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ABSTRACT 

We present an adaptation of the bacterial foraging optimization algorithm 

(inspired on bacteria moving in their environment looking for high-nutrient 

areas) to solve engineering design problems. This proposal simplifies the 

original algorithm, proposed for unconstrained optimization, as to adapt it to 

solve constrained problems in numerical search spaces. The modifications look 

to decrease the number of parameters used in the algorithm, adding a 

constraint-handling mechanism and improving the communication capabilities 

among bacteria. The approach is tested on some well-known engineering 

design problems and its performance is compared against state-of-the-art 

algorithms. Based on the obtained results, some conclusions are established and 

the future work is defined.  

 

1. I�TRODUCTIO� 
 
During the last years, the number of nature-inspired heuristics to sample complex search 

spaces, such as optimization problems, has significantly increased. Besides evolutionary 

algorithms, EAs (Eiben & Smith, 2003), the addition of swarm intelligence, SI (Kennedy 

et al., 2001) has enriched the area. Within SI, where the initial paradigms were particle 

swarm optimization, PSO (Kennedy et al., 2001) and the ant colony optimization, ACO 

(Dorigo & Stützle, 2004), there are novel models which are gaining popularity among 

researchers and practitioners. This is the case of the bacterial foraging optimization 

algorithm (BFOA), inspired in the behavior of bacterium E. Coli in its search for food. 

This approach, proposed by Passino (2002) considers three steps: (1) Chemotaxis, (2) 

reproduction and (3) elimination-dispersal of bacteria. BFOA has been successfully 

applied to solve different type of problems such as the identification of nonlinear 

dynamic systems (Majhi, 2007). Furthermore, BFOA has been combined with other 

algorithms to solve multimodal optimization problems (Biswas, 2007). Based on the 
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literature review (brief in the paper by space restrictions), the research efforts on BFOA 

to solve constrained numerical optimization problems are scarce. This is the main 

motivation of this work. We aim to explore the capabilities of BFOA when solving 

numerical constrained optimization problems. To achieve this objective, we propose the 

following modifications to the original BFOA: (1) A single loop to include the 

chemotactic, reproduction and elimination-dispersal steps, (2) a definition of the stepsize 

values based on the features of the problem, (3) a constraint-handling mechanism and (4) 

a simple communication mechanism among bacteria to allow them to move towards 

promising regions of the search space. 

 

The paper is organized as follows: The problem of interest is defined in Section 2, while 

the original BFOA is described in Section 3. In Section 4 we include the explanation of 

each one of the four modifications proposed in order to define the modified BFOA 

(MBFOA). The experimental design and the obtained results are detailed in Section 5. 

Finally, in Section 6 we summarize our findings and future work. 

2. STATEME�T OF THE PROBLEM 
 
Some engineering design problems can be stated as nonlinear optimization problems 

(NOPs) in which the goal is to, without loss of generality, �ind �� which minimizes �����, 
subject to: ������ ≤ 0, � = 1, … , �, where �� is the vector of solutions �� = [��,��, … , ��]!, 
where each �� , � = 1, … , " is bounded by lower and upper limits #� ≤ �� ≤ $�. These 
limits define the search space of the problem; � is the number of inequality constraints 
which could be, like the objective function, linear or nonlinear. If we denote with ℱ to the 
feasible region and with & to the whole search space, then it should be clear that ℱ ⊆ &. 

3. BACTERIAL FORAGI�G OPTIMIZATIO� ALGORITHM 
 

BFOA, as other SI algorithms, is based on some social and cooperative behaviors found 

in nature i.e. the way bacteria look for regions of high levels of nutrients. This task has 

been seen as an optimization process. The first attempt to model this idea was presented 

by Bremermann (1974) and extended later by Passino (2002). Each bacterium tries (1) to 

maximize its obtained energy per unit of time expended on the foraging process and (2) 

to avoid noxious substances. Besides, SI assumes communication among individuals. The 

biological swarm of bacteria, during a certain period of time, behaves as follows 

(Passino, 2002): 

 

1) Bacteria are randomly distributed in the map of nutrients. 

2) Bacteria move towards high-nutrient regions in the map. Those located in regions with 

noxious substances or low-nutrient regions will die and disperse, respectively. Bacteria in 

convenient regions will be able to reproduce. 

3) Bacteria are located in promising regions within the map of nutrients and are able to 

communicate via attractant and repellant substances segregated by each bacterium 

4) Bacteria are now located in the highest-nutrient region. 

5) Bacteria now disperse as to look for new nutrient regions in the map. 

