SpliceNP: A TCP Splicer using A Network Processor

Li Zhao, Yan Luo, Laxmi Bhuyan
Computer Science & Engineering Department
University of California
Riverside, CA

{zhao, yluo, bhuyan}@cs.ucr.edu

ABSTRACT

TCP Splicing can be used in content-aware switches to tremen-
dously reduce overall request latency. In order to reduce the pro-
cessing latency further, we propose to offload the protocol process-
ing onto network processors (NPs). An NP consists of a multi-
threaded multiprocessor architecture that can provide high through-
put for packet processing or forwarding. However, offloading any
protocol software to an NP needs to be carefully designed due to
its low-level programming and limited control memory size.

In this paper, we first analyze the operation of TCP Splicing
in detail and evaluate its performance through measurements on
a Linux-based switch. Then various possibilities of workload al-
location among different computation resources in an NP are pre-
sented, and the design tradeoffs are discussed. A content aware
switch is implemented using IXP 2400 NP and evaluated for per-
formance comparison. The measurement results demonstrate that
our NP-based switch can reduce the http processing latency by an
average of 83.3% for a 1K byte web page. The amount of reduc-
tion increases with larger file sizes. It is also shown that the packet
throughput can be improved by up to 5.7x across a range of files by
taking advantage of multithreading and multiprocessing, available
in the NP.

Categories and Subject Descriptors

C.2.1 [Network Architectureand Design]: Network communica-
tions

General Terms
Measurement, Design, Performance

Keywords
Network processors, TCP Splicing

1. INTRODUCTION

Server clusters have been extensively used to build a cost effec-
tive, scalable and reliable server system. One of the most important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ANCS 05, October 26-28, 2005, Princeton, New Jersey, USA.

Copyright 2005 ACM 1-59593-082-5/05/0010 ...$5.00.

135

Ravi lyer
Systems Technology Lab
Intel Corporation
Hillsboro, OR

ravishankar.iyer@intel.com

components for such a system is switch, which forwards packets
between outside world and the backend servers. A content-aware
switch [3] [6] [12] routes packets based on the request content or
application layer information. Upon receiving an HTTP request,
the switch examines the request content, and chooses a back-end
server based on pre-defined rules.

A straightforward way to build a content-aware switch is to use
an HTTP proxy, which runs as an application. This proxy first
accepts the initial connection from the client, parses the received
request, and chooses a back-end server. Then the proxy establishes
a second TCP connection with the selected server, and directs the
request to it. When the response packet from the selected server is
received on the second connection, the proxy forwards this packet
to the client through the first connection. This approach is easy
to implement as no changes of the operating system on the switch
are required. However, the overhead to copy data between these
two connections is high: the data from the server needs to go up
through the protocol stack, and be copied from the kernel space to
the user space; then, this data is copied to the kernel and goes down
through the protocol stack again.

TCP splicing [10] [18] solves this data copy problem by splicing
the two connections once these two connections are set up. The
switch then forwards subsequent data packets on the spliced con-
nection by modifying particular fields (e.g. sequence numbers) in
their TCP and IP headers. Since this data forwarding is performed
at the IP level, the overhead of copying data between the user space
and the kernel space is avoided.

TCP splicing has been used to build content-aware switches based
on general purpose processors[10] [4] [20] and ASICs [2]. How-
ever, switches based on general purpose processors cannot provide
satisfactory performance due to interrupt, moving packets through
PClI bus, and large protocol stack overhead in the operating system.
Also, the instruction set architecture of the general purpose proces-
sors is not tuned for packet processing. ASIC based switches, on
the other hand, have no flexibility although they can achieve very
high processing capacity. Network processors (NPs) are new pro-
cessors optimized for packet processing. They usually consist of a
general-purpose control processor and data processors that support
multiprocessing and multithreading. The NPs operate at the link
layer of the protocol like ASICs, thus avoiding the large OS over-
head of the general-purpose processors. At the same time, they are
programmable. To the best of our knowledge, no study on design of
content-aware switches has been done using NPs. The aim of this
paper is to design and implement such a switch and demonstrate its
high performance and programmability.

It is known that a number of industry projects is undergoing at
present on offloading TCP to the NPs, like Intel IXP. All these
projects try to offload TCP to the control processor (like XScale

in 1XP) because it is programmed in C language and there is no
memory restriction. Even though such an implementation avoids
the latency through the PCI bus, our measurements in this paper
will show that the TCP latency is not significantly reduced. Our
aim is to design a TCP or TCP splicing version that can be imple-
mented in the data processors (called micro engines in the 1XP) so
that (1) the latency is reduced by avoiding the embedded Linux ker-
nel in the control processor and (2) packet throughput is increased
by using multiple threads and multiple data processors in an NP.
However, implementing TCP splicing technique on data proces-
sors in NP is not simple. First, the NPs are programmed at a low
level language (MicroC or microcode) without the availability of a
compiler that can directly translate the TCP splicing code from C
to this language. Second, the instruction memory available in an
NP is limited, so an incredible amount of effort is needed to reduce
and optimize the existing code. We design a lite version of TCP
splicing in this paper that we call SpliceNP.

