations, also called "back of the envelope"
calculations, are often used to quickly assess the maximum
throughput of a single system component. But this method has
several serious limitations. For example, bounding calculations
tend to yield optimistic predictions that are unrealistic, for the
predicted performance would likely decrease when more
details about the system are taken into consideration. For
another example, an NP has multiple components, each of
which has requests queued up waiting for service. Simple
bound calculations cannot predict latency, nor can they model
any interaction between components.

Discrete event simulations use a global time and an event
scheduler to measure performance of a design. Transitions are
represented by different objects of an event. All events have
associated timestamps. The simulation program executes the
events one at a time in the order of increasing timestamps. The
global time jumps from one event timestamp to the next. In
addition to simulating the logic of the system being modeled,
events have to update the counters used for statistics, providing
detailed performance characteristics of the modeled system.
Most NP vendors provide development tool sets, including a
simulator, which can be used to provide more accurate
performance analysis of an application. But most of the
simulators can only perform the performance analysis after the
application programs are implemented. We note that it is often

impossible to implement every possible design to choose the
best one. Thus, much time and effort will be wasted at this
stage if it turns out that the chosen architectural design does not
meet the performance requirements. We also note that
simulators are designed for a specific NP model or an NP
product line. To the best of our knowledge there has been no
tool that allows users to compare (even if just roughly
compare) the performance across different types of NPs.

To overcome the limitations in bounding calculations and
discrete event simulations, we introduce in this paper an
analytical method that provides a general framework for
analyzing NP-based applications without implementing them.

The rest of the paper is structured as follows. In Section II
we describe the base-line architecture common in any type of
network processors. In Section III, we construct a queuing-
network for modeling NP computations. In Section IV, we
compare analytical results obtained from our theoretical models
with an actual implementation of a TCP splicing content-aware
switch called SliceNP. We show that our analytical results are
consistent with the actual performance analysis.

Figure 1. General architecture of network processor

II. GENERAL ARCHITECTURE OF NETWORK PROCESSOR
No industry consensus exists at this point regarding what

hardware components should be included in a network
processor and how they should be organized on a chip. NP
architectures from different vendors vary considerably, but
they share the same base-line concepts and structures. In
general, a typical NP consists of an array of programmable
packet processors (PP) in a highly parallel architecture, a
programmable control processor (a.k.a. core processor),
hardware coprocessors (CP) or accelerators for common
networking operations, high-speed memory interfaces, and
high-speed network interfaces. Figure 1 shows the general NP
architecture of a network processor.

Packet processors
Packet processors are RISC-based processors, with the

advantage of being small, fast, inexpensive, easy to integrate
with other hardware, and easy to program. PPs perform data-
plane tasks and provide fast-path data processing at wire speed.

Most packets are processed by PPs. PPs use an instruction set
that is optimized for packet processing.

Memory I/O latencies affect performance a great deal. To
hide memory latencies most PPs employ multi-threading
technology on hardware to process multiple packets on a single
PP concurrently. It minimizes the overhead of context
switching, thus significantly increasing the overall throughput.

Data-plane tasks include packet classification, forwarding,
filtering, header manipulating, protocol conversion and
policing. Most processing in network applications occurs in
data planes.

Control processor
The control processor is a general-purpose processor that

runs an embedded operating system. The control processor
provides overall control, performs configuration management,
and processes exception packets. Exception packets could be
control-plane-related, or data-plane-related that may require
extra processing such as IP packets with options.

Coprocessors
The coprocessors are special-purpose hardware, providing

specific functions for carrying out common network tasks,
including pattern matching, table lookup, buffer management,
queue management, hashing, checksum computation, and
encryption/decryption. Since these functions are commonly
used in packet processing regardless which protocols are used,
implementing them via hardware speeds up execution.
Coprocessors can be used to simplify software creation, for
they provide a single-instruction access to complex operations.

…

PP

PP PP

Core

…PP

On Chip
Memory

Network
Interface

CP CP

Memory
Interface

External
Memory

Fabric
Interface

CPU

Network Processor

Data
Transfer

Unit

PHY

…

…

Network and fabric interfaces
The fabric interfaces handle interaction between processors

and fabric switch, and network interfaces handle interaction
between processors and the physical layer of the external
network. Most network processors also include data transfer
units that are responsible for moving packets between MAC
devices and memory directly.

