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Abstract

This paper presents a detailed analysis of the locality
exhibited by the SPECfp95 benchmark suite. This study is
performed by means of a tool that is based on a static anal-
ysis enhanced by a simple profiling. This new approach
results in a fast, accurate and flexible data locality analysis
tool. It is fast because its run-time overhead is almost neg-
ligible, having a slowdown of 0.05. Besides, a single run of
a benchmark can provide information for a variety of cache
configurations. The tool is accurate because the informa-
tion that is unknown at compile time is obtained by a pro-
filing step. Finally, the tool is very flexible in the sense that
it can provide many different statistics about the locality
exhibited by programs and it can evaluate a variety of
cache architectures.

1. Introduction

Memory penalties are one of the main reasons why com-
puters performance is quite below peak performance for
most applications. Understanding the source of the prob-
lems is the first step towards devising new hardware orga-
nizations and/or new code transformations to overcome
them.

The user may be interested in quantifying the memory
penalties but this information is not enough in many cases.
A more detailed explanation of the different causes for
these penalties is sometimes required in order to investigate
the appropriate optimization. Examples of the type of
information that the user may be interested in are listed
below:

• Classifying the different types of cache misses into
the three commonly used categories (compulsory,
capacity, conflict) can be important to choose differ-
ent types of optimizations. Capacity misses could be
best reduced by blocking [5][3]; conflict misses by

padding [13]; and compulsory misses by prefetching
[2][11], among other possibilities.

• Identifying the parts of the program that are responsi-
ble for most penalties may help to reduce the optimi-
zation effort by focusing on such cases.

• Conflict misses are the dominant type of misses for
many numerical applications. Identifying which data
structures are responsible for these conflicts may be
required in order to eliminate them by means of pad-
ding [13] or copying [17], among other possibilities.

• Quantifying the intrinsic reuse of a program can be
used as an upper bound of the locality that can be
exploited. This is a useful measure in order to know
how far from optimal the current performance is.

• Evaluating the memory performance for a variety of
cache architectures for a set of applications can be
interesting for the design of an embedded processor
with a cache memory optimized for such programs.

• Including some bits in the memory instructions so
that the compiler can provide some hints to the hard-
ware regarding the locality exhibited by each memory
instructions is becoming a common practice. For
instance, the PA7200 has a bit in order to identify
memory instructions with only spatial locality [4].
The PowerPC provides the possibility of identifying
instructions that do not exhibit much locality and
thus, to bypass the cache for such instructions [16].
Having different cache memories specialized in
exploiting different types of locality may be a prom-
ising alternative to increase the cache performance
[14]. In all these cases, the compiler is responsible for
providing the information that is codified in the mem-
ory instruction and that will determine during execu-
tion the proper action that the hardware must take.

In this paper we present detailed evaluation of the
locality exhibited by the SPECfp95 benchmark suite,
including the different issues listed above. To perform such
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evaluation we have developed the SPLAT tool [15], which
is an innovative tool that overcomes the limitations of pre-
vious ones to provide this type of information, as discussed
below.

Current tools to analyze the locality of programs have
important drawbacks that restrict the information that such
tools can provide. Current data locality analysis tools can
be classified into three categories, depending on the
approach they use to perform the analysis:

• Memory simulators (e.g. [6][10]). An adequate mem-
ory simulator can provide all the information listed
above. However, these tools are very slow, having an
slowdown of several orders of magnitude. For
instance, in the survey of Uhlig and Mudge [19], the
slowdowns reported for trace-driven simulators are in
the range of 45 to 6245. Besides, in most cases, these
figures refer to simulators that just report miss ratios.
These slowdowns are not affordable for some real
applications that take several hours to run without any
overhead. This is especially true if the analysis is just
a step in an iterative process that consists of repetitive
analysis and optimization steps. We believe that this
iterative process is currently the most appropriate
approach to optimize the locality exploitation of a
given application since fully-automatic approaches
are still not completely successful.