 

Based on these steps, Passino (2002) proposed the bacterial foraging optimization 

algorithm which is summarized in Figure 1. The chemotactic step was modeled by 

Passino with the generation of a random search direction (Eq. 1) 
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∅��� = ∆���
*∆���!∆���                                                        �1� 

where ∆���� is a n-dimensional randomly generated vector with elements within the 
following interval: [-1,1]. After that, each bacterium +��,, -, .� (where j, k and l are the 
chemotactic, reproduction and elimination-dispersal counters, respectively) modifies its 

position as indicated in Eq. 2, where /��� is the stepsize for search direction ∅���. 
 +��, + 1, -, .� = +��,, -, .� +  /���∅���                        �2� 
 

Equation 1 represents a tumble (generation of a search direction) and Eq. 2 represents a 

swim (movement of a bacterium). The swim will be repeated  23 times if the new 
position is better than the previous one i.e. � 4+��, + 1, -, .�5 < � 4+��,, -, .�5. 
 

 

 

 

 

 

 

 

 

 
 
 

Figure 1. Original BFOA. Input parameters are: number of bacteria 78, chemotactic 
loop limit 9:, swim loop limit 9;, reproduction loop limit 9<=, number of bateria for 

reproduction 7<, elimination-dispersal loop limit 9=>, stepsizes ?@  and probability of 
elimination dispersal A=>. 

 

The reproduction step consists on sorting the bacteria in the population +��,, -, .�, ∀�, � =
1, … , &C based on their objective function value � 4+��,, -, .�5 and eliminating half of 
them with the worst values. The remaining half will be duplicated as to maintain a fixed 

population size. 

 

The elimination-dispersal step consists on eliminating each bacterium +��,, -, .� ∀�, � =1, … , &C with a probability 0 ≤ DEF  ≤ 1. Passino (2002) also modeled a swarming step, 
which is not considered in this paper for sake of simplicity in this current work. Instead, 

we propose a simpler way to simulate swarming with bacteria. 

  

BEGI� 
   Initialize input parameters (see the caption of this figure)  

   Create a random initial swarm of bacteria +��,, -, .� ∀�, � = 1, … , &C 
   Evaluate � 4+��,, -, .�5 ∀� , � = 1, … , &C 
   GHI . = 1 JK 2EF  LH  
           GHI - = 1 JK 2ME LH  
                    GHI , = 1 JK 2N LH  
                            GHI � = 1 JK &C LH  
                                   Perform the chemotactic step (tumble-swim or tumble-tumble)       

                                    for bacterium θP�j, k, l� controlled by 9; 
                          T9L GHI  
                   T9L GHI  
                        Perform the reproduction step by eliminating the &M (half) worst 
                        bacteria and duplicating the other half 

            T9L GHI  
            Perform the elimination-dispersal step for all bacteria  

            +��,, -, .�, ∀�, � =  1, … , &C with probability 0 ≤ DEF  ≤ 1  
  T9L GHI  ENDENDENDEND 
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4. MBFOA FOR E�GI�EERI�G DESIG� 
 
Recalling from Section 3, BFOA requires seven parameters, besides the " stepsizes 
(where n is the number of variables of the problem), to be fine-tuned by the user. 

Moreover, BFOA, as EAs and other SI algorithms such as PSO, lacks a mechanism to 

deal with the constraints of the problem (Deb, 2000). Therefore, as to make BFOA 

suitable to solve engineering design problems modeled as NOPs, we propose the 

following modifications to the original approach. 

 

1. A single generation loop is proposed to eliminate the four nested loops controlled by 

the number of chemotactic, reproduction and elimination-dispersal steps combined 

with the population size. In this generation loop, each bacterium will perform its 

own chemotactic loop. A single reproduction step and a single elimination-dispersal 

step are performed at the end of this generation loop. In this way, the 23 parameter 
is eliminated as the tumble-tumble or tumble-swim step will be only limited by 2N 
for each bacterium. Furthermore, the elimination-dispersal step is simplified because 

only the worst bacterium in the population is eliminated. As a result, 2ME, 2EF, and DEF parameters are also eliminated and just the GMAX, (number of generations) 
parameter is added due to this proposed modification. 

2. The value of the stepsize /��� is not defined by the user. Instead, for each decision 
variable �, /��� is now computed by considering its lower and upper limits, #�  and $�  by using the following formula, utilized by Mezura-Montes & Coello-Coello 
(2005): 

/�EX��� = Y ∗ [∆���
√"]                                �3� 

where /�EX��� is the stepsize now not defined by the user, ∆��� is computed as $� − #� , " is the number of decision variables in the optimization problem and  Y is the percentage of the total stepsize to be used, as low stepsize values are more 
convenient in constrained optimization (Mezura-Montes & Coello-Coello, 2005). 

