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Abstract

The increasing number of objects 3D available on the Internet or in
specialized databases require the establishment of methods to develop
description and recognition techniques [1] [2] [3]to access intelligently to
the contents of those objects. In this context, our work whose objective
is to present the methods of description and recognition of 3D objects
based on a set of techniques that are part of the artificial intelligence as
neural networks, fuzzy logic, genetic algorithms and the principal com-
ponent analysis. In fact, it consists of determining invariant descriptors
[4][5] and recognizing the objects of a database similar to a given object
(query object). The 3D objects of this database are transformations
of 3D objects by one element of the overall transformation. The set of
transformations considered in this work is the general affine group. The
measure of similarity between two objects is achieved by a similarity
function using the Euclidean distance.

Keywords: Affine Invariant, neural networks, fuzzy logic, genetic algo-
rithms, Principal Component Analysis

1 Introduction

With the advent of the Internet, exchanges and the acquisition of information,
description and recognition of 3D objects have been as extensive and have be-
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come very important in several domains. On the other hand, the size of 3D
objects used on the Internet and in computer systems has become enormous,
particularly due to the rapid advancement technology acquisition and storage
which require the establishment of methods to develop description and recog-
nition techniques to access intelligently to the contents of these objects. In
fact, several approaches are used : in terms of statistical approaches, the sta-
tistical shape descriptors for recognition in general consist either of calculating
various statistical moments [6] [7] and [8], or of estimating the distribution of
the measurement of a given geometric primitive, when either deterministic or
random. Among the approaches by statistical distribution, we mention the
specter of 3D shape (SF3D) [9] which is invariant to geometric transforma-
tions and algebraic invariants [10], which provide global descriptors, which are
expressed in terms of moments of different orders. For structural approaches,
approaches representative of the object segmentation in 3D plot of land and
performances by adjacency graph are presented in [11] and [12]. Similarly,
Tangelder and al [13] have developed an approach based on representations by
interest points. In transform approaches a very rich literature emphasizes any
interest in approaches based transform Haugh [14], [15] and [16] which con-
sists in detecting different varieties of dimension (n-1) immersed in the space.
In the same vein, this work focuses on defining methods for the description
and recognition of 3D objects using neural networks, genetic algorithms, fuzzy
logic and the principal component analysis.

2 Representation of the 3D object

3D object is represented by a set of points denoted M=(Pi)i=1,...,n where
Pi = (xi, yi, zi) ∈ R3, arranged in a matrix X. Under the action of an affine
transformation, the coordinates (x,y,z) are transformed into other coordinates
(x̃, ỹ, z̃) by the following procedure:

f : R3 → R3

X(x(t), y(t), z(t)) → Y (x̃(t), ỹ(t), z̃(t))
Y = A.X(x(t), y(t), z(t)) +B

with A = (ai,j)i,j=1,2,3 is invertible matrix associated with the infinite, and B
is a translation vector in R3
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3 Recognition of 3D objects by neural net-

works

3.1 Neural networks

Neural networks [17] [18] are very robust tools, they are widely used in pat-
tern recognition, classification and knowledge representation. In this network,
neurons are arranged in layers. There is no connection between neurons of one
layer, and connections are made only with layers of swallow neurons. Usually,
each neuron of one layer is connected to all neurons of the next layer and to it
only. In our network , weights are first initialized with random values. Then
the network receives the input vector. The output of this network is the vector.
The objective is to determine the weights and biases which are represented re-
spectively by and which transforms into . For this, the signal is propagated
forward in the layers of the neural network X

(n−1)
k 7→ X

(n)
j , Y

(n−1)
k 7→ Y

(n)
j .

The forward spread is calculated using the activation function g , the aggrega-
tion function h (often a scalar product between the weights and the inputs of

neuron) and synaptic weight wjk between the neuron X
(n−1)
k and the neuron

X
(n)
j , where X

(n)
k = g(n)(h

(n)
j ) = g(n)(Σ

k
w

(n)
jk X

(n−1)
k ) . When the forward prop-

agation is complete, we get the output result R. We calculate the error between
the output given by the R and the output vector desired T for this sample.
For each neuron i of output layer , we calculate : esortiei = g

′
(hsortiei [Ti − Ri]).

We propagate the error backwards e
(n)
k 7→ e

(n−1)
j and we update the weights in

all layers: △w(n)
ij = λe

(n)
i X

(n−1)
j where △is the learning rate (low magnitude

and less than 1.0). Finally we return the weights and biases ( ap and bp)that
transforms X to Y .