Memory
High speed memory is expensive. Regular computer

systems often use different types of memories in a hierarchical
manner to balance between cost and speed. For example, an
on-chip level 1 cache has the fastest speed, but with the
smallest capacity (i.e., the number of bytes it can store). Level
2 and level 3 caches each provide lower speed with larger
capacity than the previous level. The main memory has the
largest capacity but with the lowest speed. To achieve good
performance, data that are more frequently accessed are stored
in faster memories.

NPs adopt a similar memory hierarchy. Since NPs are used
to process a large volume of network packet data that
demonstrates almost no locality, most NPs do not provide
cache to packet processors. Some NPs provide on-chip
memory for fast accessing. All NPs provide high-speed
memory interface for various levels of external memory, where

the Static RAM (SRAM) provides faster speed and the
Dynamic RAM (DRAM) provides large storage with lower
accessing speed.

Unlike conventional computer systems, NP programmers
need to explicitly choose which memory to store which data.
Normally, SRAM is used to store configuration and status
information, or packet headers in some cases, which needs to
be accessed frequently. DRAM provides large space to buffer
the payload data that are less frequently accessed.

A number of chip makers manufacture various types of
network processors. The most popular models include AMCC
nPcore family [1] and Intel IXP family [5].

III. QUEUING NETWORK MODEL
Any NP-based application would typically go through three

pipelining stages: packet receiving, packet processing, and
packet transmitting. Packet receiving and packet transmitting
can each be implemented on a single packet processor or on
multiple packet processors in parallel. Packet processing can be
implemented on multiple packet processors in parallel or in
pipeline.

We model packet flows on a network processor as a
queuing network, illustrated in Figure 2. We then devise a
performance model from it.

Figure 2. Queuing network model of network processor

In this queuing network model we supply a separate input
queue to each packet processor, coprocessor, and memory unit.
We assume three levels in the memory hierarchy: on-chip
memory, SRAM, and DRAM. Since the control processor is
normally used to manage configurations and handle exceptions,
rather than processing packets on the fast data path, it has less
impact on the overall performance of an application and so we
do not include it in the model. We assume that packet receiving
and packet transmitting are each handled by a packet processor,
and packet processing is handled by multiple packet processors
in parallel. Using the multithreading mechanism, packet
processors do not need to be held waiting for response from
coprocessor, thus the coprocessors are modeled in the same
way as packet processors do. There are several ways to allocate
resources. For simplicity, we present here a simpler model,
which can be extended with easy modifications to meet other
configurations.

Critical parameters
We identify the following parameters that are critical for

evaluating analytical models for each resource as well as for
the entire NP.

• Arrival rate: It is the number of requests or packets that
arrive per second.

• Throughput: It is the number of requests or the number of
packets completed per second.

• Resource utilization: It is the percentage of time that the
resource is busy processing requests.

• Average response time: It is the average time duration
that each request or packet spends inside the NP.

The arrival rate can be easily measured externally. It can
also be specified explicitly. If the analysis interval is large
enough, the system throughput is, according to the flow
equilibrium principle, the same as the system arrival rate.

In a conventional computer system, the operating system
measures accurately the utilization of resources, such as
utilization of processors the utilization of memories. Naturally,
NP-based applications should always try to achieve optimal
performance and eliminate unnecessary overheads. There is
usually no measurement on packet processor utilizations.
While the measurement of queue length at each packet
processor is relatively easy to obtain, we note that frequent
sampling would cause significant negative performance impact.
On the other hand, coarse sampling would cause big distortion.
Thus, we use the service demand method. Service demands of
each resource may be calculated via pseudo code analysis.

We first measure service rate, throughput, and response
time at the component level using queuing network analysis.
We then use these measures to measure throughput and
response time at the system level by treating the whole system
as a black box.

Component level modeling
The queuing network model shown in Figure 2 is a closed

model. We use it to analyze performance at the component
level. There are a fixed number of requests in the system.

PP

SRAM

PP

PP

PP

• • •

Co

PP

Onchip DRAM

Processing

Receiving Transmitting

Incoming
packet data

Outgoing
packet data

Mean Value Analysis
We choose the Mean Value Analysis (MVA) to solve

closed queuing network model. MVA is intuitive and is widely
used.

The detailed description and derivation of the MVA
algorithm can be found, e.g., in [7]. The algorithm can be
simplified as a procedure of recursively applying three
equations: the residence-time equation, the throughput
equation, and the queue length equation, as shown in Equation
(3 – 1) to (3 – 3).