3. A parameter-less constraint-handling technique, originally proposed for genetic 

algorithms (Deb, 2000), was added to our BFOA. It is based on three feasibility 

criteria  utilized in the selection mechanism (swimming and reproduction steps): 

a) Between two feasible bacteria, the one with the best objective function value is 

selected. 

b) Between a feasible and an infeasible bacterium, the feasible one is selected. 

c) Between two infeasible bacteria, the one with the lowest sum of constraint 

violation is selected. The sum of constraint violation is calculated as follows: ∑ max �0, �������c�d�  

4. A simple swarming mechanism was added to the redefined chemotactic step. Half 

way to the end of its chemotactic loop, each bacterium, instead of determining its 

search direction as pointed out in Eq. 1 and 2, uses a communication mechanism to 

bias its search direction to the neighborhood of the best bacterium so far in the 

current population. This search direction is defined in Eq. 4: 

 

+��, + 1, e� = +��,, e� +  f 4+g�e� − +��,, e�5                             �4� 
 

where +��, + 1, e� and +��,, e� are the new and current positions of bacterium �, 
respectively, +g�e� is the current position of the best bacterium so far in generation e and f > 0 is a scaling factor which regulates how close will be the bacterium i 
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from the best one j. The remaining steps in the chemotactic loop will be performed 
as in Eq. 5 (tumble-swim, tumble-tumble). 

 +��, + 1, e� = +��,, e� + /�EX���k���                                         �5� 
 

The modified BFOA, called MBFOA is detailed in Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Modified BFOA. Input parameters are number of bacteria mn, chemotactic loop 
limit op, number of bateria for reproduction mq, scaling factor r, percentage of initial 

stepsize s, and number of generations tuvw. 
 

5. EXPERIME�TS A�D RESULTS 
 

The experimental design to test MBFOA consisted on two phases. The first experiment 

aimed to analyze MBFOA’s quality of solutions i.e. how close was the best solution 

found so far with respect to the best known solution. This experiment consisted on 

solving three minimization nonlinear programming problems. The details of these three 

problems can be found in (Ryoo & Sahinidis, 1995). A second experiment was designed 

to analyze, besides the quality of solutions, the consistency of good results obtained by 

MBFOA and its computational cost, measured by the number of evaluations of solutions 

computed in four minimization engineering design problems. Details of these problems 

can be found in (He et al., 2004). Furthermore, the results are compared with other 

nature-inspired approaches. 30 independent runs per each test problem with the same 

parameter values were conducted by BFOA in both experiments. In order to maintain 

newly generated values for the design variables within valid values, the following 

adjustment was used (Kukkonen et al., 2006): if  +x� �, + 1, e� > $x then +x� �, + 1, e� =
2 ∙ $x − +x� �, + 1, e� or if +x� �, + 1, e� < #x then +x� �, + 1, e� = 2 ∙ #x − +x� �, + 1, e�. 
The parameters used were the following: &C = 50, 2N = 12, GMAX=50, &M=25, 
R=1.62E-2, f =1.76, 30,000 evaluations were performed by MBFOA in each 
independent run for each test problem. 

Begin 
Initialize input parameters (see caption of this figure)  

Create a random initial swarm of bacteria +��,, e� ∀�, � = 1, … , &C 
Evaluate � 4+��,, e�5 ∀� , � = 1, … , &C 
   GHI e = 1 JK ez{| LH  
           GHI � = 1 JK &C LH  
                    GHI , = 1 JK 2N LH  
                             Perform the chemotactic step (tumble-swim, tumble-tumble or  

             swarming) for bacterium θP�j, G� by using Eq. 5 and 4 and the set  
             of feasibility criteria 

                    T~> GHI  
          T~> GHI  
           Perform the reproduction step by eliminating the &M (half) worst bacteria and 
           duplicating the other half, based on the feasibility criteria 

           Eliminate the worst bacterium θ��j, G� in the current population, based on the 
           feasibility criteria 

   T~> GHI  T~> GHI  
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The obtained results for the first experiment are summarized in Table 1 and the statistical 

results for the second experiment (best, mean, standard deviation) are presented in Tables 

2, 3, 4 and 5 for the design of a welded beam, a pressure vessel, a tension/compression 

spring and a speed reducer, respectively. 

 
Table 1. Results obtained by MBFOA in the three nonlinear programming problems. 

 
The results of the first experiment showed that MBFOA was able to consistently reach 

the vicinity of the best known feasible solution in the three different test problems. These 

preliminary results were encouraging. The next experiment provided more information 

regarding the behavior and performance of MBFOA. 

From Tables 2, 3, 4 and 5, it was found that MBFOA provided a very competitive (e.g. 

feasible solutions were found in every independent run), but not better, performance with 

respect to different state-of-the-art approaches. The approach by He et al. (He et al., 

2004) was the most competitive in the welded beam problem (quadratic objective 

function, 4 variables and 7 constraints). However, this approach requires an entire 

feasible population to work. As noted in Section 4 of the paper, MBFOA works with an 

initial population regardless the feasibility of solutions. Moreover, our algorithm required 

a similar number of evaluations (30,000), which is indeed a lower value with respect to 

Ray & Liew algorithm (2003). Riza’s approach (2008) was the most competitive 

approach in the pressure vessel and spring design problems (quadratic objective function, 

4 variables with 4 constraints and quadratic objective function, 3 variables with 4 

constraints, respectively). With a similar number of evaluations, MBFOA provided 

competitive results, mostly in the design of the pressure vessel. Finally, Mezura et al. 

