
Bacterial Foraging Algorithm For Dynamic Environments

W. J. Tang, Q. H. Wu, Senior Member, IEEE, and J. R. Saunders

Abstract— Optimization in dynamic environments has re-
ceived great attention in recent years [1]. Different from static
optimization problems, its convergence and searching ability
is cautiously desired. Over the last two decades, Evolutionary
Algorithms (EAs), designed to solve the static optimization
problems, have been comprehensively and intensively investi-
gated. In recent years, as the emergence of another member of
the EA family – bacterial foraging algorithm (BFA), the self-
adaptability of individuals in the group searching activities has
attracted a great deal of interests. In this paper, a BFA aiming
for optimization in dynamic environments, called DBFA, is stud-
ied. A test bed proposed previously in [2] is adopted to evaluate
the performance of DBFA. The simulation studies offer a range
of changes in a dynamic environment. The simulation results
show that DBFA can adapt to various environmental changes
which occur in different probabilities, with both satisfactory
accuracy and stability, in comparison with a recent work on
bacterial foraging [3].

I. INTRODUCTION

Static optimization problems have been the focus of
evolutionary computation for a long time. However, there
are many practical problems in various fields in the real
word, which need optimization methodologies suitable for
a changing environment. There have already been some
previous research to tackle this issue [4]-[8]. One of these
approaches detects a change in the environment, and then
adjusts the algorithm parameters to increase the diversity or
probability of mutation, which, on the other hand, destroys
the information gained by previous search. Another maintains
a certain diversity throughout the evolutionary process, for
example, by introducing random immigrants; or taking the
ages of individuals into account, which nonetheless, still
disturbs optimization process. Recently, a new algorithm,
called “Memory - Enhanced Approach” [9] [10], claimed
to cope with periodically changing environments. The per-
formance of this algorithm depends on memorizing the
history of optimization process and maintaining the diversity
of population. Therefore, the problem of convergence still
exist. Inspired from the nature, there is a new group of
approaches investigated recently, called “Multi-Population
Approach”, which gains much more concerns [12] [13]. It
proposes the use of a number of subpopulation groups for
covering possible solutions, and enables itself to detect new
optima by maintaining a suitable diversity. “Self-organizing
Scouts” is an example of this approach [4]. Furthermore,
there are other ideas to deal with the dynamic problems, such

W. J. Tang and Q. H. Wu are with the Department of Electrical
Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ,
U.K.

J. R. Saunders is with School of Biological Sciences, The University of
Liverpool, Liverpool, L69 3BX, U.K.

Corresponding author: Q. H. Wu, Tel: ++44 151 7944535; Fax: ++44 151
7944540; Email: qhwu@liv.ac.uk

as “thermodynamical GA”[14], ACO for dynamic problems
[15] and varying population swarming [16]. However, the
problems of confliction between convergence and diversity
still exist in these algorithms.

For dynamic problems, rapid convergence, which is an
important characteristic for algorithms used in static opti-
mization problems, is not only desired, but also the ability
of finding a global optimum is required. However these two
requirements are contradictory to each other. There should be
a compromise between the convergence and the diversity of
the algorithm designed for solving a specific problem. Some
of the reported results are encouraging. However, most of
these methods were evaluated in the periodically changing
environments or they possess intensive computation, as de-
tection of environmental changes is required in each search
step, which are either too hypothetic or unrealistic for the
complexity of real-world problems.

However, the complex while organized activities exhibited
in bacterial foraging patterns could inspire a new solution
for dynamic problems. The underlying mechanism of the
surviving of bacteria, especially E.coli in a changing en-
vironment has been reported by researchers in the area of
biological sciences [17]. Inspired from these phenomena, an
optimization algorithm, called BFA, was introduced in [3],
which is known to be useful for applications in control [3]
or parameter estimation [18]. Based on BFA, we propose a
DBFA, which is especially designed to deal with dynamic
optimization problems, combining the advantage of both
local search in BFA and a new selection scheme for diversity
generating.

