
Direct Parallel Algorithms for Banded LinearSystemsPeter Arbenz� Walter Gander� Kevin Gates�Abstract. We investigate direct al-gorithms to solve linear banded sys-tems of equations on MIMD multipro-cessor computers with distributed mem-ory. We show that it is hard to beatordinary one-processor Gaussian elimi-nation. Numerical computation resultsfrom the Intel Paragon are given.1. IntroductionIn a project on divide and conquer algorithms innumerical linear algebra, the authors studied par-allel algorithms to solve systems of linear equa-tions and eigenvalue problems. The latter con-sisted in a study of the divide and conquer algo-rithm proposed by Cuppen [4] and stabilized bySorensen and Tang [11]. This algorithm is evolv-ing as the standard algorithm for solving the sym-metric tridiagonal eigenvalue problem on sequen-tial as on parallel computers. In [7], Gates andArbenz report on the �rst successful parallel im-plementation of the algorithm. They observed al-most optimal speedups on the Intel Paragon. Theaccuracy observed is as good as with any otherknown (fast) algorithm.The part of the project concerned with systemsof linear equations dealt with the direct solutionof banded linear systems. In [2], Arbenz and Gan-der survey the most important algorithms. In thispaper we discuss only one of these methods asall share the same algorithmic structure. The se-lected algorithm, the single width separator algo-rithm, is suited for solving diagonally dominantor symmetric de�nite systems of equations.We restricted our investigations on algorithmsfor computers with a distributed memory archi-tecture with powerful processing nodes that sup-port the MIMD programming model e.g. the IntelParagon and workstation clusters. The architec-ture of such machines makes programming with�Institute for Scienti�c Computing, Swiss Federal In-stitute of Technology (ETH), 8092 Zurich, Switzerland([arbenz,gander,gates]@inf.ethz.ch)

a coarse grain parallelism necessary for optimalexploitation of the compute power.2. The ProblemWe consider the system of linear equationsAx = b (2.1)where A is a real banded n� n matrix with lowerhalf-bandwidth r and upper half-bandwidth s,aij = 0 for i � j > r and j � i > s:We assume that the matrix A has a narrow band,such that r + s� n: Only in this case is it worthtaking into account the zero structure of A:On serial computers, Gaussian elimination isthe method of choice for solving (2.1). The costfor LU factorization, forward and backward sub-stitution isCGauss(n; k) = (2k2+5k�1)n� 43k3+O(k2) ops;(2.2)where k := max(r; s) and op denotes a oatingpoint operation (+;�;�; =).3. The single-width separator approachThis algorithm has been studied e.g. by Johns-son [10], Dongarra and Johnsson [5], and in mod-i�ed forms by Wright [12] and Conroy [3]. It iswell-suited for diagonally dominant and symmet-ric de�nite matrices. For the presentation we as-sume A to be nonsymmetric diagonally dominant.In the single-width separator approach the ma-trix A and the vectors x and b are partitioned inthe formA = 0BBBBBBB@ A1 B1C1 D1 C2B2 A2 B3. . . . . . . . .C2p�3 Dp�1 C2p�2B2p�2 Ap 1CCCCCCCA ;(3.1)



Peter Arbenz, Walter Gander, Kevin Gatesx = 0BBBBBBB@ x1�1x2...�p�1xp 1CCCCCCCA ; b = 0BBBBBBB@ b1�1b2...�p�1bp 1CCCCCCCA ;where Ai 2 IRni�ni; Bi; CTi 2 IRni�k; Di 2 IRk�k;xi; bi 2 IRni; �i; �i 2 IRk; k = max(r; s); andPpi=1 ni + (p � 1)k = n: We assume that ni > k:The structure of A and its submatrices is depictedin Fig. 3.1 for the case p = 4: The diagonal blocksAi are band matrices with the same half-band-widths as A.
Figure 3.1: Non-zero structure of the originalband matrix with n = 60; p = 4; ni = 12; r = 4;and s = 3:Assume that we have p processors. Processor istores matricesAi, B2i�2, B2i�1, C2i�2, C2i�1,Diand the vectors bi and �i: (Some of the variablesmay not be present on processor 1 and p:)The easiest way to understand the single-widthseparator approach is by permuting rows andcolumns of A in a block odd-even fashion. In thisway, (3.1) becomes ~A~x = ~b (3.2)where~A = 2666666666664 A1 B1A2 B2 . . .. . . . . . B2p�3Ap B2p�2C1 C2 D1. . . . . . . . .C2p�3 C2p�2 Dp�1 3777777777775 ;