Some recently proposed memory simulators (e.g.
[9][12]) are claimed to have a much smaller slow-
down. Their approach is based on eliminating/reduc-
ing the overhead for memory references that hit in
cache. Therefore, the final overhead is dependent on
the miss ratio. However, for typical miss ratios the
resulting overhead can still be too high. Values in the
range of 2-40 are reported in [19]. Besides, these
overheads correspond to experiments where the user
is interested just in the total miss ratio. If more com-
plete information, like that listed above, is required
the slowdown would be much higher. Besides, some
of the information listed above (e.g. quantifying the
intrinsic reuse) may require to instrument also the
cache hits, which would result in a slowdown similar
to that of trace-driven simulators. The implementa-
tion of special memory instructions to observe the
behavior of the memory system is discussed in [8].

• Tools based on the hardware counters provided by
many current microprocessors (e.g. [1]). These tools
are fast but they can provide a very limited informa-
tion, restricted by the hardware counters provided by
the manufacturer. For instance, identifying conflicting
data structures cannot be done relying just on hard-
ware counters for any of the current microprocessors.
Moreover, these tools can only analyze the locality

exploited by the memory hierarchy of the actual
microprocessor.

• Tools based on a static locality analysis (e.g. [18][7]).
This approach is very fast since it has a negligible
slowdown. However, it may be inaccurate for some
programs due to the lack of information at compile
time. For instance, loop bounds, initial addresses of
data structures, size of array dimensions, etc. may be
unknown at compile-time, which may significantly
affect the accuracy of the analysis.

2. Overview of the SPLAT tool

In this section we present an overview of the SPLAT tool,
which is the tool used to extract the statistics presented in
the next section. For more details we refer the interested
reader to [15].

The tool consists of three main steps. First it performs
a reuse analysis based on the approach proposed by Wolf
and Lam [20]. Then, some data unknown at compile-time
(e.g. basic block counts) is obtained from a profiling of the
program. Finally, the locality analyzer combines the reuse
and profile information to provide the locality statistics.
The tool can analyze the locality exploited by different
cache architectures by repeating just the last step.

The tool is fast and accurate. The slowdown of the tool
is about 0.05. The accuracy of the tool has been proved by
comparing its results with that of a simulator [15]. The
main limitation of the tool is that it is oriented just to
numerical applications. For non-numerical applications the
reuse analysis is likely to be rather inaccurate due to the
abundant use of pointer references.

3. Locality of the SPECfp95

This section presents a quantitative analysis of the locality
exhibited by the SPECfp95 programs. Due to current limi-
tations of the compiler platform, we provide statistics for
seven out of the ten benchmarks. Each program has been
compiled with full optimizations and the reported statistics
refer to the whole run of them.

3.1. Intrinsic reuse

The intrinsic reuse exhibited by a program can be used as a
lower bound of the memory bandwidth required by a given
program. That is, every reference that does not exhibit any
type of reuse will surely require a memory reference to the
next level of the memory hierarchy.

Memory reuse can be classified into four categories:
self-temporal (ST), self-spatial (SS), group-temporal (GT)
and group-spatial (GS). The temporal reuse is independent
of the particular cache architecture of the underlying hard-



ware. On the other hand, spatial reuse just depends on the
cache line size, in addition to the program characteristics.
Regarding group reuse, currently the tool can only analyze
the reuse among memory references that are in the same
loop, which can result in an underestimation of group
reuse. We are currently extending the tool to identify reuse
among references in different loops.

Figure 1 quantifies the amount of reuse of the
SPECfp95 for some of the programs and the average. The
reuse is quantified for a cache line size ranging from 8 to
128 bytes. In addition to the previously mentioned four cat-
egories of reuse, the graphs include a fifth category that
corresponds to those references without any type of reuse
(NN) and a sixth one that corresponds to those references
for which the tool has not been able to detect its type of
reuse (UN). Notice that a given reference may exhibit sev-
eral types of reuse and thus, the different bars may add up
to more than 100%.