We use the moving peaks benchmark (MPB) [2] as the
test bed for experiments. The performance of the DBFA
is evaluated in two ways. The first is concerned with the
convergence of the algorithm in random - periodical changes
in an environment, which are divided into three ranges from
a low probability of changes to a higher one. The second
is testing a set of combinations of the algorithm parameters
which are largely related to the accuracy and stability of the
algorithm. All results are compared with the existing BFA
[3], and show the effectiveness of DBFA for solving dynamic
optimization problems.

The remainder of this paper is organized as follows:
Section II provides a brief introduction to the existing BFA.
The DBFA is described in Section III. A short description
of the test bed, the experiment design, as well as the criteria
used to evaluate the performance of DBFA, is given in IV,
followed by the simulation studies and discussions given in
Section V. The conclusion is drawn in Section VI.

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1324

II. BACTERIAL FORAGING ALGORITHM

Bacterial foraging algorithm is inspired by the patten
exhibited by bacterial foraging behaviours. Bacteria have the
tendency to gather to the nutrient-rich areas by an activity
called “chemotaxis”. It is known that bacteria swim by rotat-
ing whip-like flagella driven by a reversible motor embedded
in the cell wall. E. coli has 8-10 flagella placed randomly
on a cell body. When all flagella rotate counterclockwise,
they form a compact, helically propelling the cell along a
helical trajectory, which is called Run. When the flagella
rotate clockwise, they all pull on the bacterium in different
directions, which causes the bacteria to Tumble.

A. Chemotaxis

Bacterial Chemotaxis is based on the suppression of
tumbles in cells that happen by chance to be moving up
in a gradient direction. Bacteria make decision according
to their ambient environment. The motion of individual
peritrichously flagellated bacteria can be described in terms
of run intervals during which the cell swims approximately in
a straight line interspersed with tumbles, when the organism
undergoes a random reorientation.

In the existing BFA, a unit walk with random direction
represents a Tumble and a unit walk with the same direction
in the last step indicates a Run, as shown in Fig. 1. After
one step move, the position of the ith bacterium can be
represented as

θi(j + 1, r, l) = θi(j, r, l) + C(i)∠φ(j) (1)

where θi(j, r, l) indicates the position of the ith bacterium
at the jth chemotactic step in the rth reproductive loop of
the lth elimination and dispersion event; C(i) is the length
of a unit walk, which is set to be a constant; and φ(j) is
the direction angle of the jth step. When its activity is Run,
φ(j) is the same with φ(j − 1); otherwise, φ(j) is a random
angle generated within a range of [0,2π].

With the activity of run or tumble taken at each step of
the chemotaxis process, a step fitness, denoted as Ji(j, r, l),
will be evaluated.

Tumble

Tumble

Run

Run

Run

Unit walk

Fig. 1. Tumble and Run

B. Reproduction

The total fitness of each bacterium is calculated as the
sum of the step fitness during its life, i.e.

∑Nc
j=1 Ji(j, r, l)

which is obtained after all chemotactic steps, where Nc is
the maximum step in a chemotaxis process. All bacteria
are sorted in reverse order according to their fitness. In the
reproduction step, only the first half of population survive
and a surviving bacterium splits into two identical ones,
which occupy the same positions in the environment at 1st
step. Thus, the population of bacteria keeps constant in each
chemotaxis process.

C. Dispersion and elimination

The chemotaxis provides a basis for local search, and
the reproduction process speeds the convergence which has
been demonstrated by Passino [3]. While to a large extent,
only chemotaxis and reproduction are not enough for global
optima searching. Since bacteria may get stuck around the
initial positions or local optima, it is possible for the diversity
of BFA to change either gradually or suddenly to eliminate
the accidents of being trapped into the local optima. In the
BFA, the dispersion event happens after a certain number
of reproduction processes. A bacterium is chosen, according
to a preset probability ped, to be dispersed and moved to
another position within the environment. These events may
prevent the local optima trapping effectively, but unexpect-
edly disturb the optimization process. The detailed work can
be found in [3].

III. BFA FOR DYNAMIC ENVIRONMENT (DBFA)

The performance of BFA in static environments has been
reported in detail [3]. The process of “Chemotaxis” enables
bacteria to obtain a satisfactory ability of local search. It
is worth notice that the individuals in BFA could converge
rapidly without information sharing between each other,
which is different from most of EAs.