and ~x = 2666666666666664 x1x2...xp�1xp�1�2...�p�1 3777777777777775 ; ~b = 2666666666666664 b1b2...bp�1bp�1�2...�p�1 3777777777777775 :The structure of ~A is depicted in Fig. 3.2.
Figure 3.2: Non-zero structure of the block odd-even permuted band matrix with n = 60; p = 4;ni = 12; r = 4; and s = 3:Remark. As matrices appearing in domain de-composition methods have a structure similar to~A the above permutation is sometimes called `al-gebraic domain decomposition'. If k = r; the fol-lowing factorization represents one step of cyclicreduction.The algorithmNow, the algorithm proceeds in three steps.1. FactorizationWe compute a block LU factorization of the ma-trix in (3.2), ~A = LR: The structures of the Land R factors are depicted in Fig. 3.3. These arethe same structures George [8] obtained with thenon-symmetric Cholesky factorization in his one-way dissection scheme. After multiplying (3.2) byL�1; we obtain the systemR~x = ~c (3.3)



Direct Parallel Algorithms for Banded Linear SystemswhereR = 0BBBBBBBBBBBBBBBB@R1 E1R2 E2 E3. . . . . . . . .Rp�1 . . . E2p�3Rp E2p�2T1 U1V2 T2 . . .. . . . . . Up�2Vp�1 Tp�1
1CCCCCCCCCCCCCCCCA~cT = �cT1 ; cT2 ; � � � ; cTp�1; cTp ;T1 ;2; � � � ;Tp�1�withE2i�2 = L�1i B2i�2; E2i�1 = L�1i B2i�1;F2i�2 = C2i�2R�1i ; F2i�1 = C2i�1R�1i ;ci = L�1i bi; i = �i � F2i�1ci � F2ici+1;Ti = Di � F2i�1E2i�1� F2iE2i;Ui = �F2iE2i+1; Vi = �F2i�1E2i�2:Each processor can work independently on itsblock row computing E2i�2; E2i�1; F2i�2; F2i�1;and ci: Furthermore, each processor computes itsportion of the matrix and right hand side of theso-called reduced system (3.4),� �F2i�2E2i�2 �F2i�2E2i�1�F2i�1E2i�2 Di � F2i�1E2i�1 � 2 IR2k�2kand � �F2i�2ci�i � F2i�1ci � 2 IR2k;respectively. Until this point of the algorithm,there is no interprocessor communication.Considering only the highest order terms, theserial complexity of this step isCstep 1 � �8k2 � kp6k�n� 8pk3 ops:Step 1 is perfectly parallelizable. There is a slightload imbalance in that the �rst and last processorshave less work to do. The parallel complexity isCparstep 1 � 8k2np � 8k3 ops:2. Formation and solution of reduced systemThe reduced system is26666664 T1 U1V2 T2 U2. . . . . . . . .. . . . . . Up�2Vp�1 Tp�1 377777752666664 �1�2...�p�2�p�1 3777775=2666664 12...p�2p�1 3777775 :(3.4)

(a)
(b)Figure 3.3: Non-zero structure of the (a) L and(b) R factor of the LU decomposition of ~A. Here,n = 60; p = 4; ni = 12; r = 4; and s = 3:It is a block tridiagonal matrix of order (p�1)kwith k � k blocks. These blocks may not be fullif r < k or s < k; cf. Fig. 3.3b. The reducedsystem is diagonally dominant and can be solvedby block Gaussian elimination or by block cyclicreduction. In both cases, at the beginning of thesolution process, the matrices Vi; Ti; Ui and thevector i are stored on processor i+1.Block Gaussian elimination of (3.4) costsCstep 2 � 143 pk3 ops:For the complexity of the communication, weassume that the time for the transmission of amessage of length n oating point numbers fromone to another processor is of the form� + n�:� and � denote the number of ops that can beexecuted during the message passing startup time