3.2 3D objects recognition

The principle of the proposed method is as follows:

Step 1:

Given two 3D objects X and Y , in the first time we take random sample
points of X respectively points of Y named Xp respectively Yp, with p is the
size of the sample and n is the maximum size of the points X and Y . Then
we pass to study the connection between Xp and Yp, for this we extract the
parameters αp and βp which can transmit Xp to Yp as follows: Yp = αp ·Xp+βp
using neural networks as shown in following figure:

Step 2:

In this step, at first we calculate the points of 3D object Xc
n−p obtained by

the following formula:Y c
n−p = αp·Xn−p+βp whereXn−p is the set of points of 3D
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Figure 1: Architecture of Neural network

object remaining after the draw without replacement of the random sample.
Then we compare Y c

n−p to Yn−p where Yn−p is the set of points of the 3D
object remaining after the given drawing in the random sample Yp, using the
Euclidean distance metric defined as follows: D = d(Yn−p, Y

c
n−p) = Σi(Yn−p(i)−

Y c
n−p(i))

2 =
∑

i d
2
i : (3) with di = Y c

n−p(i) − Yn−p(i). The recognition is done
by measuring the similarity using the formula (3).

3.3 Results and evaluation

We consider two 3D objects X and Y related by an affine transformation.
According to the equation Yp = αp ·Xp+βp obtained by using neural networks
a is an affine transformation of Xp. Knowing Y = (Yp, Yn−p) that so if Y is
a transformation affine of X = (Xp, Xn−p) it must be Yn−p = αp ·Xn−p + βp,
because all points of X are transformed to Y by the same parameters. So
This means that Yn−p ≃ Y c

n−p. Thus according to the formula (3) we will have
di ≃ 0 ∀i , as shown in figure 3.

Figure 2: (a): Original 3D Objet , (b): Transformed 3D Objet , (c): Repre-
sentation of errors di

4 An affine description invariant of 3D objects

by the canonical correlation coefficients

4.1 The canonical analysis of two vectors

Let X = (X1, X2, ..., Xn)
t and Y = (Y1, Y2, ..., Yn)

t are two vectors. The prin-
ciple of this analysis is to search at the first a couple of variables (V 1,W 1)
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where V 1 = α1X
j is a normalized linear combination of variables Xj ( Xj is

jth column of X and W 1 = β1Y
k a normalized linear combination of variables

Y k( Y k is kth column of Y, such that V 1 andW 1 are correlated as possible, i.e:
that maximizes the quantity vailable |ρ1 = Corr(V 1,W 1)|. Then we search the
normed pair (V2,W2) where V

2 = α2X
j as being a linear combination of Xj

uncorrelated to V 1, i.e:ρv12 = Corr(V 1, V 2) = 0, and W 2 = β2Y
2 linear uncor-

related to W 1 i.e: ρw12 = Corr(W 1,W 2) = 0, which V 2 and W 2 are correlated
as possible, i.e: maximizes the quantity available |ρ2 = Corr(V 2,W 2)| . And
so on ... The canonical analysis product p of pairs of variables where s = 1, .., p.
The variables V s is an orthogonal basis of the space generated byXj. The vari-
ables W j is an orthogonal space generated by Y k. The couples (V s,W s), par-
ticularly the first of them, reflect the linear connections between two groups of
initial variables. The variables are called canonical variables. Their successive
correlations |ρk = Corr(V k,W k)|(decreasing) are called canonical correlation
coefficients (or canonical correlations). The canonical correlation coefficients
(ρs)s=1,...,p are invariant quantities over an affine transformation and are all
equal to 1 in this case.

4.2 Results and evaluation

We consider two 3D objects X and Y related by an affine transformation
(figure 2). The calculation of canonical correlation coefficients from these
objects requires computing the first pairs of canonical variables (V s,W s)s=1,...,p

of X and Y then the coefficients of canonical correlations (ρs)s=1,...,p from these
couples. Figure 3.a shows that the values of canonical correlation coefficients
are all equal to 1. In another, Figures 3.b shows that the canonical variables of
origin objects and its transformation are the same which leads us to conclude
that Y is an affine transformation of X according to the procedure of canonical
analysis.