In this paper, we first measure the performance of TCP splicing
on a Linux based switch and then analyze the function-level pro-
cessing latency of key TCP splicing operations. The experimental
results help us identify the critical functions of the TCP splicing
operations that must be offloaded to an NP. Then we carefully al-
locate these functions to different microengines and threads in the
NP for optimal performance. In the process we have to ensure that
the computational power of the NP is fully utilized for maximum
throughput. We implement the TCP splicing on an ENP2611 board
that contains an Intel’s 1XP2400. Our performance evaluation re-
sults show that an NP-based TCP splicing technique can signifi-
cantly improve processing latency as well as the throughput. While
our previous work [21] has shown similar results, the focus on this
work is on the protocol design and implementation.

The contribution of this paper is the following:

e We analyze the TCP splicing technique in detail, discuss
how this technique reduces the overall latency and present
measurement results through experiments based on Linux
switches.

e \We present how an NP can improve the TCP splicing per-
formance, and derive protocols to implement it on micro-
engines.

e We implement TCP splicing on the ENP2611 that contains
an Intel IXP2400 processor, and present a detailed perfor-
mance evaluation. We plan to make the source code of our
splice-NP implementation available soon for academic re-
search.

The rest of the paper is organized as follows. Section 2 ana-
lyzes the TCP splicing technique and quantifies the performance
improvement by using this technique. The motivation to build a
content-aware switch based on network processors and a detailed
protocol implementation are presented in Section 3. Section 4 de-
scribes details of our design and implementation on an 1XP2400
NP. The experimental results are presented in Section 5. Section
6 describes the related work. Section 7 summarizes and concludes
this paper.

2. ANATOMY OF TCP SPLICING

In this section, we first describe the TCP splicing technique in
detail, and present its state transition. We then obtain experimental
results on a Linux-based switch to quantify the achieved perfor-
mance gain. Based on the analysis on these results, we decide how
to offload the whole processing onto a network processor.

136

2.1 What is TCP splicing?

SYN SYN
SYN/AC SYN/ACK
ACK T—AcK |
/Request #\CK@‘
| s |
SYN/ACI SYN/ACI
ACK %‘
W CK/Request
‘Resp& Response
Response | ______| /
S I g I S s g
esponse rox
‘p/ Y [—ACK | ~— ACK |
T |
i i i i i Server-side
Client-side Server-side i Client-side Server
i Server Client
Client socket on socket on socket on socket on
the switch the switch the switch the switch
@ ®

Figure 1: Operationson a content-aware switch. (a) w/o splic-
ing (b) w/ splicing

Prox Prox
oy User Yy
Tcp /S \| TCP Kerndl TCP TCP
IP IP P P
CNeT | | NET CNeT [\ NET
(@ (b)

Figure 2. Comparison of protocol stack processing. (a) w/o
splicing (b) w/ splicing

Figure 1 shows the operations with and without the TCP splic-
ing technique in a Linux-based switch. In Figure 1(a), an HTTP
proxy is running in the user space with a client-side socket wait-
ing for clients’ requests. A client initiates a three-way handshak-
ing with the switch, and then sends the HTTP request. The proxy
parses this request and establishes another connection with the ap-
propriate server, also through the three-way handshaking. Then the
proxy forwards the HTTP request to the server through the second
connection. Upon receiving the response data from the server, the
proxy forwards it to the client through the first connection. As the
proxy runs in the user space, this “forwarding” involves copying
data from the kernel space to user space and back to kernel space
again, which is illustrated in Figure 2(a). This copying overhead
can be avoided by using TCP splicing, shown in Figure 1(b). Once
the proxy sends the HTTP request to the server, the response packet
is forwarded directly to the client without any control by the proxy.
The ACK packet from the client is also forwarded to the server.
As this splicing procedure is transparent to both the server and the
client, certain fields in the IP and TCP headers of the packets need
to be modified, yet all the processing is done at the IP level, as
shown in Figure 2(b).

2.2 TCP Splicing State Transition

TCP splicing is based on the standard TCP/IP protocol [19],
which maintains the state information for each connection. There-
fore, we also need to maintain the state information for TCP splic-
ing. In order to implement TCP splicing, we need to clearly un-
derstand various states of this process, shown by the state tran-
sition diagram in Figure 3. The state transition from CLOSED

to SYN_RCVD and ESTABLISHED states is the three-way hand-
shaking standardized in TCP/IP protocol. There are two handshak-
ings in the figure. The first one is initiated by the client, which
leads to ESTABLISHED state for the first connection. The sec-
ond three-way handshaking is triggered by receiving an HTTP re-
quest packet. After the second connection also enters ESTAB-
LISHED state, these two connections are spliced together and the
state migrates to SPLICED. The termination of the spliced con-
nection starts when a FIN packet is received from one side (server
or client). This leads to the state transition to FIN_.RELAYED1.
When the ACK to this FIN packet is received, the state becomes
ACK_RELAYEDL1. The arrival of a FIN packet from another side
transits the state to FIN_RELAYED2. The last ACK packet leads
the state to TIME_WAIT. After 2MSL (Maximum Segment Life-
time, which is usually 120 seconds [19]), the state is changed to
CLOSED. Notice that data forwarding occurs from SPLICED state
until FIN_.-RELAYED?2.

rec:SYN, send:SYN/ACK

' rec:ACK

ESTABLISHED
—=---rec:ACK/Requ

rec:FIN/ACK

2MSL timeout @ —

Figure3: Statetransition in TCP splicing

Based on this state diagram, we classify packets into two types:
control packets and data packets. Control packets are those sent
before the two connections are spliced. These packets, suchas SYN
packets, are used to set up connections. The HTTP request packet is
also treated as a control packet as it causes the second connection to
be setup. Data packets are those sent after the two connections are
spliced. They are response packets from the server, ACK packets
from the client, and FIN packets from both sides.