Peter Arbenz, Walter Gander, Kevin Gatesand during the transmission of one (8-Byte) oat-ing point number, respectively. The parallel com-plexity of this step includes the communicationcomplexity of 2(p � 1)� + (p � 1)(k2 + k)� opsand thus it becomesCparstep 2 � 143 pk3 + 2p� + pk2� ops:If the reduced system is solved by cyclic reduc-tion, the serial and parallel complexities are givenby Cstep 2,cr � 383 pk3opsandCparstep 2,cr� log2bp�1c�383 pk3 + 4� + 4k2��ops;respectively.3. Back substitutionIf the vectors �i; 1 � i < p; are known the i-thprocessor can compute its section of x byx1 = R�11 (c1 �E1�1);xi = R�1i (ci �E2i�2�i�1 �E2i�1�i); i 6=1; pxp = R�1p (cp � E2p�2�p�1):Each processor can proceed independently, thereis no interprocessor communication. Therefore,Cstep 3 � 6kn� 7k2p ops;and Cparstep 3 � 6knp � 7k2 ops;respectively.Redundancy and speedupWe assume that k := r = s� n:We �rst considerthe variant of the single width separator algorithmin which the reduced system is solved by blockGaussian elimination. The overall serial complex-ity of this algorithm isCsws(n; k; p) � �8k2 � 6k21p�n� 103 pk3 ops:(3.5)Comparing (3.5) with (2.2) we obtain the redun-dancy [9, p. 113]Rsws(n; k; p) := Csws(n; k; p)CGauss(n; k) � 4� 3p � 53 pkn :Redundancy measures the overhead work that isintroduced by parallelizing an algorithm. In this

algorithm it is caused by the computation of thematrices Ei and Fi in step 1.Speedup is the factor by which a parallel algo-rithm on p processors is faster than the best se-quential algorithm. As the parallel complexity ofthe divide and conquer algorithm isCparsws � 8k2np + �143 k3 + 2� + k2�� p ops;speedup becomesSsws(n; k; p) = CGauss(n; k)Cparsws(n; k; p) (3.6)� p4 + �73k + 12� + �k2 � p2nClearly, this speedup is far from the ideal speedupS(p) = p: Ideal speedup is possible only if (1) theparallel algorithm has the same complexity as thesequential algorithm and (2) if the parallel algo-rithm is perfectly parallelizable. This algorithmsatis�es neither of the two conditions. First, theredundancy is very high, R � 4; and second, thereduced system is solved sequentially. The latteris the origin of the p2 term in (3.6) which makesspeedup decrease as soon as p exceeds a criticalnumber poptsws for which speedup is highest. poptsws isthe positive zero of the derivative of S in (3.6),poptsws �r12n7k s 11 + 3�14k + 3�7k3 ;and yields an optimal speedup ofSoptsws := S(n; k; popt) = 18poptsws:The serial complexity of the variant of the singlewidth separator algorithm in which the reducedsystem is solved by cyclic reduction isCsws,cr(n; k; p) � �8k2 � 6k2 1p�n+ 143 pk3 ops,whereas the parallel complexity isCparsws,cr � 8k2np + (143 k3 + 4� + 4k2� ) log2 p ops:From this we get the redundancyRsws,cr(n; k; p) = Csws,cr(n; k; p)CGauss(n; k) � 4� 3p � 73 pkn :The speedup is given bySsws,cr(n; k; p) = CGauss(n; k)Cparsws,cr(n; k; p) (3.7)� p4 + �73k + 2� + 2 �k2 � p log2 pn :