Figure 3: (a):Representation of the canonical correlation coefficients
,(b):Representation of the canonical variables of 3D object original as func-
tion of the 3D object transformed
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5 Affine Invariant description of 3D objects

with the coefficients of barycenter, genetic

algorithms and neural Networks

5.1 Genetic algorithms

Genetic algorithms (GA) [19][20]were originally developed by John Holland.
They are used in order to find a solution, usually numerical solving of a given
problem, without having a prior knowledge on the search space. The basic
structure of the genetic algorithm is as follows:

• Creation of initial population

• Evaluation of adaptive function

While population numbers are less than maximum number of generations, do:

• Generating new population

• Selection of best individuals

• Generation progeny by crossing

• Mutation of individuals

These algorithms are generally computationally implemented using genetic
operation such as: Creating the initial population: the production of initial
population
Coding: Consists of associates to each point of the state of space a data struc-
ture called chromosome
Selection: choose pairs of individuals surviving from one generation to another
and those involved in the reproduction procedure of the future population
Crossing: applies to two individuals randomly in the previous population.
These individuals are matched to give birth to two offsprings
Mutation: change randomly the value of the individual parameter
Operation parameters:
The implementation of a genetic algorithm requires the adjustment of certain
parameters : population size, survival rate, the mutation rate and number of
generations as in any iterative algorithm, we must define a stopping criterion,
a maximum number of iterations or detection of an optimum.
Learning and Simulation
Learning by genetic algorithm involves the evaluation of the behavior of each
individual before generating new individuals who will in turn be evolved. In
our case the individuals are the coefficients of barycenter.
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5.2 Definition and properties of barycenter of 3D object

Definition of barycenter of a 3D object
The barycenter of a 3D object is defined as follows:{
f : R3n → R3

p̃1
(X), p̃2

(X), ..., p̃n
(X) →

∑
i aip̃i

(X)∑
i ai

where p̃i
(X) = (xi, yi, zi) , g̃X = (xG, yG, zG) and

∑
i ai ̸= 0. We note

CoefBary(X) = (a1, a2, ..., an) barycenter coefficients of g̃X

Properties of barycenter of Y

i) The barycenter of Y (corresponds to the 3D object ) is defined as g̃Y =∑
i aip̃i

(Y )∑
i ai

ii) g̃Y = A× g̃X +B where g̃X is the barycenter of Y
Note:CoefBary(X) = CoefBary(Y ) = (a1, a2, ..., an)

5.3 Procedure for determining an affine invariant de-
scriptive for 3D object

Given two objects 3D X and Y, for verifying that Y is an affine transformation
of X, it suffices to verify that the barycenter coefficients of X and Y are equal,
i.e: CoefBary(X) = CoefBary(Y ) = (a1, a2, ..., an)

5.4 Calculation of the barycenter of X corresponds to
the 3D object

According to the previous definition of barycenter we have :

g̃X = (xG, yG, zG) =
∑

i aip̃i
(X)∑

i ai
=

∑
i ai(xi,yi,zi)∑

i ai
⇒ xG =

∑
i aixi∑
i ai

, yG =
∑

i aiyi∑
i ai

et zG =
∑

i aizi∑
i ai

⇒ χG = xG − yG − zG =
∑

i ai(xi−yi−zi)∑
i ai

=
∑

i aiψi∑
i ai

where ψi =

xi − yi − zi and z̃G = (
∑

i ai)χG . Then the problem amounts to determining
the coefficients (a1, a2, ..., an) verifying the equation (1) where:

• ψi known

• z̃G unknown

Under our approach, we choose to use genetic algorithms to determine the
barycenter coefficients of g̃G .
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5.5 Problem formulation

According to the previous definition of barycenter we have : Our problem
is as follows: let h(ai, ai, ..., ai) =

∑
i aiψi .To determine the coefficients of

barycenter(ai, ai, ..., ai) , we search to minimize a function h(ai, ai, ..., ai) using
genetic algorithms under the following constraint :

∑
i ai ̸= 0.

The result obtained by the genetic algorithm permit to determine the follow-
ing coefficients (a0i , a

0
i , ..., a

0
i ) and h(a0i , a

0
i , ..., a

0
i ) which g̃X = (xG, yG, zG) =

(
∑

i a
0
i xi∑

i a
0
i
,
∑

i a
0
i yi∑

i a
0
i
,
∑

i a
0
i zi∑

i a
0
i
) : (3) led to calculate the barycenter.