3. USING NP TO IMPROVE TCP
SPLICING

In this section, we discuss the motivation to use a network pro-
cessor (NP) to improve the TCP splicing performance, and present
the details of our SpliceNP protocol showing the savings in time.

3.1 Why use A Network Processor?

The HTTP request is parsed by the proxy, which runs on the ap-
plication level. Hence this request packet is required to go through
the protocol stack and be copied from the kernel space to the user

137

space. The latency can be improved by removing the proxy and
moving all the processing including parsing the HTTP request into
the kernel space [20] [16], as shown in Figure 4(a). However, data
has to be moved from host DRAM to NIC and from NIC to host
DRAM over the PCI bus. This imposes heavy bandwidth pressure
on PCI bus when the number of connections is large. It also intro-
duces interrupt overhead to the host CPU.

To further improve processing of control packets as well as data
packets, we propose to move all the processing down to the NIC
level. Figure 4(b) and (c) utilize Network Processor (NP) -based
network interfaces. The NP usually has a control processor and
multiple data processors. The data processors are tuned specifically
for processing network packets in the fast path, whereas control
processor is used to maintain the control information, and process
exception packets. For example, Intel IXP2400 network proces-
sor contains one control processor (XScale) and 8 data processors
(called microengines). The control processor runs an embedded
Linux and shares DRAM with data processors. The data proces-
sors receive and transmit packets through NICs.

In Figure 4(b), TCP protocol stack in the control processor (XS-
cale) can be used to create connections to clients and servers, and
splice these two connections in the embedded Linux kernel. Then
the data packets sent after splicing can be processed on the MEs. A
number of industrial projects use this implementation for offload-
ing TCP to an NP. However, our experimental results showed that
processing control packets in XScale leads to longer latency due
to the following reasons. In order to retrieve control packets, the
XScale has to poll an input queue, which is filled by the micro-
engines. After processing these packets, the XScale must put them
into an output queue, from which a microengine sends them out.
The packet en-queueing, de-queueing and polling time taken to-
gether increase the processing latency on control packets. Notice
that these control packets fall in the critical path for TCP splic-
ing. This delay is detrimental to the overall performance because
longer delay may cause timeout on clients and may lead to packet
retransmissions. In effect, this technique replaces Linux by embed-
ded Linux and a powerful Pentium CPU by a weak XScale CPU.
Nonetheless, we implemented this and observed that such an im-
plementation increases the latency instead of reducing it.

Given a large number of microengines (MEs) and threads in NPs,
Figure 4(c) is a natural evolution over (b). After receiving packets
from NICs, the packet processors handle the connection creation,
splicing and data forwarding, without the need to communicate
with the control processor or the host CPU. The large number of
hardware threads in packet processors are capable of fast packet
processing and eliminating data copying. We use this architecture
to design and implement a content-aware switch called SpliceNP.
However, implementing a complex splicing software in ME is dif-
ficult because unlike XScale they are programmed in MicroC (in-
stead of C) and are limited in control memory.

Compared to a Linux splicer in Figure 4(a), the SpliceNP can
reduce the processing latency in four ways:

e Interrupt vs. polling. When NIC in the Linux machine re-
ceives packets, it raises an interrupt to the CPU. Although
current NICs have the ability to accumulate multiple pack-
ets and then notify the processor using a single interrupt, the
overhead of interrupt is still high. NPs use polling instead of
interrupt to reduce this overhead.

e NIC-to-memory copy vs. no copy. In the Linux-based switch,
the NIC has to copy the received packets to the main memory,
which requires a DMA transfer through the PCI bus. Simi-
larly, when the packets are sent out, they are transferred from

DRAM
User

CPU

Kernel

@ (b)

Figure 4: Threearchitecture candidatesfor TCP splicing

the memory to the NIC buffer by DMA again. In NP-based
switch, however, packets are processed inside the NIC with-
out the need for copy.

e Linux processing vs. IXP processing. Even if the whole TCP
splicing is implemented in Linux kernel, the OS overhead
like context switch would happen. In NP, with optimized
instruction set architecture for packet processing, the hand
coded splicer enables us to process packets in a more efficient
way.

e Multiple MEs and threads in an NP can process many packets
in parallel, thus increasing the throughput.

The first two factors involve a significant portion of packet pro-
cessing. In order to measure the time taken by various part of
the kernel, we use a Linux PC with a Pentium CPU running at
400MHz, and instrument the kernel code with read-timestamp-counter
instructions for functions that we are interested in. Figure 5 shows
a time line analysis of receiving a 41-byte message using TCP/IP.
After the packet is copied through DMA to the host memory (t0),
the interrupt handler (t1) saves all the CPU registers on the stack
and invokes the NIC interrupt service routine tulip_interrupt() (t2),
which raises a soft interrupt. At the end of the interrupt handler (in-
trStop), the soft interrupt softirq is executed and calls net_rx_action()
(t3), which finally starts the network layer function ip_rcv() to start
the TCP/IP stack processing. We can see from the figure that the
DMA and interrupt handling (t0-t3) totally take about 11.7 us, whereas
this part is almost negligible in the NP implementation when Fig-
ure 4(b) or (c) is employed.

t2

intr(recv) \ A M.l

intrStop net_rx_action

Figure5: DMA and interrupt handling to receive a packet

3.2 The SpliceNP Protocol

We simplify the NP implementation since SpliceNP is specific
for TCP splicing, whereas the TCP code in Linux must handle ev-
ery situation. Also, in order to fit the code in the control memory

138

of a ME, we drop several functions from the Linux splicer. Table
1 compares processing of a SYN packet for three implementations:
traditional TCP, Linux splicer and the SpliceNP protocol.