While in dynamic environments, a rapid convergence
needs to be reconsidered as the environment is changing
and a fast convergence may not lead to an effective trace
of the global optimum in all possible directions. The repro-
duction process of BFA aiming to speed the convergence
is suitable in static problems, but lack of adaptation in dy-
namic environments. Thus, in order to compromise between
rapid convergence and high diversity, we propose a dynamic
bacterial foraging algorithm (DBFA) in which a selection
process is introduced using a more flexible scheme to enable
a better adaptability in a changing environment. The basic
idea of the DBFA is to maintain a suitable diversity for
global search, while the local search ability is not degraded,
and also consider changes in the environment. The scheme
is described as follows:

1325

Ji =
n∑

j=1

Ji(j, r) (2)

ranki =sort(Ji) (3)

Wi =m
(ranki)k

∑P
i=1 (ranki)k

+ (1 − m)
Ji∑P
i=1 Ji

(4)

where n is the number of chemotactic steps (each step
may contain a Run or Tumble) during a bacterium’s life
time, j is its index and P is the population size, m is
the weight of diversity, and k is the exponent of ranki.
At rth selection step, the fitness of bacterium i, Ji, is still
the sum of the step fitness during its life as indicated in
equation (2), which has been redefined as Ji(j, r), since
there is no dispersion events. Thus, those experienced more
nutrient-rich areas are more likely to be selected as a parent
for next generation. However, this domination would not
help diversity maintaining. Therefore, the combination of the
solution and rank is chosen to prevent a rapid convergence
which should be avoided to keep an adaptation ability of the
DBFA for dynamic environments. This adaptation ability is
improved as long as the rank of each individual functions
as a fitness-independent factor. Thus, the whole population
is sorted according to Ji using an operator sort, then ranki

is allocated as the rank of bacterium i in equation (3). We
introduce the parameter, m, which affects the diversity, to
the selection process by combining the rank of the bacterium
(ranki)k with the fitness calculation Ji. The two factors are
balanced by m. The survival probability of bacterium i, Wi,
is given in equation (4), and

P∑

i=1

Wi = 1

At last, the roulette wheel selection taken from the GA
literature is adopted to generate the next generation.

As the diversity could be obtained in each generation, i.e. a
chemotactic process which contains a number of chemotactic
steps, the process of “dispersion and elimination” is not
considered in this algorithm. The pseudo code of DBFA
is described in Table I, where Ns indicates the number of
selections, Nc represents the number of chemotactic steps in
a bacterium’s life time, Jlast is a temporary variable in the
process of Run and Nr is the maximum number of steps for
a single activity of Run.

IV. EXPERIMENT DESIGN

A. Environment setting

The experiment is set in a testing environment called
Moving Peaks Benchmarks (MPB), which is also called DF1
[2]. The dynamic function introduced for general purposes is
a “field of cones”, as an objective function defined as follows:

Z = − max
i=1,...,N

{Hi − Ri

√
(X − Xi)2 + (Y − Yi)2} (5)

TABLE I

PSEUDO CODE FOR DBFA

Randomly initialize positions of bacteria in the domain;
FOR (Selection r = 1 : Ns)

FOR (chemotactic steps per bacterium j = 1 : Nc)
Calculate: Calculate the nutrient function of bac-

terium i as Ji(j, r);
Tumble: For bacterium i, set Ji(j, r) as Jlast.

Generate a random angle represented
by an array ∆, where each element
belongs to [0, 1] ;
Move to a random direction ∆√

∆′×∆
by a unit walk, the new position is
calculated by equation (1); Start another
chemotactic step.

Run: For bacterium i, calculate the step fit-
ness as Ji(j, r). If Ji(j, r) < Jlast,
take another unit walk of the same di-
rection, set Ji(j, r) as Jlast; otherwise,
start another chemotactic step;
Continue the Run until Nr steps before
start another chemotactic step;

END FOR (chemotactic steps)
Sum: Set Ji as the sum of the step fitness

over the life time of bacterium i using
equation (2);

Sort: Sort Ji in ascending values of fitness
in the population;

Select: Calculate the rank of bacterium i ac-
cording to equation (3); Obtain Wi for
bacterium i by equation (4); Select bac-
teria by using roulette wheel selection.