On the average for all programs, it can be seen that
self-spatial reuse is the most frequent type of reuse (it is
exhibited by 56% of all references). Self-temporal reuse is
also significant (33% of references). Group-temporal is the
next in importance (20% of references) and finally, group-
spatial is the least common one (7% of references). Notice
also that group-spatial reuse stabilizes for a 32-byte line
size whereas self-spatial reuse provides diminishing
returns for a line size greater that 128 bytes.

The results for individual programs are very different,
and the dominant type/s of reuse depends on the concrete
benchmark:

• Tomcatv: the dominant types of reuse are both self-
temporal and self-spatial. Group-temporal reuse is
also important. In general, the intrinsic reuse for this
program is very high (note that theNN bar is very
small, even for blocks of 8 bytes).

• Swim: for this program the dominant types of reuse
are group-temporal and self-spatial. The other reuses
are very low for all block sizes.

• Su2cor: this benchmark presents a high degree of
temporal reuse, mainly self-temporal. It is also a pro-
gram with a high intrinsic reuse.

• Hydro2d: the dominant type of reuse for this program
is self-spatial, followed by temporal reuse (both self
and group). Finally, group-spatial reuse is almost neg-
ligible.

• Mgrid: for this program the temporal reuse is low,
both self and group. Likewise, group-spatial reuse is
almost null. The dominant type of reuse is self-spa-
tial. Note that the no-reuse bar is very sensitive to the
block size.

• Applu: the most relevant aspect of this program
regarding its reuse is the low impact of the block size.
Note that the increment of spatial reuse or the decre-
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Figure 1. Intrinsic reuse



ment of no-reuse is almost negligible for blocks big-
ger than 8 bytes. Besides, this is the program with the
lowest amount of reuse, as denoted by the relatively
high NN bar.

• Turb3d: in general for this program the reuse is poor,
mainly group-temporal and self-spatial reuse. How-
ever, note that the percentage on unknown references
is very high (about 60%), so the results may not be
very accurate for the overall program.

3.2. Quantifying different types of cache misses

Quantifying the different types of misses may be useful to
decide the particular optimization that may best improve
the performance of a give program. Misses are traditionally
classified into three categories: compulsory, capacity and
conflict. Each type of misses can be best reduced with dif-
ferent techniques as underlined in the introduction. Cur-
rently the tool can estimate conflict misses just for direct-
mapped caches although the extension to set-associative
caches is straightforward.

Figure 2 shows the miss ratio of the programs studied
in this paper for a cache size ranging from 1 KB to 64 KB
and a line size of 16, 32 and 64 bytes. For each configura-
tion, the total miss ratio is divided into the three different
categories. The y-axis represents the percentage of the total
executed memory instructions whose reuse is known (the

first column for each graphic in figure 1 -UN column - rep-
resents the dynamic percentage of references with
unknown reuse).

For each program, the source of misses may be quite
different:

• Tomcatv: this program has a very large number of
conflict misses, especially for caches smaller than 16
KB. Increasing the cache size reduces cache conflicts
although other techniques like padding could be more
cost-effective, as we will show in the next section.
Capacity misses are also significant and hardly vary
for the considered range of cache capacity. This is
because the working set of this program is higher than
64 KB. Finally, notice that the most effective line size
depends on the cache capacity. For very small caches,
the line size has a small effect. For intermediate
caches, smaller lines behave better since they signifi-
cantly reduce the number of conflict misses, due to the
larger number of lines. For large caches, the best per-
formance is obtained by the largest line size. This is
due to the reduction in capacity misses. Notice that
increasing the line size may reduce capacity misses
although it may seem counterintuitive. This may hap-
pen if there are references that exhibit both spatial and
temporal reuse but temporal reuse cannot be exploited
due to capacity constraints. In this situation, increas-
ing the line size will result in a better exploitation of
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spatial locality and thus, capacity misses will be
reduced. For instance, assume the following code:

do i=1,8
do j=1,1024
... A[j] ...