To process a SYN packet, the packet is de-queued from where
the device driver put it, and is checked to make sure that it is a valid
IP packet, as shown in step 1 and 2. The IP validation includes
checking its version, length and header checksum. Corrupted pack-
ets or packets other than IP or TCP are dropped. In SpliceNP, we
do not process IP options (step 3) since they are rarely used. Next
the TCP header is validated, which include TCP checksum and
sequence number (step 4). Then the control block lookup is per-
formed based on a hash value calculated from the source port and
IP address of this packet (step 5). A new socket together with the
TCP control block is created and its state is set to LISTEN (step 6).
In SpliceNP, there are no socket operations since we do not need
any interface between the TCP and the application. In step 7, the
TCP and IP header template is created. When a packet is being sent
out, this template is copied as a whole to the TCP and IP header in-
stead of filling each field one by one. In SpliceNP, however, we do
not create this template because IP and TCP headers are updated
on the fly. In step 8, the keep-alive timer is set. In SpliceNP, we
do not implement any timers. This is left as our future work. Next
the TCP option is processed. In SpliceNP, we only process Max-
imum Segment Size (MSS) option. It is known that TCP options
like MSS and SACK are negotiated between the two end points
in a three-way handshake. Since the cluster of servers may have
various options, the switch may either reject all TCP options, or
maintain a minimum set of options for the web servers. Currently
we implement MSS option processing in the switch (1460 bytes
in Ethernet). Otherwise if we reject the TCP options, the clients
and servers will use a smaller MSS (534 bytes), which affects the
performance (such as throughput). Finally the state is changed to
SYN_RECEIVED state and an ACK packet is sent out.

Tables 2 and 3 illustrate the processing of a SYN/ACK packet
and a data packet respectively. Most of the steps are same for all the
three cases in SYN/ACK processing, except that the SpliceNP only
process MSS option. The TCP header verification in step 4 in Ta-
ble 2 is avoided in SpliceNP because only forwarding is performed
in the spliced state. Steps 8(a) and 8(b) indicate a data packet and
a pure ACK packet processing respectively. We can see that the
copy in TCP is avoided when splicing is enabled. This shows how
the splicing technique improves the switch performance as stated in
the previous section. Finally, the window control processing imple-
mented in the traditional TCP is avoided in SpliceNP. With the TCP
splicing technique, after the two connections are spliced together,

Table 1. Processing an SYN packet

[Step | Functionality | TCP | Linux Splicer | SpliceNP

1 De-queue packet Y Y Y

2 IP header verification Y Y Y

3 IP option processing Y Y N

4 TCP header verification Y Y Y

5 Control block lookup Y Y Y

6 Create new socket and set state to LISTEN Y Y No socket, only control block
7 Initialize TCP and IP header template Y Y N

8 Reset idle time and keep-alive timer Y Y N

9 Process TCP option Y Y Only MSS option
10 | Send ACK packet, change state to SYN_RECEIVED Y Y Y

Table 2: Processing an SYN/ACK packet

[Step | Functionality | TCP [Linux Splicer | SpliceNP |
1-5 Same as above table
6 Reset idle time and keep-alive timer Y Y N
7 Process TCP option Y Y Only MSS option
8 Verify ACK number and flags Y Y Y
9 Connection-establishment timer Y Y N
10 Initialize receive sequence number Y Y Y
11 Set state to ESTABLISHED Y Y Y
12 Send ACK packet Y Y Y

the flow control is handled by the client and the server only, and
the switch does not need to maintain any window size information.
However, representing the server, the switch has to send the adver-
tised window size in the TCP header when it accepts the connection
from the client. Since the switch has no idea of which server it will
connect at that moment, it should choose a number that will not be
too different from the one that the real server uses. Otherwise, after
the splicing, the client will see a smaller or a bigger window size
than the one sent by the switch before the splicing, which will pos-
sibly trigger unnecessary data transmission or retransmission [18].
Fortunately, since the client mainly receives data packets from the
server, and only sends ACK packets, this window size change does
not affect the client’s performance. This problem does not happen
in the server side because the switch uses the client window size
when connecting to the server. Still, a window size needs to be
chosen when the switch sends the SYN/ACK packet to the client.
One solution is to probe the backend servers to get a set of data and
choose the minimum.

4. DESIGN AND IMPLEMENTATION OF
SPLICENP

We implemented the SpliceNP protocol using an Intel IXP2400
network processor and obtained various measurements in a web
server environment. In this section, we first describe the architec-
ture of the Intel XP2400 network processor. Then, we study how
to efficiently distribute the workload among various resources in
such a hardware environment.