• Residence time equation:

[] resourcequeuing
resourcedelay

nQD
D

nR
ii

i
i

⎩
⎨
⎧

−+
=′

)1(1
)((3 – 1)

• Throughput equation:

∑
=

′
= K

i
i nR

nnX

1

0

)(
)(

 (3 – 2)

• Queue length equation:

)()()(0 nRnXnQ ii ′×= (3 – 3)

Here i denotes the index of the resource, K the total number
of resources, and n the total number of requests reside in the
queuing network. We assume that the service demand at each
resource, , is known by deriving from pseudo code analysis. iD

Residence time is the total amount of time that a request
stays in a resource. It is the sum of the service time and the
queuing time that the request waits for service. The residence
time at a delay resource is the same as the service time, since
there is no waiting queue at delay resources. The residence
time equations for the queuing resources means that the time a
request spends waiting in the queue is the accumulated service
time of all requests in front of it in the queue.

The throughput equation is derived from Little’s Law (see,
e.g., [3]). The end-to-end response time of a request going
through the queuing network is the summation of the time it
spends at each resource, which is the residence time.

The average queue length at resource i when there are n
requests in the system, Qi(n), is the average number of requests
at the resource. Thus, the queue length equation can be derived
from Little’s Law and the Forced Flow Law [3].

Throughput bound
To make the MVA algorithm converge, we need to find the

bound of the system throughput. The maximum throughput of a
system is determined by the bottlenecked device.

According to the Service Demand Law [3], we have
Di=Ui/X0, where Ui is the utilization of resource i, and X0 is the
throughput of the entire system. Since the utilization of any
resource can never exceed 100%, we have iDX 10 ≤ for any
resource i. Then we have,

i
K
i D

X
1

0 max
1

=

≤ (3 – 4)

Intuitively, the maximum throughput the system can ever
achieve is bounded by the resource with largest service
demand. Therefore the resource with the largest service
demand is the bottlenecked resource in the queuing network.

Parallel processor modeling

In the queuing network model shown in Figure 2, there are
multiple packet processors handling data in parallel in the
packet processing stage. In this case, there are multiple
resources serving requests from a single queue. The basic
operational analysis equations does not account for this case.

Seidmann [9] proposed an approximation method for
analyzing parallel server stations with a single server under

medium to heavy utilizations. The idea is to convert the
configuration of parallel servers into the configuration of
serialized servers. Assume that there are m parallel resources
taking requests from a single queue, and the service demand on
each individual resource is D. Then all m resources can be
replaced with a single resource that is m times faster than each
individual’s original resource. Therefore, the service demand
on this new resource is D/m. In this way, the waiting time on
the queue is close to the waiting time in the system with m
parallel resources. A second resource is added in tandem to
rectify the mean-time-in-station estimates by assuring that the
total service remains the same. Hence, the second resource can
be viewed as a delay resource without waiting queues. The
service demand on the delay resource is D*(m-1)/m.

Requests under light load spend no waiting time in the
queue. Thus, the average response time for a request in the new
configuration is D/m + D*(m-1)/m = D. This matches the
average response time for a request in the original parallel
configuration.

Resources under heavy load are busy most of the time. The
dominant part of the average response time is the waiting time
spent in the queue. The time delay from the delay resource
becomes negligible. The average waiting time in the queue of
the single resource is the same as the average waiting time in
the queue of the m parallel resources.

Using this approximation, the parallel packet processors in
Figure 2 are replaced with a single queuing resource plus a
delay resource, as illustrated in Figure 3.

Figure 3. Approximate modeling on parallel processors

1

2

m

• • •

m
D ()

m
mD 1−

×

D

System level modeling
From the viewpoint of an outside observer, the whole

queuing network in Figure 2 can be treated as a black box. It
takes requests, or packets, one by one from its input queue and
completes them as output. This black box presents no
difference from a queuing resource discussed before. It is
therefore a perfect example of an open queuing network model.
Unlike most other resources, the service rate varies depending
on the number of requests in the system. Thus the service rate it
can be treated as a load-dependent resource.

Using analysis at the component level, we may obtain an
array of throughput based on different numbers of requests, k,
in the system. Then the variable service rate can be derived
from them as below.