Direct Parallel Algorithms for Banded Linear SystemsHere, optimal processor number and highest at-tainable speedup arepoptsws,cr � 12n7k 11 + 6�7k + 6�7k3 ;and Soptsws,cr = 14poptsws,cr 11 + log2(poptsws,cr) ;respectively. As poptsws,cr = O �(poptsws)2� ; poptsws,cr willgrowmuch faster than poptsws for large problem sizes.Memory requirementsThe matrices Ei and Fi can be stored in Ai: Thememory space needed for the local portions of thereduced system is about 4k2:RemarksThis algorithm is well suited for symmetric, pos-itive de�nite systems of equations, as the factor-ization of (3.2) is essentially symmetric. For sym-metric matrices in (3.3) we have Fi = ETi andVi+1 = UTi : The amount of work as well as thevolume of the messages is reduced by a factor oftwo. Although the number of messages remainsthe same. Therefore, redundancy and speedupremain unchanged except for the weights for thestartup time �:Wright [12] presented a version of the singlewidth separator algorithm with pivoting. His al-gorithm incorporates complete pivoting. If thefactorization of an Ai cannot be �nished, the un-factored part is added to the reduced system. Theprogramming of this algorithm is quite cumber-some and the load of the processors in a multi-processor environment is unpredictable. The ad-vantage of this algorithm is the combination ofa good performance in favorable situations and asafeguard in the other cases.Johnsson's analysis in [10] is very similar toours. He however models the communication com-plexity di�erently. There is no startup time. Thetime to communicate n oating point numbers isproportional to n and the distance between thecommunicating processors. In this analysis cyclicreduction is practical only if a rich network as ahypercube or perfect shu�e network is available.On the newest generation MPP computers estab-lishing links between processors does not play asigni�cant role in the communication cost. Thestartup time includes the overhead due to initi-ation of a message transfer (system calls, bu�er

allocation). Thus, cyclic reduction is feasible on2D grid connected processors (Intel Paragon).4. DiscussionThe singe width separator algorithm shares thesame algorithmic structure with the other algo-rithms discussed in [2]. Two phases, factoriza-tion and back substitution, are naturally paral-lelizable. The third phase, the solution of thereduced system, is completely sequential. Thisphase forms the bottleneck for the algorithms.
0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

180

200

Figure 4.1: Theoretical speedups for n =100000; k = 10; and � = 1: The pair of dashedlines corresponds to sws, the pair of solid lines tosws/cr. The upper and lower of the two lines cor-respond to � = 0 and � = 1000; respectively. Thedash-dotted line indicates ideal speedup.As the cost for the solution of the reduced sys-tem increases with the number of processors p;speedup will be maximal for some processor num-ber popt. In addition, popt depends on the sizeof the problem. Clearly, these algorithms are notscalable. The variant of the algorithm incorpo-rating cyclic reduction (sws/cr) is superior to thevariant without (sws) since the denominator of thespeedup formula of the latter contains a p2 terminstead of the p log2(p) term of the former. Byconsequence, poptsws,cr is of the order of the squareof poptsws.The e�ciency of a parallel program is de�nedby E(n; k; p) := S(n; k; p)p : (4.1)E�ciency measures the fraction of the processorpower that is actually utilized by the parallel pro-gram. It is evident that for �xed problem size the