4.1 Hardware

We use an ENP2611 board with an embedded IXP2400 net-
work processor, which is connected to the host machine through
a PCI bus. The IXP2400 network processor contains nine pro-
grammable processors: a general-purpose XScale processor core
and eight microengines with the instruction sets tuned specifically
for processing network packets. Each microengine has a 16KB in-
struction memory preloaded by the XScale processor core. Up to

139

eight threads can run in parallel on each microengine. As a result,
the eight microengines can simultaneously execute a total of up to
sixty-four threads. An SRAM controller and a DRAM controller
control access to the SRAM and DRAM respectively.

4.2 Resource Allocation

We first differentiate client ports from server ports. Client ports
connect with the external world (clients). Server ports connect
to servers in the cluster and are responsible for receiving packets
from servers. Microengines are divided into four groups: receiv-
ing microengines (RX_ME), transmitting microengines (TX_ME),
microengines that process packets from the client ports (ClientME)
and from the server ports (ServerME). These microengines form
a pipeline for processing packets. RX_MEs receive packets from
the input ports and put them into the input queue. ClientME or
ServerME process packets from these queues and put them into
the next output queue. Finally TX_MEs are responsible to transmit
those packets out onto the line.

The input and output queues are used to convey packet infor-
mation between microengines. These queues are implemented in
SRAM. They store packet descriptors, which contain the DRAM
address, length of packets, input and output ports, etc. TX_MEs
send these packets out based on the output port number.

Three major data structures are used in our switch: a client-side
control block list (c-list), a server-side control block list (s-list) and
a URL table. The c-list records the state for the connection between
the client and the switch, and the state for forwarding data packets
after connections are spliced. The s-list records the state for the
connection between the switch and the selected server. The URL
table is used to select a back-end server for an incoming HTTP
request. This table contains a set of pre-defined mappings from
URL suffixes to back-end servers.

4.3 Processing on MEs

When a packet arrives, a clientME/serverME extracts its IP and
TCP headers and does a lookup of a control block in the control
block list. The processing on this packet is based on the state in the

Table 3: Processing a Data or an ACK packet

[Step | Functionality | TCP [Linux Splicer] SpliceNP |
1-5 Same as above table
6 Reset idle time and keep-alive timer Y Y N
7 Process TCP option Y Y Only MSS option
8(a) Wake up receiving process Y Direct forwarding | Direct forwarding
Copy data to application Y N N
8(b) | Delete acknowledged data from send buffer Y Direct forwarding | Direct forwarding
Wake up waiting process Y N N
9 Flow control processing Y Y N

control block. The detailed operations on clientMEs/serverMEs are
described below.

4.3.1 Processing on ClientMEs

A clientME processes the SYN packet and ACK packet for three-
way handshaking, HTTP request packet and the rest of data packets
The SYN packet is processed based on steps described in Table 1
with the control block implemented in the c-list. The request packet
is parsed to choose a back-end server based on the URL table. Then
the clientME set up the second connection with the selected server
by sending a SYN packet with the client’s IP and port as its source
IP address and port number. The initial sequence number of this
SYN packet is set as CSEQ, which is the initial sequence number
of the SYN packet sent from the client. The effect of this is that the
switch masquerades as the client to send this SYN packet, so that
only minimum changes are required in the subsequent forwarding
part.

A data packet is processed based on steps in Table 3. The packet
is directly forwarded with its IP and TCP header updated. Its des-
tination IP address is changed to the server IP. The acknowledge
number is updated with the following formula: new _ack_number =
old_ack_number — DSEQ + SSEQ, where DSEQ and SSEQ are
initial sequence numbers in the SYN packet sent from the switch
and the server respectively. The checksum in both the IP and TCP
header are recalculated with the incremental checksum calculation
method [15].

4.3.2 Processing on Server MES

A serverME processes and SYN/ACK packet and data packets.
The SYN/ACK packet processing is based on steps in Table 2, with
the control block implemented in s-list. In addition, since the data
can be piggybacked with the ACK packet, we do not send a pure
ACK packet. Instead, we send the saved request with the ACK.
The state of the control block in the c-list is changed to SPLICED
thereafter. The corresponding entry in the s-list is deleted. The
data packet processing is also similar to the clientME. The differ-
ence is on fields that are updated. The source IP is set to the switch
IP address VIP. The sequence number is updated with the follow-
ing formula: new_sequence_number = old_sequence_number —

SSEQ + DSEQ.

4.3.3 Implementation of the Control Block List

The c-list is accessed by both the clientME and serverME for
each incoming packet. In our implementation, we maintain the
c-list as a hash table in the SRAM. In case of collision, the con-
trol blocks are implemented as a link list. Since the control blocks
might be accessed by multiple threads/microengines simultaneously,
updating these control blocks must be performed atomically. We
exploit the SRAM locks supported in IXP2400 for this purpose.
A free list of control blocks is pre-allocated in the SRAM. For new
connections, control blocks are taken from this free list and inserted

into the c-list. They are returned back in the free list when connec-
tions tear down. The s-list has a similar implementation.

When the connection between the server and the client is termi-
nated, the state of this control block becomes TIME_WAIT. This
control block is deleted after 2MSL (120 seconds). To implement
this time control, we maintain a timeout table in SRAM. This time-
out table is a circular array. Each entry contains a pointer to a
control block, and a timestamp that records the time when its con-
trol block should be deleted. As the deletion of the control block
is not on the critical path for a connection, we put a timeout-table
checking program on the XScale. Its main functionality is to check
the timeout table regularly, and compare the timestamp with the
current time. If this entry expires, its control block will be deleted
from the c-list and put pack to the free list.