The next step is to calculate the barycenter of Y using the equation: g̃Y =
αg̃X + β : (4) , then we compare it with the barycenter obtained by equation
(3) . If the difference between the two barycenters g̃X and g̃cX is almost equal
(as a threshold prefix) or nearly zero then we conclude that the coefficients
(a0i , a

0
i , ..., a

0
i ) of barycenter corresponds to X are those of barycenter of Y ,

i.e : CoefBary(X) = CoefBary(Y ) = (a01, a
0
2, ..., a

0
n) , consequently Y is an

affine transformation of X .

5.6 Results and evaluation

Consider two 3D objects related by an affine transformation (figure 2). To
calculate the vector of invariants from one of these objects we calculate at first
the coefficients of barycenter from one of two objects using genetic algorithms,
and secondly we extract the parameters α and β which can transform X and
Y using neural network.
Finally we compare the barycenter obtained by using coefficients barycenters
previously calculated in equation 3 and that obtained by using the parameters
α and β extracted by the neural network as shown by equation 4.
The figure 4 show that the two coefficients barycenters are equal. This leads
us to conclude that the coefficients of a barycenter are invariant vectors for
the two 3D objects.

6 3D object recognition by neural networks

and normalized principal component analy-

sis

6.1 normalized Principal component analysis

The principal component analysis normalized is a method factorial analysis of
multidimensional data [21] [22]. It determines a decomposition of a random
vector X with uncorrelated components, orthogonal and adjusting to better
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Figure 4: (a): barycenter of the original 3D object and its transformed ,
(b):L’erreur g̃cY − g̃Y

distribution of X. In this sense the components are called principal compo-
nents and are arranged in descending order according to their degree of ad-
justment. The calculation of normalized principal components of the vector is
carried out initially by calculating the covariance matrix as follows:V = 1

n
X tX

where X t transposed of X . Then we passes to extract eigenvalues and eigen-
vectors associated to V by the following process

1. Det(V − λI) = 0 ⇒ λ = [λ1, λ2, ..., λp]

2. X.u = λ.u⇒ u = [u1, u2, ..., up]

λ and u are eigenvalues and eigenvectors associated V . The eigenvalues τ
and eigenvectors ν associated V t are λ and ν = [ν1, ν2, ..., νn] where νi =

X.ui√
λi

and is the number of line of . The reconstruction of X from vector
ψ = (λ, u, ν) is doing as follows X = Σi

√
λiuiν

t
i , we say that the vector

ψ = (λ, u, ν) is a vector characteristic of X , then we write
:X → ψ = (λ, u, ν) .

Remark:

Let Y = α.X + β , knowing that var(Fa) = λa where Fa means ath com-
ponent factor defined as follows:Fa = X.ua , then λya = (uya)

tvar(αX + β)(uya)
⇒ λya = (uya)

t(αt)var(X)(α)(uya) = λya = (uyaα)
tvar(X)(αuya) . If var(X) = 1

then λya = (uyaα)
t(αuya) = (uya)

tαtα(uya) .

7 Principle of the proposed recognition method

Step 1:
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Given two 3D objects (object of database) and (query object) that we
search if they are related by an affine transformation. For this we extract the
parameters α and β which can transmit X to Y as follows:Y = αX + β using
neural Networks.

Note: X represents the vector input of points and Y represents the vector
output of points

Step 2:

In this step we use the parameter α extracted by the neural network in
equation (2) from the principal component analysis to calculate the following
error: err = λy − (uy)tαtα(uy) then we select the object corresponding to the
error below a given threshold s (usually very close to zero). The following
diagram illustrates this situation.

Figure 5: system of recognition

Xi (resp. Yi ) corresponds to centered points reduced of the database
object i (resp. the query object), i.e:var(Xi) = 1 and var(Y ) = 1 , and
ψx = (λx, ux, νx) (resp. ψy = (λy, uy, νy) ) is the characteristic vector associated
to Xi (resp. query object Y ) and α is the parameter of neural networks. The
recognition is done by measuring the error described in equation (3) , if the
error is below a given threshold (usually very close to zero), we say that the
object Y is an affine transformation of Xi , object of the database .