Peter Arbenz, Walter Gander, Kevin Gatese�ciency decreases if the processor number is in-creased. To maintain e�ciency when increasingthe number of processors, the problem size mustalso be increased. For our algorithms, the matrixsize has to grow very rapidly to that end. Fromequations (3.6), (3.7), and (4.1) we see that forthe single width separator approaches the rela-tions among n; k; and p arep2 = n��73k + �2 + �k2�for sws andp log2(p) = n��73k + 2� + 2�k2�for sws/cr. If communication were negligible,speedup and e�ciency depended only on the ration=k:In Figure 4.1 the theoretical speedups accord-ing to formulae (3.6) and (3.7) are plotted for swsand sws/cr for � = 1000 and � = 0 for a problemof size n = 100000 and k = 10. Here, we assumedthat � = 1. � = 0 stands for the case where thecommunication startup cost can be hidden behindcomputation. The curves show that speedups forsws will be much smaller than for sws/cr. Further-more, they show that the optimal processor num-ber is relatively low for sws. For this problem sizeit is around 100. E�ciency ranges between 10%and 20%: With sws/cr much higher speedups areobtained. However, the e�ciency is still not high.Speedup and e�ciency would be very satisfactoryif they were given with respect to the performanceof the parallel algorithm on one node as the highredundancy of this algorithm would then be ne-glected.5. Numerical experimentsWe ran the symmetric single width separator al-gorithm for 4 di�erent problem sizes on the IntelParagon at ETH Zurich [1]. This machine has 96compute nodes based on Intel's i860XP RISC pro-cessor. The operating system version was OSF/1,Release 1.2.3, which exploits the message proces-sors that complement the compute processor oneach node. The message processors are necessaryfor asynchronous message passing. Each node hasa memory of 32 MByte of which about 6 are oc-cupied by the operating system. Larger problemscan be solved by using the very slow secondary(disk) memory. For e�ciency reasons storing ondisk should be avoided. In our tests we alwaysused the fast memory. Times for problems too

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

(a)
0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

(b)Figure 5.1: Times (a) and speedups (b) for sws(- -) and sws/cr (|) for n = 10000 and k = 10:The thin/thick curves correspond to calculationswith IEEE arithmetic turned on/o�.large for memory were extrapolated from small-er problems. In this way we avoid performancelosses due to page swapping. On the other hand,speedups are smaller than actually observed asoverheads involved with solving large problems ona single processor are neglected. All times present-ed are the best obtained in several runs.Figure 5.1 shows the times for the smallestproblem size (n; k) = (10000; 10) together withthe corresponding speedups for machine partitionsup to 48 nodes. The Fortran programs have beencompiled with the IEEE ag turned on and o�.It is observed that the cost of the oating pointarithmetic according to the IEEE standard is veryhigh. On the Intel Paragon, the IEEE divisionand square root are written in software. In addi-tion the exception handling for the multiplicationis done in software. In our numerically well condi-tioned examples there were only small di�erencesin the accuracy of the results.Timings and speedups for the problem size(n; k) = (100000; 10) are given in Fig. 5.2. Again,



Direct Parallel Algorithms for Banded Linear Systems
0 10 20 30 40 50 60 70 80 90 100

0

2000

4000

6000

8000

10000

12000

14000

(a)
0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

16

18

(b)Figure 5.2: Times (a) and speedups (b) for sws(- -) and sws/cr (|) for n = 100000 and k = 10:the timing curves obtained without IEEE arith-metic are much better than those with the IEEEag turned on. The numbers obtained with IEEEarithmetic turned o� qualitatively behave muchlike theory predicts, cf. Fig. 4.1. The actualspeedups are slightly below the ones predicted.sws has its peak speedup at p � 35 while thespeedup for sws/cr increases throughout the entiredomain. E�ciencies range from 15% to 20%. Thetimings for the runs with IEEE arithmetic showa sudden drop at p = 53. The form of this per-formance jump indicates that there are frequentcache misses until the local problem size gets sosmall that it �ts into cache. The spike in the ex-ecution times for sws right before the jump is notyet understood.In Figures 5.3 and 5.4 times and speedups forthe two big problem sizes (n; k) = (800000; 10)and (n; k) = (800000; 40) are plotted. The oneprocessor times were obtained by linear extrapo-lation as neither of the problems �t into the mem-ory of one processor. Leaving k �xed, we took thesmallest n such that the problem �t into mem-

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(a)
0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