5. PERFORMANCE EVALUATION

We conduct two experiments. The first one is to see how much
improvement can be achieved by using TCP splicing, thus we com-
pare the performance of a proxy-based Linux switch to that of a
splicing-based Linux switch (we call it Linux splicer). The sec-
ond experiment compares the NP-based switch (SpliceNP) with the
Linux splicer in terms of latency and throughput.

5.1 Experimental Setup

For the switch without splicing, we run a user-level proxy with its
operations indicated in Figure 1a. For the Linux splicer, we insert a
loadable kernel module [8] into the operating system. As presented
in Figure 1b, the proxy is still running at the user level. After the
proxy sets up two connections and forwards the HTTP request, it
makes a system call to inform the TCP splicing module to splice
these two connections. This splicing operation records the states
for the two connections and closes the client-side and server-side
sockets. Netfilter [11] is used to direct the subsequent packets to
the forwarding function so that these packets are forwarded directly
in the kernel. Both Linux-based switches run a Linux 2.4.20 kernel
on a 2.5GHz Pentium 4 system with two 1Gbps Ethernet NICs.

The SpliceNP is built up on an ENP2611 board that contains
an Intel 1XP2400 processor. Both XScale and microengines run at
600MHz. This board has 8MB SRAM and 128MB DRAM, with
three 1Gbps Ethernet ports. We use one port as the client port and
the other as a server port.

The server runs Apache [1] web server on an Intel 3.0GHz Dual
Xeon with 1GB of memory. The client runs httperf [9] to generate
HTTP requests. It is a Pentium 4 CPU running at 2.5GHz. All PCs
are running Linux 2.4.20.

5.2 Comparison of Linux-based Switches

We measure the latency perceived by the client for a complete
HTTP session as a function of request file size. As a base-line
of this experiment, we also connect the client and server directly

140

with a cross-over cable. All the requested files are retrieved di-
rectly from the server’s memory/cache. Figure 6 shows the average
latency for various sizes of request files.

50

a5 | —&— Direct connection

——w/ splicing
[| —&—wlo splicing

)
5

HTTP session latency (ms

16 64
Request file size (KB)

256 1024

Figure6: Latency of an HTTP session w/ and w/o splicing

It is observed that the latency for an HTTP session is reduced
by using TCP splicing. The reduction is more apparent when we
increase the file size. This is expected since a larger file involves
more packet transmissions, which lead to more copying overhead
in case of the switch without splicing. One exception is that there
is no improvement for a small file size (e.g. 1K bytes). The reason
is that the latency gain using splicing is too little to hide the over-
head due to the splicing operation (recording the states for the two
connections and closing the client-side and server-side sockets).

Table 4: Function level comparison for a data packet from
Server

w/o splicing w/ splicing
Layer | Function Latency | Function Latency
(us) (us)
IP ip_rcv() 6 ip_rcv() 6
TCP | tcp_v4_rev() 30 tepsp-in() 13
App read(),write() 16 N/A N/A
TCP | tcp_sendmsg() 9 N/A N/A
IP ip_queue_xmit() | 7 tcpspxmit() | 6

We also observe that the control packet processing does not ben-
efit from TCP splicing because TCP splicing does not alter the con-
trol packet operation. It is the data packet processing that deter-
mines the performance improvement. In order to further under-
stand the splicing technique, we do a function level analysis and
measure the time spent on different functions by instrumenting the
Linux kernel. We identify key functions in IP, TCP and application
layers from the protocol stack for this purpose. The MAC layer
functions are not considered as they do not make any difference.
We use a request file size as 16K bytes, and do similar experiments
as the previous one. Table 4 shows the function level (protocol
level) measurement for processing one data packet sent from the
server (its size is determined by the MTU, which is 1500 bytes for
Ethernet).

The functions we list here are encountered on a path of the re-
sponse packet. Without splicing, the response packet goes up through
the IP and TCP layer (functionsi p_rcv() andtcp_v4rcv()).
The payload of this packet is copied to the user space when the ap-
plication layer function r ead() is called. Till now the data is re-
ceived by the proxy through the first connection. To send this data
out through the second connection, function wri t e() is called,
which in turn calls TCP layer function t cp_sendnsg() to copy

141

the payload from the user space to the kernel space. This packet
finally goes down to the IP layer. With TCP splicing, after the re-
sponse packet passes through the IP layer, it is executed by function
t cpsp.i n(), which modifies the IP and TCP headers. Then this
updated packet is processed by function t cpsp_xmi t (), which
calls IP layer functions. The latency shown in the table clearly in-
dicates how splicing improves the performance.

5.3 Comparison of Linux Splicer and
SpliceNP

First we conduct experiments to obtain the latency of packet pro-
cessing for an HTTP session in SpliceNP, and compare it with the
Linux splicer. Some of the results also appear in our recent work
[21] in the context of a content-aware switch design.

Figure 7 shows the latency of a Linux-based switch and an IXP-
based switch when we vary the request file size. Note that this
figure is different from Figure 6 in that the latency shown here is
the processing latency on the switch. whereas Figure. 6 shows the
complete HTTP latency measured from a client. We can see that
the latency is reduced significantly by using 1XP2400. It is reduced
by 83.3% (0.6 ms to 0.1 ms) with a small file size as 1KB. And the
larger the file size, the reduction is higher. At a very large file size
as 1024KB, the latency is reduced by 89.5%.