8 Results and evaluation

Consider two 3D objects (object of a database) and (query object) related by
an affine transformation (figure 2). After extracting a parameter α by neural
networks as shown in figure 1 , we uses the latter in equation (1) to calculate
the error of equation (3). The results show the performance of the proposed
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method. In fact, according to the graph of the error we conclude that erri ≃ 0
. So Y is an affine transformation of X

Figure 6: Representation of erreur erri

9 Recognition of 3D object by neural networks,

genetic algorithms and fuzzy logic

9.1 Fuzzy Logic

Definition of Fuzzy Logic
A fuzzy model of a system [23] [24]is a representation of his behavior by

the concepts of the theory of fuzzy subsets. This representation characterizes
the relationship between input variables and output system. In the classical
or Boolean logic, any element of a set to only one value 1 or 0, or in fuzzy
logic, a set A of universe of discourse U = (x) is defined as a distribution by
which each value of x is assigned any number in the interval [0, 1], indicating
the degree of membership of x in set A, that is to say .

Fuzzy Model
In general, any system modeling (linear or nonlinear) can be decomposed

three inter-related elements:
- Input (input variable)
- Model (mathematical formulation)
- Output (output variable)
In case of non-linearity or the lack of a mathematical model describing a sys-
tem, fuzzy logic can be an alternative to system, but we must have basic
information on our system.

Fuzzy Model Elements
The Fuzzy Model Elements are:

- Fuzzification: the definition of linguistic variables and membership functions
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- Inference: the establishment of rules of inference in the form: IF ... THEN
- Deffuzzification: the determination of the output variable in the calculation
center gravity, or by the maximum ... etc.

9.2 Definition and properties of a barycenter of 3D ob-
jects

The barycenter of a 3D object is defined as follows:{
f : R3n → R3

p̃1
(X), p̃2

(X), ..., p̃n
(X) →

∑
i aip̃i

(X)∑
i ai

where p
(X)
i = (xi, yi, zi) and ai the ai are the coefficients of barycenter. Let

gX,Y a barycenter of (p(X), a) and (pY , ã) then gX,Y = ( a
a+ã

p(X) + ã
a+ã

p(Y ))2

Knowing that (p(Y )p(X))2 = (p(X))2+ (p(X))2 − 2 p(X)p(Y )cosθ then
(a+ ã)2gX = a2(p(X)p(Y ))2 −a2(p(Y ))2 2(aã+ 1)p(X)p(Y )cosθã2(p(X))2.

Remark 1:

we suppose that pY = α · pX + β where α and β are scalars, this means
that all points of y is an affine transformation of points X , then y is an affine
transformation of X .

Let pY = α · pX + β then :
gX,Y = a2

(a+ã)2
(p(Y )p(X))2+ a2−ã2

(a+ã)2
(p(Y ))2+ 2(a·ã+1)

(a+ã)2
p(X)(α·p(X)+β)cosθ⇒ gX,Y =

a2

(a+ã)2
(p(Y )p(X))2+ a2−ã2

(a+ã)2
(p(Y ))2+ 2(a·ã+1)·α

(a+ã)2
(p(X))2cosθ+ 2(a·ã+1)

(a+ã)2
p(X) · βcosθ

We set λ = a2

(a+ã)2
, ϕ = ã2−a2

ã2−a2 ,d = (p(X)p(X))2 , γ = 2α(1+aã)
(a+ã)2

, δ = 2β(1+aã)
(a+ã)2

and τ = (p(X))2+(p(Y ))2−d
2p(X)p(Y ) Then : gX,Y = λd+ ϕ(p(X))2τ + δp(X))τ : (1)

9.3 Principle of the proposed recognition method

Step 1:

In this step we calculate the barycenter gi and the vector νi = (ai, ãi)of

barycenter coefficients of points (p
(X)
i , p

(Y )
i ) ,∀i ∈ [1, 2, ..., r] where r is the

number of object point X. According to the definition of previous barycenter we

have : gi = (xgi , ygi , zgi) =
aip

(X)+ãip
(Y )

a+ã
= ai(xi,yi,zi)+ãi(x̃i,ỹi,z̃i)

a+ã
⇒,xgi =

aixi+ãix̃i
ai+ã̃i

,

ygi =
aiyi+ãiỹi
ai+ã̃i

and zgi =
aizi+ãiz̃i
ai+ã̃i

⇒ χi = xgi − ygi − zgi
ai(xi−yi−zi)+ãi(x̃i+ỹi+z̃i)

ai+ãi
.