END FOR (Selection)

where N is the number of cones in the environment. For
the ith cone, Hi indicates its height, Ri is the slope control
variable, and (Xi, Yi) represents the coordinate of its center.
The initialization of parameters is shown in Table II.

TABLE II

PARAMETER SETTINGS

Parameter Value
N 15
H1 0
R1 0
X1 0.5
Y1 0.5
Hi [1,10]
Ri [8,20]
Xi [-1,1]
Yi [-1,1]
i 2, . . . , N

The parameters listed in Table II can be adjusted to change
the environment. But in our simulation studies, the height
and range of slope for each cone are set to be constant, and
only the positions of the cones are changing. In this case,
xstep, xstep are the step sizes in x and y direction respec-
tively. And for each step i, Xi+1 and Yi+1 are calculated as

1326

follows:

xstep = Ax × xstep(1 − xstep) (6)

ystep = Ay × ystep(1 − ystep) (7)

Xi+1 = Xi + xstepDxi (8)

Yi+1 = Yi + ystepDyi (9)

where Ax and Ay are both a constant, respectively. Dxi and
Dyi can be assigned 1 or -1 with probability 0.5, respectively.
An example of the dynamic environment, generated with
DF1, in four steps, is illustrated in Fig. 2.

Fig. 2. An example of environmental changes

B. Selection of DBFA parameters

The experiments are designed to 1) evaluate the adaptabil-
ity of DBFA for various dynamic environments; 2) adjust
the algorithm parameters (k and m in equation (4)) of the
algorithm to optimize its performance. Various environmental
changes are used in our simulation studies, which are divided
into three ranges [19]:

• Range I – Slow level of environmental changes
• Range II – Intermediate level of environmental changes
• Range III – High level of environmental changes

The level of changes is reflected by the frequency of
changes in the environment, which is defined as a probability
τ . For the environmental changes classified in Range I,
τ ∈ [0, 0.01], in Range II, τ ∈ [0.05, 0.2] and in Range III
τ ∈ [0.3, 0.8]. In our simulation studies, τ indicates the prob-
ability of occurrence of environmental changes after each
chemotactic step. The environmental changes are simulated
as changes in the position of Xi and Yi in equation (5),
following the process discussed in Section IV-A.

The whole simulation process including the environmental
changes is illustrated in Fig. 3. The “Environmental change

database”, shown in Fig. 3, stores and updates the parameters
listed in Table II, which contains the characteristics of
environmental changes for evaluation of the algorithm.

Initialization of

environment

Initialization of

variables

Continue

selection loop?

Continue

Chemotaxis loop?

Environmental change

Environmental change

database

If rand > τ

Terminate

Process of

Chemotaxis and

selection

No

YesNo

Yes

Yes

No

Start

Fig. 3. Flow chart of DBFA

C. Criteria of performance evaluation

In our experiments, we use three different ways to evaluate
the performance of DBFA. They are mainly concerned with
the average best fitness found over a given period during the
evolutionary process, accuracy and stability of the algorithm.

• Average Best over a Period (ABP)
One of the most important factors in optimization is
the ability of finding the global optimum. While in a
dynamic environment, only comparing the best solution
found after a certain number of generations is not suf-
ficient, since the optimum might be varying over time.
There is an alternative for reporting the performance of
algorithm, which averages over the best solution found
at each step during a period between two environmental
changes. It is concerned with an average of the best
values, denoted by Average Best, found over a period
Ti, where Ti denotes the ith period. This average best
over a period is denoted as ABP, which is similar to
the “Best Fitness” for static environments, but only for
a given period Ti. Let Si be the first step of Ti, Ei be
the last step. Thus, ABP is defined as:

ABPTi =
1

Ei − Si

Ei∑

t=Si

f(t)∗ (10)

where f(t)∗ is the best fitness found in each step, and
t = Nc × r + j.

1327

• Accuracy
To obtain the accuracy of algorithm A in function F,
firstly, we calculate accuracy in each step t,

AccuracyF,A(t) =
fF,A(t)∗ − VwF,A(t)
VoF,A(t) − VwF,A(t)

(11)

Then, the accuracy as a whole is defined as

AccuracyF,A =
1
N

N∑

t=1

AccuracyF,A(t) (12)

where Vw and Vo are the worst and optimum value
respectively, N is the number of steps.