45

(b)Figure 5.3: Times (a) and speedups (b) for sws(- -) and sws/cr (|) for n = 800000 and k = 10:ory. Linear extrapolation was motivated by thelinear dependence on n of the Cholesky factoriza-tion. The (800000,10) problem could be solved onone processor using the slow secondary memory in600 seconds! Speedups with respect to this num-ber greatly exceeded p. The (800000; 40) problemwas too large to solve on one processor even whenwe used the secondary memory. For both prob-lem sizes, speedups are very satisfactory for thenon-IEEE version of the programs, in particularfor sws/cr. Because of the wider band, speedupsare a bit smaller for (n; k) = (800000; 40). Thespeedup curve for sws/cr is still increasing at theupper end of the plots. In the (800000; 40) prob-lem the IEEE versions were up to 30 times slowerthan the non-IEEE versions of the program! Thedi�erence were not as big with the smaller band-width as the part of the program that solves thereduced system and is written in generic Fortranconsumes relatively less time. The rest of the pro-grams are essentially calls to LAPACK subrou-tines which are optimized by Intel.



Peter Arbenz, Walter Gander, Kevin Gates
20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Figure 5.4: Times for sws (- -) and sws/cr (|)for n = 800000 and k = 40:6. ConclusionsIn conclusion, it can be said that direct methodsfor solving banded systems of equations are onlya reasonable solution path on parallel machines ifthe bandwidth of the matrix is very narrow. Ifpossible the reduced system must be solved withcyclic reduction.These algorithms are not scalable. There is aprocessor number popt for which speedup is high-est. This number depends on the ratio n=k. Thespeedup curve is very at at its peak. So, in mostcases large processor numbers cannot be employedpro�table.Speedups and e�ciencies of the investigatedalgorithms will be low as their redundancy, i.e.the algorithmic overhead by parallelizing Gaus-sian elimination is high. However, as seen in thelarge numerical examples, it is di�cult to com-pare with a one-processor solution, because a sin-gle processor version, in any form, does not exist!It may be impossible (or excessively slow) to solvea large problem on a small number of processorsbecause of its size.Dongarra and Sameh [6] propose to solve thereduced system iteratively. If the number of iter-ations does not depend on the number of proces-sors used, the algorithm becomes scalable. How-ever, this assumption appears to be questionable.Nevertheless, it seems that the only way to scal-ably solve banded systems on MPP computers isby means of some iterative procedure.REFERENCES[1] P. Arbenz. First experiences with the IntelParagon. SPEEDUP, 8(2), 1994.

[2] P. Arbenz and W. Gander. A survey of di-rect parallel algorithms for banded linear sys-tems. Tech. Report 221, ETH Z�urich, Com-puter Science Department, November 1994.[3] J. M. Conroy. Parallel algorithms for the so-lution of narrow banded systems. Appl. Nu-mer. Math., 5:409{421, 1989.[4] J. J. M. Cuppen. A divide and conquermethod for the symmetric tridiagonal eigen-problem. Numer. Math., 36:177{195, 1981.[5] J. J. Dongarra and L. Johnsson. Solvingbanded systems on a parallel processor. Par-allel Computing, 5:219{246, 1987.[6] J. J. Dongarra and A. H. Sameh. On someparallel banded system solvers. Parallel Com-puting, 1:223{235, 1984.[7] K. Gates and P. Arbenz. Parallel divideand conquer algorithms for the symmetrictridiagonal eigenproblem. Tech. Report 222,ETH Z�urich, Computer Science Department,November 1994. Submitted to SIAM J. Sci.Comput.[8] J. A. George. Numerical experiments withdissection methods to solve n by n grid prob-lems. SIAM J. Numer. Anal., 14:345{363,1973.[9] K. Hwang. Advanced Computer Architec-ture: Parallelism, Scalability, Programmabil-ity. McGraw-Hill, New York, 1993.[10] S. L. Johnsson. Solving narrow banded sys-tems on ensemble architectures. ACM Trans.Math. Softw., 11:271{288, 1985.[11] D. C. Sorensen and P. T. P. Tang. On theorthogonality of eigenvectors computed bydivide-and-conquer techniques. SIAM J. Nu-mer. Anal., 28:1752{1775, 1991.[12] S. J. Wright. Parallel algorithms for bandedlinear systems. SIAM J. Sci. Stat. Comput.,12:824{842, 1991.