()
()⎩

⎨
⎧

≥
<

=
JkJX
JkkX

kμ (3 – 5)

Here J is the number of requests in the system when it
reaches the maximum throughput. It can be found using the
MVA algorithm.

Assume that the requests arrive at a constant rate, λ, and the
input queue of the network processor system is unbounded.
The equilibrium probability [8] can be rewritten as follows:

() ()()ρβ
λρ

β
λ

−−
++

=

∑
−

= 11
1

1
1

1

0

Jk

p JJ

k

k

 (3 – 6)

()
()

()⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

<
=

Jk
J

JXp

Jk
k

p
p kJ

k

k

β
ρ

β
λ

0

0 (3 – 7)

Here and () () () ()kXXXk ×××= L21β ()JXλρ = .

Then the average number of requests in the system can be
further derived as below.

()
()

()() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−+

+= ∑
−

=
2

1

0
0 1

1
ρβ

ρρλ
β

λ
J

JJ
k

kpN
JJ

k

k
 (3 – 8)

In the open queuing network model, the arrival rate has to
be less than the maximum throughput, that is, ()JX<λ .
Otherwise, the waiting queue may grow to infinity. So does the
average response time. According to the equilibrium principle
of open queuing network, the throughput is equal to the arrival
rate, λ=X . Applying Little’s Law we may obtain the average
response time as follows:

λ
N

X
NR == (3 – 9)

Bounded input queue length
The assumption of unbounded queue length in previous

section is unrealistic in a real network system, for the size of
the input buffer of any system is bounded. Once the input
buffer is full, any new incoming packets will be dropped.

In many cases, the network system utilization is not too
high, or the average service rate is much greater than the
average arrival rate. Then the waiting queue would not grow
too long. If the input buffer is reasonably large, dropping
packets is not an issue. The analysis model with unbounded
queue length is sufficient for modeling such systems.

In designing NP-based applications, it is important to find a
good balance between the input buffer size and the packet
dropping rate. If certain packet dropping rate is acceptable, it
would be reasonable to limit the queue length for achieving
better average response time.

For network systems that expect to reach the queue length
bound, the analysis model with unbounded queue length is not
sufficient. The queue length bound has to be factored in.

Bounded queue length means that there are a bounded
number of states in the state transition diagram. Suppose K is

the maximum number of requests allowed in the system, the
variable service rate in equations (3 – 5), (3 – 6) and (3 – 7) can
be rewritten separately for when and when JK ≥ JK < .

When JK < ,

() KkkXk ,,1L==μ (3 – 10)

()∑
=

+
=

K

k

k

k

p

1

0

1

1

β
λ

 (3 – 11)

()k
pp

k

k β
λ

0= (3 – 12)

When , JK ≥

()
()⎩

⎨
⎧

=
−=

=
KJkJX

JkkX
k ,,

1,,1
L

L
μ (3 – 13)

()
()

()()ρβ
ρλ

β
λ

−−
−

++
= +−−

=
∑ 11

11

1
11

1

0

Jk

p JKJJ

k

k
 (3 – 14)

()
()

()⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−=
=

KJk
J

JXp

Jk
k

p
p kJ

k

k

L

L

,

1,,1

0

0

β
ρ

β
λ

 (3 – 15)

Then, the average number of requests in the system can be
derived by applying the following equation:

∑
=

×=
K

k
kpkN

0

 (3 – 16)

In systems with bounded queue length, the performance
modeling concerns not only the throughput and average
response time, but also the packet dropping rate. The
proportion of the dropped packets is the fraction of time when
there are K requests in the system. Based on equations (3 – 12)
and (3 – 15), we have

()
()

()⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

<
=

JK
J

JXp

JK
K

p
p KJ

K

K

β
ρ

β
λ

0

0 (3 – 17)

Multiple class workloads
The analysis model described in previous sections deals

with a single workload class only. Unlike a standard computer
system, a network processor is dedicated to a specific
application in many cases. There is only one workload running
on it. The single class analysis model is sufficient for such
systems. However, the analysis model can be easily extended
to handle multiple workload classes, for the situations that
multiple applications run on a single NP. The detail analysis for
multiple-class workload is omitted in this paper.

For simplicity, our analysis model currently considers only
the simple case of NP being a “multiplexer”. We leave the
extension to “concentrator” function to future work.

