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Abstract

The Hough transform was originally designed to recognize arti.cal objects in images. A Hough transform for natural shapes
(HTNS) was subsequently proposed, but necessitates the supervised learning of the class of shapes. Here, we extend HTNS
to unsupervised pattern recognition, the variability of the object class being coded with tools originating from mathematical
morphology (erosion, dilation and distance functions). ? 2002 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The Hough transform (HT) is one of the most power-
ful approaches for the detection and recognition of patterns
with known simple geometrical shapes in images [1–3]. The
generalized Hough transform (GHT) was developed to cope
with arbitrary shapes [4]. While GHT is able to deal with
arti3cial objects characterized by their rigid structures, it
is not very well suited to natural objects, which are char-
acterized by much more >exibility, i.e., similarity but not
identity, within one class of objects.

In order to cope with such objects, a variant of the HT
was proposed in Ref. [5] and was called Hough transform
for natural shapes (HNS). The HNS has proved to be e@ec-
tive in detecting and classifying natural objects. However,
one drawback of the method is that it is a supervised proce-
dure: a set of references of the object class must be collected
in order to de.ne the object model. Although this may not
be a problem for some (supervised) pattern recognition ap-
plications, such reference objects may not be available in
some cases. Consider, for instance, the problem of tracking
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a deformable object. We have only one object available (the
one to track) and the HNS method cannot be applied.

In this note, it is proposed to extend the HNS method
to situations where only one object of the class is avail-
able as a reference. A suitable acronym for this method is
HTNS-SR, for “HT for natural shape, based on a single real-
ization (or a single reference)”. Two variants of the method
are suggested: one relies on binary mathematical morphol-
ogy (BMM) and the other on gray-level mathematical mor-
phology (GLMM).

The paper is organized as follows. In Section 2, the HNS
method suggested by Samal and Edwards is summarized
brie>y. Section 3 describes two variants (HTNS-SR1 and
HTNS-SR2) for performing HTNS with a single reference
object. Comments are also o@ered on the way natural vari-
ability is taken into account by these two variants. Finally,
an experimental example illustrating the method is presented
in Section 4.

2. Summary of the HNS method

The aim of a HNS algorithm is essentially to code the
shape variability within an object class, that is, to de.ne a
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model of the object class. The method suggested in Ref. [5]
consists in estimating this variability by obtaining a series
of di@erent prototypes for the object class. In that sense, it
is a supervised learning approach: an expert has to tell the
pattern recognition system regarding the similar but di@erent
objects that belong to the class. From binary silhouettes of
these prototypes, called interiors of the objects,min andmax
areas of the class are de.ned as the intersection and union of
all silhouettes. Then the potential boundary points (PBPs)
are de.ned as pixels enclosed within the area obtained by
subtracting the min from the max area. In the following,
object contours whose pixels are PBPs of the object class are
considered as belonging to this class. The remainder of the
procedure is similar to the mapping procedure of the GHT.
For all the selected pixels of the studied image (i.e., pixels
with a gradient magnitude greater than a selected threshold),
a mapping procedure is performed, i.e., the class PBPs are
drawn in the parametric space, around the selected pixels
considered as the potential centers of mass of the shape. If
many pixels are boundary points of an object belonging to
the class, then the di@erent PBPs overlap each other at a
point which is in fact the center of mass of the found shape,
see Fig. 6 in Ref. [5].

3. Extensions of the HNS procedure involving
one single reference shape

The HNS procedure involves several di@erent reference
shapes, which are assumed to represent the variability of
natural shapes. Arguments are now presented to show that
HNS may also be applied with one single reference of the
object class, i.e., without supervision.

3.1. First variant (HTNS-SR1)

Since we consider only one reference, we cannot use the
concepts ofmin andmax areas for evaluating the PBPs of the
object class. We suggest that min and max may be replaced
by the silhouettes obtained after erosion and dilation of the
single reference silhouette. These operations belong to the
category of BMM tools and they possess all the properties
needed for our purpose. Thus, the PBPs are the set of pixels
enclosed in the area de.ned by

PBP(�) = (Sref ⊕ �) − (Sref � �); (1)

where Sref is the reference silhouette, ⊕ and � are the
Minkowski addition and subtraction operators and � is a
structuring element, the size of which de.nes the amount of
variability.