• Stability
Similar to the definition of accuracy, to algorithm A in
function F, the stability is defined as follows:

StabilityF,A(t) =
AccuracyF,A(t) − AccuracyF,A(t − 1) (13)

StabilityF,A =
1
N

N∑

t=1

max{0, StabilityF,A(t)} (14)

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation results

Both BFA and DBFA are evaluated using MATLAB. Each
experiment consists of 10 runs of the algorithm program. The
initial parameters, k and m of the algorithm, are set as 0 and
0.5, respectively. The comparison between BFA and DBFA
is given in Figs. 4 and 5, where the best fitness and ABP
in a single run are plotted. To demonstrate the performance
in various environments, in the both figures, the dynamic
environment with τ = 0.001, τ = 0.01 and τ = 0.05 are
selected, which fall into to Range I and II respectively. As it
is shown in Fig. 4, the different parameters cause 3, 13 and
82 times of environmental changes in 2000 steps respectively.
In this case, the performances of DBFA, for τ = 0.01 and
τ = 0.05, are satisfactory, since the DBFA reacts to all
environmental changes effectively. It is also capable to track
2 changes out of 3 when τ = 0.001. In Fig. 5, the ability of
searching for the optimum is evaluated by ABP. Compared
with BFA, the DBFA is able to track the time-variant global
optimum much more smoothly and effectively.

The DBFA has been evaluated in three ranges of dy-
namic environments, compared with the BFA, with respect
to the comparison of accuracy as shown in Table III.
τ = [0.001, 0.005, 0.01] is selected for Range I, τ =
[0.05, 0.1, 0.2] and τ = [0.3, 0.5, 0.8] for Ranges II and
III, respectively. The performance is most satisfactory when
τ = 0.01, while it degrades while τ is much smaller or
larger. For Range III, it is not surprising that both the BFA
and DBFA still obtain a high accuracy, since in this case,
the environment changes rapidly and the diversity will play
a more important role in contributing to the performance of
the algorithm than the local research. While the difference
between the accuracies of BFA and DBFA in the static

environment is less than 1% when τ = 0, which indicates
that DBFA has the same ability of local search.

The stability in Table IV is related to the accuracy, as
shown in equation (13). The most desired value of stability
is 0, the smaller, the stabler. It is illustrated in the table that
the values of the comparisons of two algorithms almost de-
crease monotonously as the severity of changing environment
increases, which means that DBFA becomes stabler than BFA
when the environment changes more frequently.

0 500 1000 1500 2000
−4

−2

0

Step

B
es

t f
itn

es
s

(a) τ=0.001

0 500 1000 1500 2000
−10

−5

0

Step

B
es

t f
itn

es
s

(b) τ=0.01

0 500 1000 1500 2000
−6

−4

−2

0

Step

B
es

t f
itn

es
s

BFA
DBFA

(c) τ=0.05

Fig. 4. Best fitness in the dynamic environment

B. Discussion – The selection of parameters

To a large extent, the performance of DBFA depends on
the two parameters, m and k, as given in equation (4). In
order to get a better performance of DBFA, we evaluated the
DBFA with k = {0.2, 0.5, 1} and m = {0.2, 0.4, 0.7} instead
of k = 0 and m = 0.5 as the initial values. The DBFA
was also tested with a set of environmental parameters with
τ = {0.005, 0.1, 0.5} respectively. We compare the average
accuracies of BFA and DBFA by 10 runs. The results are
shown in Table V.

The DBFA with m = 0.7 performs worse than that when
m = 0.2 and m = 0.4. It is also worse than that of BFA in 4

1328

0 500 1000 1500 2000
−4

−2

0

2

Step

A
B

P

(a) τ=0.001

0 500 1000 1500 2000
−10

−5

0

Step

A
B

P

(b) τ=0.01

0 500 1000 1500 2000
−6

−4

−2

0

Step

A
B

P

BFA
DBFA

(c) τ=0.05

Fig. 5. ABP in the dynamic environment

cases out of 9 as listed in Table V, and it is slightly better in
the other 2 cases. However, in general, it can be seen that for
the 2 cases where m = 0.2, τ = 0.005 and m = 0.4, τ = 0.1,
the DBFA offers the best performance. Table V indicates that
when k = 0.2, the DBFA has the stablest performance. In
this situation, the accuracy of DBFA is better than that of
BFA in all cases except the ones with m = 0.7, where the
convergence has been disturbed by a high diversity.