IV. APPLICATION ANALYSIS

SpliceNP
To validate our analytical model we apply it to actual NP-

based applications. In particular, we choose SpliceNP [10] as
an example. SpliceNP implements TCP Splicing for a content
aware switch using an Intel IXP2400 network processor. It
processes data using four components: packet receiving, packet
transmitting, processing of packet from client, and processing
of packet from server. Each component is assigned with a
dedicated packet processor called a microengine (ME) in the
IXP technology.

When the switch receives a connection start request (SYN)
from the client, it establishes a TCP connection with the client
using the handshake protocol. Once receiving the HTTP
request, it parses the request and matches it with preset policy
to find the target server. After the target server is identified, it
establishes another TCP connection with the server using the
handshake protocol again. Then the two connections are
spliced together. Unlike most Layer-7 switches, SpliceNP
creates a brand new TCP connection with target server for each
connection from the client. Table 1 summarizes the packet
interaction sequence for each HTTP request.

From client From server To client To server
SYN SYN/ACK

ACK/Request ACK SYN
 SYN/ACK ACK/Request
 Response Response

ACK ACK
 … …

… …
FIN FIN

 FIN/ACK FIN/ACK
ACK ACK

Table 1. Packet sequence in switch for each HTTP request

The shaded entries are packet interactions after the two
TCP connections are spliced. If the request file size is larger
than the MTU, the file is broken into multiple packets, and so
there are multiple pairs of response and ACK packets for that
file.

Analysis method

For a Layer-7 switch, it is easy to obtain the request arrival
rate and the average packet size. But it is difficult to measure
the average service demand for each request or the number of
packets in the queue at each resource. In our study we estimate
service demand by analyzing the pseudo code of each
application. MEs in IXP2400 are RISC processors, and so most
instructions only take one clock cycle. Thus, service demand
for an ME can be obtained based on the number of instructions
for processing each request. For memory access, the service
demand can be obtained based on the average access latency
and the number of memory reference made for each request.

rateclock
countninstructioDME _

_
= (4 – 1)

rateclock
latencySRAMcountreferenceDSRAM _

__ ×
= (4 – 2)

rateclock
latencyDRAMcountreferenceDDRAM _

__ ×
= (4 – 3)

rateclock
latencySHaCcountreferenceDSHaC _

__ ×
= (4 – 4)

When using multiple MEs in parallel at the processing
stage, the MEs are replaced with two resources in the model
shown in Figure 3. Therefore, the service demands for the
aggregated resource and delay resource are different from those
of a single ME.

countMErateclock
countninstructioDaME __

_
×

= (4 – 5)

()
countMErateclock

countMEcountninstructioDdME __
1__

×
−×

= (4 – 6)

The related hardware parameters for an IXP2400 network
processor are listed in Table 2 [4].

Latency (processor clock cycles) ME Clock
Rate (MHz)

ME
Threrads SHaC SRAM DRAM

600 8 16 90 120
Table 2. Intel IXP2400 parameters

SHaC is a functional unit providing on-chip memory
(called scratchpad), hashing, and control status registers.

Pseudo code analysis
According to the design description of SpliceNP, we derive

pseudo code modules and summarize estimated service
demands in Table 3.

We obtain estimated service demands for the modules with
* from the standard microblocks that come with the Intel IXA
SDK.

Not every packet goes through all modules. The modules in
the shaded area are only executed for certain specific packet
types. All packets are processed by Data Forward after the two
connections are spliced.

Based on Tables 1 and 3 we can derive the service demand
on each resource for one HTTP request. The number of packets
for HTTP request and response vary, depending on the request
file size. In our experiment, we assume that the request is small
enough to fit into one packet, and the MTU for the response
packet is 1500 bytes for Ethernet.

Module Inst.
Cycles

SHaC
Ref.

SRAM
Ref.

DRAM
Ref.