20

=
©
T

- ——Linux Splicer
| —#— SpliceNP

=
(o))

2o e
ISENEES
T

Latency on the switch (ms)

1 4

16
Request file size (KB)

64 256 1024

Figure7: Latency comparison for an HTTP session

We measure the processing time for both the control and data
packet. Read stamp instruction is used for this purpose. The timing
starts from the point when the clientME/serverME takes the packet
from the input queue, and ends at the moment when a processed
packet is put into the output queue. For example, the latency on
an ACK/Request packet records the period from the time when this
packet is assembled in the DRAM, to the instant when the SYN
packet to the server is put into the queue.

Table 5 shows the average processing latency on control packets
and data packets for both the Linux-based and 1)XP-based switch. In
a Linux-based switch, processing of the control packets takes much
longer than that of the data packets. This is mainly because the
control packets travel through the protocol stack in Linux, whereas
the data packets do not. Among control packets, the ACK/Request
packet takes the longest time to be processed. It is largely because
this request packet, in addition to traversing the protocol stack, is
copied into the user space, where it is parsed by the proxy running
at the user level. The data packets in a Linux-based splicing do not
travel through the TCP layer, hence consume much less time than
control packets.

Processing of both control packets and data packets in an IXP-
based switch takes much less time compared to the Linux switch
even though the Linux machine (2.5 GHz) is much faster than the
microengines (600 MHz). The response packets from the server

Table5: Processing latency for control and data packets

Packet 1XP2400 Linux Latency

Type Microengine | Latency (us) | Latency (us) | reduction
Control SYN clientME 7.2 48 85%
Packet | ACK/Request clientME 8.8 52 83%
SYN/ACK serverME 8.5 42 80%
Data Data serverME 6.5 13.6 52%
Packet ACK clientME 6.5 13.6 52%

and ACK packets from the client take the same time because we do
not include data assembly during our measurement. This is done
keeping in mind the latency measurement in Linux, where data as-
sembly is not considered either. The improvement percentage for
control and data packets are listed in the last column. The reduc-
tion on the latency for control packets and data packets is about
83% and 52%, respectively.

800

| |BLinux Splicer
H SpliceNP

Throughput (Mbps)

16
Request file size (KB)

64 256 1024

Figure 8: Throughput comparison for HTTP sessions

We also measure the throughput achieved by these two switches
by sending requests of a uniform size as fast as possible from the
clients. Figure 8 shows the result. We can see that the throughput
is increased by 5.7x for a small size request like 1KB (8.2 Mbps
to 46.4 Mbps). For a much larger file size like 1024KB, the im-
provement is 2.2x. Requests for smaller files have higher improve-
ment than larger files because control packets take a larger portion
in HTTP session for small files. Since the latency reduction for
control packets is larger than that of data packets on SpliceNP, the
improvement is more for small requests. As we increase the request
file size, data packet processing becomes dominant, thus we see rel-
atively smaller improvement on SpliceNP. It may be reminded here
that we use only one clientME and one serverME to process the
packets. The throughput may be further improved by using more
microengines in the 1XP2400.

6. RELATED WORK

TCP splicing has been studied extensively in the literature. Co-
hen et al. [4] implement a content-aware switch in Linux using TCP
splicing. The two main components in their switch are an applica-
tion level proxy (proxy-s) and a loadable kernel module (sp-mod).
The proxy-s accepts TCP connections from the clients, and deter-
mines the destination server based on the clients’ requests. Once
the proxy-s establishes another connection with that server, it sends
a splice command to the sp-mod, which splices the two connections
together. The subsequent packets are forwarded at the IP level in
the kernel. At this moment, the proxy-s is removed out of the data
path. In this approach, data forwarding is performed in the kernel
level, but the routing decision is still made at the application level.

142

Also using TCP splicing, Yang et al. [20] implement a content-
aware distributor in Linux kernel between the network interface
card (NIC) and the TCP/IP stack. The data forwarding as well as
the routing decision are all performed at this level. This can avoid
the overhead of passing the HTTP request packet through the pro-
tocol stack to the user level proxy as in [4]. Our approach, imple-
mented on network processors, moves the whole processing further
down to the NIC level, thus reduces the end-to-end latency as much
as possible. Their distributor also exploits pre-forked connections,
i.e. the switch pre-establishes some connections with the servers so
that the second three-way handshaking is avoided. However, this
optimization also has its downside. After the two connections are
spliced, both the sequence number and the ACK number in the TCP
header, and both the source and destination IP address in the IP
header must be updated. Our approach, without this optimization,
requires less changes in the packet header. In the TCP header, either
the sequence number or the ACK number requires to be updated. In
the IP header, either the source or the destination IP address needs
to be updated. This leads to less computation in the TCP checksum
and IP checksum calculation (incremental checksum [15]).

G. Apostolopoulos et al. [2] build a content-aware switch based
on a switch core with custom built intelligent port controllers and a
PowerPC processor. The PowerPC processor in this switch per-
forms operations of connection setup and parsing the HTTP re-
quest. After the two connections are spliced, the powerPC is taken
out of the data path and the port controllers handle all the packet
processing. As an ASIC design, this switch can achieve very high
throughput. However, it can hardly be extended to incorporate new
services such as QoS scheduling.