VI. CONCLUSION

A new DBFA for optimization in dynamic environments,
based on bacterial foraging behaviours, has been presented
in this paper. The existing BFA employs the basic foraging
activities to mimicry “chemotaxis” while uses an artificial
reproduction process to speed the convergence process. Due
to the lack of diversity, it is not suitable for dynamic environ-
ments. The DBFA adopts a selection scheme which enables
the bacteria to flexibly adapt to the changing environment.

We have used the dynamic environment generated by DF1
to evaluate the DBFA, and compared the DBFA with BFA
in three aspects: the average best over a period, algorithm
accuracy and stability. The simulation results show that in

TABLE III

COMPARISON OF ACCURACY

Change severity BFA(%) DBFA(%) Comparison(%)
0 98.75 98.59 -0.16

0.001 41.96 59.31 41.35
0.005 45.60 61.59 35.07
0.01 51.72 89.25 72.56
0.05 45.06 58.21 29.18
0.1 33.03 38.12 15.41
0.2 67.02 81.90 22.20
0.3 33.34 53.82 38.05
0.5 46.92 56.22 19.82
0.8 33.13 43.07 30.03

TABLE IV

COMPARISON OF STABILITY

Change severity BFA DBFA Comparison(%)
0 0.0017 0.0027 58.82

0.001 0.0014 0.0023 64.29
0.005 0.0033 0.0043 30.30
0.01 0.0033 0.0036 9.09
0.05 0.0107 0.0106 -0.93
0.1 0.0288 0.0259 -10.07
0.2 0.0475 0.0417 -12.21
0.3 0.0204 0.0198 -2.94
0.5 0.0917 0.0672 -26.72
0.8 0.1027 0.0683 -33.50

all three ranges of environmental changes, the DBFA is able
to provide satisfactory performance, and can react to most
of the environmental changes in time. The selection of the
DBFA parameters has also been discussed.

It is worth mentioning that the diversity of DBFA changes
after each chemotactic process rather than the dispersion
adopted by the BFA after several generations. The DBFA
utilizes not only the local search but also applies a flexible
selection scheme to maintain a suitable diversity during the
whole evolutionary process. It outperforms BFA in almost
all dynamic environments. Furthermore, the detection of
environmental changes is not necessary in the DBFA. The
DBFA has the same computational complexity with that
of BFA but offers the better performance, although the
computation issue is not discussed in this paper.

It should be mentioned that the BFA and DBFA stemmed
from a background which is totally different from that of the
evolutionary computation techniques such as GA and PSO,
etc. The bacteria based algorithms are still in the process of
development and they are not mature yet. However, from the
understanding of their essential behaviors, we can see the po-
tential of methodologies in this kind, which are demonstrated
in our paper and Passino’s work [3]. On the other hand,
it has been understood that GA and PSO were developed
specifically for static optimization problems, although they
have also been attempted for dynamic optimization problems.
In this paper, we propose a bacteria based algorithm, for the
first time, for dynamic optimization problems. DBFA will
be compared with the other evolutionary algorithms, as the
work proceeds further.

1329

TABLE V

ACCURACY OF DIFFERENT PARAMETER COMBINATIONS(%)

m = 0.2 m = 0.4 m = 0.7
τ k BFA DBFA BFA DBFA BFA DBFA

0.005
0.2 61.98 69.21 45.6 61.59 28.65 21.54
0.5 58.1 65.4 23.56 11.48 13.46 6.43
1 42.07 31.95 43.76 25.07 54.63 62.00

0.1
0.2 27.08 39.87 20.51 22.56 8.21 5.63
0.5 32.32 40.77 37.21 53.25 19.53 18.41
1 22.12 23.42 63.24 71.94 52.77 59.53

0.5
0.2 64.66 79.07 31.48 36.40 21.54 21.67
0.5 69.13 76.51 26.74 26.32 42.60 56.44
1 65.27 73.43 56.65 66.11 30.34 30.97

REFERENCES

[1] H. A. Abbass, K. Sastryy, and D. Goldberg, “Oiling the wheels of
change: The role of adaptive automatic problem decomposition in
Nonstationary environments”, IlliGAL Report No. 2004029, 2004.