(ai + ãi)χi = aiγi + ãiγ̃i where γi = xi − yi − zi and γ̃i = x̃i − ỹi − z̃i if we
set δi = (ai + ãi)χi then δi = aiγi + ãiγ̃i : (2)
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Then the problem returns to determine the coefficients (ai, ãi) satisfying the
equation (1) where:

• γi and γ̃i are known

• δi unkown

Under our approach, we choose to use genetic algorithms to determine the
coefficients (ai, ãi) and gi minimizing the following quantity gi = h(ai, ãi) =
aiγi+ ãiγ̃i : (3) under the following constraint :ai+ ãi ̸= 0. The result obtained
by the genetic algorithm determine the coefficients (a0i , ã

0
i ) which led us to

calculate the barycenter gi = (xgi , ygi , zgi).

Step 2:

After calculating the vector (a0i , ã
0
i ) , gi and extracting the parameters α

and β by neural networks for transformation of p
(X)
i to p

(Y )
i as indicated by

the figure 1 , we passes to calculate the following errors: erri = gi − λidi −
ϕi(p

(X)
i )2τi−δip(X)

i τi : (4) and variations of the error ∆erri = erri−erri−1 : (5)

corresponding to couples (p
(X)
i , p

(Y )
i ) ∀i ∈ [1, 2, ..., r] . Finally, the recognition

is done by the outputs Serri associated to errors and errors variation ∆erri
calculated from different pairs of samples (p

(X)
i , p

(Y )
i ) obtained from the fuzzy

logic. While these outputs are below a given threshold (very close to zero) s ,
then we concluded that the equation (4) is verified and therefore the object of
the database X is a transformation of the object query Y According to note
1.

Operation of fuzzification The input quantities in our case to be fuzzi-
fied are error (denoted erri ), the variation of the error (denoted ∆erri ) and
output (denoted Serri ). The input erri has been partitioned into 4 linguis-
tic values as well as ∆erri and the output Serri ∀i ∈ [1, 2, ..., r] as follows :
V S = [0.01, 0.05]:Very Small,S = [0.05, 0.1]:Small A = [0.5, 0.1]:Average and
B = [0.1, 1]:Big

Rule-based ”inference”
The basis of fuzzy rules defined many rules. These rules were developed

manually. We adopted the intuitive approach to build the knowledge base
- R1:IF (erri) is VS and (∆erri) is VS then(Serri ) is VS
- R2:IF (erri) is VS and (∆erri) is S then(Serri) is S
- R3:IF (erri) is S and (∆erri) is S then(Serri) is S
- R4:IF (erri) is S and (∆erri) is A then(Serri) is A
- R5:IF (erri) is A and (∆erri) is A then(Serri) is A
- R6:IF (erri) is A and (∆erri) is B then(Serri) is B
- R7:IF (erri) is B and (∆erri) is B then(Serri) is B
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Defuzzification”
For output, we use the more often the rule ”the center of mass” i.e: we

calculate the barycenter of the surface (the intersection between the member-
ship function of linguistic value of the relevant output and ? found by the
aggregation rules) .

10 Results and evaluation

Consider two 3D objects X (object of a database) and Y (query object) related
by an affine transformation (figure 2). After extraction the parameter α and
βi by neural networks as shown in figure 1 for i = 1, 2, ..., r which r denotes the
number of sample drawn randomly from objects, we using them in equation
(3) to calculate the error of equation (4) and equation (5). The results show
the performance of the proposed method. In fact, the outputs corresponding
to inputs: error and variation of errors of r samples of the two objects are all
very close to zero as it is shown in figure 8 which shows the recognition of the
object in question (the input object).

Figure 7: Representation of Serri of 3D objet

11 Conclusion

In this work we present methods for the description and recognition of 3D
objects based on several approaches: The first approach is based on canonical
correlation coefficients obtained from the canonical analysis , this approach
consists of extracting the canonical variables from the original object and its
transformation, then we calculate their correlations, those are called canonical
correlation coefficients, which are invariant quantities over an affine transfor-
mation. The second approach relies on the extraction of barycenter coefficients
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from the 3D object using genetic algorithms and neural networks, these co-
efficients are invariant over an affine transformation of the object. Finally, a
third approach which aims to recognize the object (s) of database (s) similar
to a given object ( query object ), using :

• Scores obtained from fuzzy logic as shown in recognition procedure pre-
viously

• A feature vector which satisfies an equation obtained from the principal
component analysis and neural networks
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