Tammo Spalink et al. [17] suggest that TCP splicing processing
be separated on a data forwarder and a control forwarder, which
run on the 1XP2400 microengines and the host processor (a Pen-
tium), respectively. They also present some preliminary results
for the data forwarder. However, our analysis shows that perform-
ing all the processing on the microengines give better performance.
Therefore, not only data forwarder, but also the control forwarder
are put on the microengines. The details of design and tradeoffs are
in Section 4.

Compared to TCP splicing, TCP handoff [13] can release some
load from the switch. However this approach requires that the TCP
state machine inside the operating system in each of the servers be
modified. This would be impractical to large scale server clusters.

Very recently, Papathanasiou et al. [14] exploit both the TCP
splicing and hand-off techniques on a web switch. The switch per-
forms TCP splicing whereas back-end servers perform the handoff
operation. Their approach requires that a proxy application runs on
each of the back-end servers, though no modification is required to
the operating system.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we first analyzed the performance of a Linux-based
switch using TCP splicing technique, and showed that this tech-

nique can reduce the overhead considerably. To reduce its process-
ing latency further, we implemented TCP splicing software on a
network processor - Intel’s 1XP2400. We analyzed various trade-
offs in implementation and compared the performance of the NP-
based switch with the Linux-based one. Our experimental results
showed that the processing latency of SpliceNP is reduced by about
83.3% for a 1K byte web page. It also showed that the throughput
can be improved by up to 5.7x. The SpliceNP software will be
released to the public soon.

Our future work includes processing all the TCP options in the
network processor since they can affect the performance. We plan
to further breakdown the functionality of the ClientME/ServerME
and assign them to more MEs, so that the processing can be par-
allelized and pipelined to improve the throughput. In addition, we
plan to incorporate other functionalities such as Quality of Service
(QoS) by identifying the packet flows and providing differentiated
service to an individual flow.

Acknowledgement

This work is supported by NSF grants CCF-0220096 and 0233858,
and grant from Intel Corporation.

8. REFERENCES

[1] Apache Software Foundation, http://www.apache.org

[2] G.Apostolopoulos, D.Aubespin V.Peris, P.Pradhan, D.Saha

Design, Implementation and Performance of a

Content-Based Switch proceedings of IEEE

INFOCOM-2000

Cisco Systems, Cisco Content Services Switch,

http://www.cisco.com/en/US/products/hw/contnetw/ps789/

prod_models_home.html

[4] A.Cohe, S.Rangarajan, H.Slye, On the Performance of TCP

Splicing for URL-Aware Redirection. In Proceedings of the

2nd USENIX Symposium on Internet Technologies and

Systems, Boulder, CO, Oct. 1999

Erik J. Johnson and Aaron R. Kunze, IXP 1200

Programming The Microengine Coding Guide for the Intel

1XP2400 network Processor Family, Intel Press

Foundry Systems, Foundry Serverlron XL/G,

http://www.b2net.co.uk/foundry/foundry_serveriron

xlg_web_switch.htm

[7]1 Tom Halfhill, Intel Network Processor Targets Routers,
Microprocessor Report, September 1999

(3]

(5]

(6]

143

[17]

[18]

[19]
[20]

[21]

[8] Linux Virtual Server Project,
http://www.linuxvirtualserver.org

David Mosberger and Tai Jin, HP Research Labs A Tool for
Measuring Web Server Performance, 1998

David A. Maltz, Pravin Bhagwat, TCP Splicing for
Application Layer Proxy Performance, IBM Research
Report RC 21139, 1998

Netfilter, http://www.netfilter.org

Nortel Networks, Alteon Web Switches,
http://www.nortelnetworks.com/products/01/alteon/webswitch/
index.html

V.S. Pai, M.Aron, G.Banga, M.Svendsen, P.Druschel,
W.Zwaenepoel, E.Nahum, Locality-Aware Request
Distribution in Cluster-based Network Servers. In
Proceedings of the 8th Conference on Architectural Support
for Programming Languages and Operating Systems, San
Jose, CA, Oct.1998

Athanasios E. Papathanasiou, Eric Van Hensbergen, KNITS:
Switch-based Connection Hand-off, Twenty-First Annual
Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE , Volume: 1,
2002

RFC1624: Computation of the Internet Checksum via
Incremental Update, May 1994

Marcel-Catalin Rosu, Daniela Rosu, Kernel Support for
Faster Web Proxies, USENIX Annual Technical Conference,
June 2003

Tammo Spalink, Scott Karlin, Larry Peterson, Yitzchak
Gottlieh, Building a Robust Software-Based Router Using
Network Processors, Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 216 -
229, 2001

Oliver Spatscheck, et al., Optimizing TCP Forwarder
Performance, IEEE/ACM Transactions on Networking, 2000
The Linux Kernel Archives, http://www.kernel.org
Chu-Sing Yang and Mon-Yen Luo, Efficient Support for
Content- Based Routing in Web Server Clusters. In
Proceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems, Boulder, CO, October 1999

Li Zhao, Yan Luo, Laxmi Bhuyan and Ravi lyer, Design and
Implementation of A Content-aware Switch using A
Network Processor. In Proceedings of the 13th IEEE
Symposium on High Performance Interconnects, Stanford
University, CA, August 2005

9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