[2] R. W. Morrison and K. A. De Jong, “A test problem generator for non
– stationary environments”, Proceedings of the 1999 IEEE Congress on
Evolutionary Computation, IEEE Press, pp. 2047–2053, 1999.

[3] K. M. Passino, “Biomimicry of bacterial foraging”, IEEE Control
Systems Magazine, pp. 52–67, June, 2002.

[4] J. Branke, Evolutionary optimization in dynamic environments, Kluwer
Academic Publishers, Massachusetts USA, 2002.

[5] S. Yang, X, Yao, “Experimental study on population-based incremental
learning algorithms for dynamic optimization problems”, Soft Comput-
ing, Vol. 9, No. 11, pp. 815–834, 2005.

[6] R. Tinós and S. Yang, “Genetic algorithms with self-organized criticality
for dynamic optimization problems”, Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, IEEE Press, Vol. 3, pp. 2816–
2823, 2005.

[7] Y. Jin, J. Branke, “Evolutionary optimization in uncertain environments
– A survey”, IEEE Transactions on Evolutionary Computation, Vol. 9,
No. 3, pp. 303–317, 2005.

[8] J. Branke, “Evolutionary approaches to dynamic optimization problems
– Updated survey”, GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems, pp. 27–30, 2001.

[9] S. Yang, “Memory-enhanced univariate marginal distribution algorithms
for dynamic optimization problems”, Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, IEEE Press, Vol. 3, pp. 2560–
2567, 2005.

[10] J. Branke, “Memory-enhanced evolutionary algorithms for dynamic
optimization problems”, Proceedings of the 1999 IEEE Congress on
Evolutionary Computation, IEEE Press, Vol. 3, pp. 1875–1882, 1999.

[11] J. Branke and H. Schmeck, “Designing evolutionary algorithms for
dynamic optimization problems”, in Advances in evolutionary comput-
ing: theory and applications, Springer - Verlag New York, Inc., New
York, NY, 2003.

[12] T. Blackwell, J. Branke, “Multi-swarm optimization in dynamic envi-
ronments”, Applications of Evolutionary Computing, Lecture Notes in
Computer Science, Springer, Vol. 3005 pp. 489–500, 2004.

[13] J. P. Li, M. Balazs, G. Parks, P. Clarkson, “A species conserving
genetic algorithm for multimodal function optimization.” Evolutionary
Computation, Vol. 10, No. 3, pp. 207–234, 2002.

[14] N. Mori, H. Kita, and Y. Nishikawa, “daptation to a changing envi-
ronment by means of the thermodynamical genetic algorithm”, Parallel
Problem Solving from Nature, Lecture Notes in Computer Science,
Springer, Vol. 1141, pp. 512–522, 1996.

[15] M. Guntsch, M. Middendorf, and H. Schmeck, “An Ant Colony
Optimization approach to Dynamic TSP”, Proceedings of the Genetic
and Evolutionary Computation Conference 2001, Morgan Kaufmann
Publishers, pp. 860–867, 2001.

[16] C. Fernandes, V. Ramos, and A. C. Rosa, “Varing the population size
of artificial foraging swarms on time varying landscapes”, Lecture Notes
in Computer Science, Vol. 3696, pp. 311–316, 2005.

[17] H. C. Berg, D. A. Brown, “Chemotaxis in Escherichia coli analyzed
by three-dimensional tracking”, Nature, Vol. 239, pp. 500–504, 1972.

[18] S. Mishra, “A hybrid Least Square - Fuzzy Bacterial Foraging Strategy
for harmonic estimation”, IEEE Transaction on Evolutionary Compu-
tation, Vol. 9, No. 1, pp. 61–73, 2005.

[19] R. Walker, “ ‘Niche Selection’ and the evolution of complex behavior
in a changing environment – a simulation”, Artificial Life, Vol. 5, pp.
271–289, 1999.

1330