Once the PBPs are de.ned as a model of the natural shape,
the procedure follows exactly the same line as the HNS: dur-
ing the voting step, the PBPs are mapped for each boundary
pixel detected in the image space. Then, peaks are searched
in the parameter space. Peaks with a magnitude higher than

a .xed threshold correspond to centers of gravity of detected
shapes.

3.2. Second variant (HTNS-SR2)

An alternative way to code the variability in the shape
is to de.ne a PBP region whose points possess continuous
values (de.ning potential boundary values: PBVs), instead
of binary ones. Such a non-binary model can be obtained
using other concepts originating from GLMM, such as in-
ternal and external distances. For any pixel in the interior of
a shape, the internal distance is a measure of its distance to
the closest boundary point. For pixels outside the object, the
external distance has an equivalent de.nition. The overall
distance of any pixel to an object can be expressed as

D(x; y)=Dint(x; y) if the pixel (x; y) is inside the object

=Dext(x; y) if the pixel is outside the object:

(2)

Once this overall distance is evaluated, it can be converted
into a PBV, which decreases as a function of distance to the
boundary pixels of the reference. One possibility consists in
choosing

PBV(x; y) = e−k·D(x;y); (3)

where k is a coeLcient which re>ects the amount of accept-
able variability. The remaining part of the procedure is still
the same, except that the PBVs are mapped instead of PBPs.

4. Illustration of the procedure

Fig. 1a represents one shape reference. The aim is to
detect similar shapes within scenes. For doing this, we .rst
have to code the accepted variability in the reference shape,
according to one of the two procedures described above.
Fig. 1b and c displays the shape reference after dilation and
erosion, respectively, by a structuring element with a size
of 7 × 7 pixels. Fig. 1f shows the di@erence between these
two images. White pixels represent the PBPs, i.e., pixels that
are allowed to be considered as boundary pixels of objects
of the same class. Fig. 1d and e displays the internal and
external Euclidean distances, respectively. Brighter pixels
are situated farther from the boundary of the reference shape.
Fig. 1g was computed from these distances using Eq. (3).
It represents a function (the PBV) that decreases when the
pixel is farther from the boundary of the reference shape,
and thus can be considered as expressing the probability
that a pixel belongs to the boundary of any shape in the
class of similar shapes. Any of these two templates can be
used for performing the detection of a shape similar to that
represented in Fig. 1a. Fig. 1h represents a scene composed
of several shapes, one of which is similar, but not identical,
to the reference shape. Fig. 1i displays the boundary pixels
detected in the scene. Using a mapping procedure similar to
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Fig. 1. Illustration of the detection of a shape in a scene, on the basis of templates coding the variability of the reference object class: (a)
template binary shape, (b) binary shape dilated by a .lled structuring element, (c) binary shape eroded by the same structuring element, (d)
internal Euclidean distance computed on the binary shape, (e) external Euclidean distance, (f ) PBPs for the class of shapes similar to that
in (a), (g) potential boundary values for the class of shapes, computed according to Eq. (3), (h) a binary scene containing several shapes,
(i) the boundary points of objects present in scene (h), ( j) Hough parameter space obtained after mapping the template in Fig. 1f on the
boundary points in Fig. 1i and (k) Hough parameter space obtained after the mapping of template in Fig. 1g onto the boundary points in
Fig. 1i. In both cases, the center of gravity of the ‘Y’ shape is detected as a well-de.ned peak against a background.

that used for the GHT, with the templates in Fig. 1f and g, we
get the results displayed in Fig. 1j and k, respectively. In both
cases, a peak results from the accumulation of templates. Its
position corresponds to the center of gravity of the detected
shape (‘Y’). No spurious peak with high amplitude occurs
for shapes that do not belong to the class, i.e., ‘X’ and ‘Z’.

5. Conclusion

In this paper, two extensions of the proposal by Samal and
Edwards are suggested. The main advantage is that while
the previous approach requires supervision, our method re-
mains unsupervised. In this new approach, the variability of
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the class is .xed by the user, through parameters entering
the de.nition of the potential boundary region: size (�) of
the structuring element in variant HTNS-SR1 and parame-
ter (k) in variant HTNS-SR2. It is believed that this type
of approach can be helpful for the pattern recognition (or
tracking) of deformable objects, when only one prototype
of the object class is available.

A more rigorous presentation of the method, together with
a discussion of its limitations compared to the limitations
of alternative pattern recognition methods (such as template
matching), will be given in a forthcoming extended version
of this paper.
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