Packet Rx* 86 1 1 1
DL Source* 33 1 1
Ethernet Decap* 20
IP Validate 100
Ctrl Block Lookup 64 1 3
TCP Validate 100
Client SYN 31 16
Client ACK/Request 120 72 1

0

2

4

6

8

10

12

20000 20500 21000 21500 22000

Arrival rate (Requests/sec)

R
es

po
ns

e
tim

e
(m

s)

0

100

200

300

400

500

600

700

800

1 4 16 64 256 1024

Request f i l e si z e (KB)

Server SYN/ACK 35 8
Data Forward 28
Client FIN 1 2
Server FIN/ACK 2 8
Ethernet Encap* 60
DL Sink* 54 1 1
Packet Tx* 92 1 2 1

Table 3. Pseudo code summary of SpliceNP design

In order to compare the analytical results obtained from our
performance model with the actual measured results from
SpliceNP implementation, we choose the same set of request
file sizes to obtain the maximum throughput. We then convert
the throughput results in terms of requests into bytes, based on
Table 1. The left chart of Figure 4 shows the results. Our
analytical results match the measured results from actual
implementations presented in [10], which is shown in the right
chart of Figure 4 (The only discrepancy is when request file
size is small). This validates our approach.

Figure 4. Throughput result comparison

When the switch reaches its maximum throughput, the
average response time is often unacceptable. Figure 5
illustrates how the average response time changes according to
the throughput. This could provide a guideline to the
application designer. In our experiment we fix the request file
size to 16KB. The response time reaches to 1.19 second when
the throughput reaches the maximum of 22000 requests.

Figure 5. Response time vs. arrival rate

Bounding the input queue length is an easy way to
significantly improve the response time at the price of dropping
requests. The quantified results will help to determine if it is
acceptable. Figure 6 shows that the response time is improved
tremendously while the request dropping rate is still kept low.

We observe that adding additional MEs makes no
significant performance improvement. This is because the
bottleneck of the application is on SRAM access. In order to
significantly improve performance, one has to either reduce I/O
reference to SRAM or distribute SRAM to multiple channels if
they are available.

V. CONCLUSION
In this paper, we propose and validate a general analytical

framework for measuring the performance of NP-based
application designs. It allows application designers to evaluate
the performance of a design with accuracy to determine
whether it meets the performance requirement, and thus it saves
designers’ time and effort from the need of actually
implementing the design to obtain performance measurements
from simulations.

ACKNOWLEDGEMENT
This work was supported in part by an Intel grant. The

second author was also supported by NSF under grant CCF-
0429906.

REFERENCES
[1] http://www.amcc.com/products/process.html
[2] D. Comer, “Network Systems Design Using Network Processors,”

Pearson Prentice Hall, 2004
[3] P. Denning and J. Buzen, “The Operational Analysis of Queueing

Network Models,” Computing Survey, Volume10, Number 3, September
1978

[4] Intel IXP2400 Network Processor Datasheet, February 2004
[5] http://developer.intel.com/design/network/products/npfamily/
[6] D. Menasce and V. Almeida, “Capacity Planning for Web Services,”

Prentice Hall PTR, 2002
[7] M. Reiser and S. Lavenburg, “Mean-Value Analysis of Closed

Multichain Queuing Networks,” Journal of the Association for
Computing Machinery, Volume 27, Number 2, April 1980

[8] T. Robertazzi, “Computer Networks and Systems: Queueing Theory and
Performance Evaluation,” Springer-Verlag, 1990

[9] A. Seidmann, P. Schweitzer and S. Shalev-Oren, “Computerized Closed
Queueing Network Models of Flexible Manufacturing Systems,” Large
Scale Systems, Volume 12, Number 4, 1987

[10] L. Zhao, Y. Luo, L. Bhuyan and R. Iyer, “SpliceNP: A TCP Splicer
using A Network Processor,” ACM Symposium on Architectures for
Network and Communications System, Princeton, NJ, October 2005

0.0

0.5

1.0

1.5

2.0

2.5

20000 20500 21000 21500 22000

Arrival Rate (Requests/sec)

R
es

po
ns

e
Ti

m
e

(m
s)

Q limit 10 Q limit 50 Q limit 100

0%

2%

4%

6%

8%

10%

12%

20000 20500 21000 21500 22000

Arrival Rate (Requests/sec)

R
eq

ue
st

 D
ro

pp
in

g
R

at
e

Q limit 10 Q limit 50 Q limit 100

Figure 6. Response time and request dropping rate with
limited Q length

	I. Introduction
	II. General architecture of network processor
	Packet processors
	Control processor
	Coprocessors
	Network and fabric interfaces
	Memory

	III. queuing network model
	Critical parameters
	Component level modeling
	Mean Value Analysis
	Throughput bound
	System level modeling
	Bounded input queue length
	Multiple class workloads

	IV. application analysis
	SpliceNP
	Pseudo code analysis

	V. conclusion
	acknowledgement
	References