Differential Evolution (2007) provided the most competitive results in the speed reducer 

design problem (nonlinear objective function, 7 variables and 11 constraints). MBFOA 

exhibited a competitive performance by requiring a lower number of evaluations with 

respect to Ray & Liew algorithm (2003). 

 
 
6. CO�CLUSIO�S A�D FUTURE WORK 
 
A novel adaptation of the bacterial foraging optimization algorithm to solve engineering 

design (constrained numerical optimization) problems was proposed. Four modifications 

Process synthesis MINLP, quadratic objective function, 7 variables, 10 constraints 

f(x*)=4.579582 

MBFOA 
Best 

4.580396 

Mean 

4.781482 

St. Dev 

2.81E-1 

Evaluations 

30000 

Design of a reinforced concrete beam, linear objective function, 2 variables, 2 constraints   

f(x*)=376.2919 

MBFOA 
Best 

376.2977 

Mean 

376.3596 

St. Dev. 

5.18E-2 

Evaluations 

30000 

Quadratically constrained quadratic program, nonlinear objective function, 2 variables, 2 

constraints  f(x*)=-118.7048 

MBFOA 
Best 

-118.7046 

Mean 

-118.7008 

St. Dev. 

2.97E-3 

Evaluations 

30000 
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were made to the original algorithm: (1) a simplification in the design of the algorithm, 

(2) a definition of the stepsizes used by the algorithm in order to keep the user from the 

fine-tuning of these parameters, (3) an effective but simple constraint-handling 

mechanism and (4) a swarming mechanism to promote collaboration among bacteria.  

 
Table 2. Statistical results obtained for the welded beam design problem. 

 
 

Table 3. Statistical results obtained for the pressure vessel design problem. 

 
 

Table 4. Statistical results obtained for the tension-compression spring. 

 

 
Table 5. Statistical results obtained for the speed reducer design problem. 

 

Approaches Best Mean Std Dev Evaluations 

(Ray & Liew, 2003) 

(He et al., 2004) 

(Mezura & Coello, 2008) 

MBFOA 

2.385000 

2.381000 

2.386333 

2.385053 

3.255000 

2.381000 

2.504377 

2.396375 

9.60E-1 

5.20E-3 

9.90E-2 

9.93E-3 

33000 

30000 

80000 

30000 

Approaches Best Mean Std Dev Evaluations 

(Akhtar et al., 2002) 

(He et al., 2004) 

(Riza, 2008) 

(Coello & Cortes, 2004) 

(He & Wang, 2007) 

MBFOA 

6171.000 

6059.714 

6059.714 

6061.122 

6061.077 

6059.945 

6335.05 

6289.928 

6097.446 

6734.084 

6147.133 

6107.340 

NA 

3.10E+2 

3.57E+1 

4.57E+2 

8.64E+1 

8.20E+1 

20000 

30000 

30000 

150000 

200000 

30000 

Approaches Best Mean Std Dev Evaluations 

(Ray & Liew, 2003) 

(He et al., 2004) 

(Riza, 2008) 

(He & Wang, 2007) 

MBFOA 

0.012669 

0.012665 

0.012665 

0.012874 

0.012671 

0.012923 

0.012702 

0.012673 

0.012730 

0.012734 

5.96E-4 

4.1E-5 

6.24E-6 

5.19E-5 

5.48E-5 

25167 

15000 

30000 

200000 

30000 

Approaches Best Mean Std Dev Evaluations 

(Ray & Liew, 2003) 

(Mezura et al. 2007) 

(Mezura et al. 2007) 

MBFOA 

2994.744 

2996.357 

3064.211 

2999.264 

3001.758 

2996.367 

3244.569 

3014.759 

4.0E+0 

8.2E-3 

2.0E+2 

1.10E+1 

54456 

24000 

24000 

30000 
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The results provided in three nonlinear programming problems exhibited that MBFOA is 

capable of consistently reaching the best known feasible solution. Furthermore, a 

comparison in four engineering design problems suggested that MBFOA is able to 

provide, with an equal or slightly higher computational cost, a competitive performance 

with respect to state-of-the-art approaches. However, premature convergence was still 

observed in MBFOA. This shortcoming is the start of the future work, where a 

mechanism to avoid local optima will be designed. Finally, the parameters of MBFOA 

will be analyzed more in-depth.  
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