enddo
enddo

In this example the referenceA[j]  has spatial reuse in
loop j and temporal reuse in loopi. If the cache capac-
ity is 512 elements, the temporal reuse cannot be
exploited. Therefore, if the line size is 4 elements, this
code will produce 256 (1024/4) compulsory misses
(for the first iteration of loopi) and 1792 ((1024/4)∗7)
capacity misses (the rest of iterations of loopi). How-
ever, if the line size is 8 elements, there will be 128
(1024/8) compulsory misses and 896 ((1024/8)∗7)
capacity misses.

• Swim: the main source of misses for this program is
conflict misses. For cache size smaller than16Kbytes,
misses due to interferences represent the majority of
misses. For a cache of 16Kbytes it is also the domi-
nant source of misses for block sizes of 32 and 64
bytes. Finally, for caches with a size of 32 or
64Kbytes, compulsory misses are the most important
cause of miss. For instance, for caches of 64Kbytes,
compulsory misses are the only source of misses.

Note that for this program the effect of capacity
misses is almost negligible.

• Su2cor: the low impact of both cache and block sizes
in the total number of misses for this program is
remarkable. The behavior for all cache sizes is practi-
cally constant, and the impact of block size is less
than 5%. It can be observed that the major part of
misses are due to capacity misses, but the working set
of the program is bigger than 64Kbytes, since capac-
ity misses up to that size do not decrease.

• Hydro2d: for this program all the working set can be
stored in a very small cache and thus, increasing
cache capacity hardly improves performance.
Increasing the line size favors the exploitation of spa-
tial locality and reduces the number of compulsory
misses.

• Mgrid: ashydro2d, for this program the main cause of
misses are compulsory misses. If the cache has just 16
blocks (that is, a 1Kbyte cache with a block size of 64
bytes), there is no space to keep most of the data in
cache, so the number of capacity misses is very high.

• Applu: as su2cor, the number of misses for this
benchmark is almost constant for all configurations.

• Turb3d: this program shows a high miss ratio. How-
ever, note that the results are presented for references

whose reuse could be studied, and for this program
the percentage of unknown references is almost 60%
(see figure 1). For this reason, the results of this graph
m ay not be representative of the overall program.

The reuse information together with the quantification
of the different types of reuse can be used by the compiler
to set appropriately the hints provided by memory instruc-
tions in some microprocessors. For instance, if the cache
has a bypass capability, those references without any reuse
could be marked as non-cacheable. Besides, if two differ-
ent memory instructions frequently collide, one of them
could also be marked as non-cacheable. In this way, the
locality exhibited by the other instruction could be
exploited, which is better than not exploiting any of both.
For instance, it has been reported that this type of analysis
when applied to drive a selective caching policy may pro-
vide about 25% reduction in average memory access time
and 65% reduction in next level memory bandwidth [14].

3.3. Conflicting data structures

For those programs with a high percentage of conflict
misses, it may be interesting to identify which data struc-
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tures are responsible for such conflicts. Techniques like
padding or copying can be then applied to such data struc-
tures to try to reduce these conflicts.

For instance, figure 3 shows the percentage of conflicts
between any pair of data structures, ordered from highest to
lowest, for thetomcatv and theswim benchmarks, for a 8
KB direct-mapped cache with 32 bytes per line. For the
tomcatv program, it can be seen that data structures X and
Y are responsible for the majority of conflict misses. In
addition, in figure 2 we can observe that most misses are
due to conflicts, which suggest that padding may be an
effective technique to reduce memory penalties. For
instance, figure 4 shows the resulting conflict miss ratio of
tomcatv after inserting a number of empty bytes between
the two data structures. It can be seen that just with this
naive padding scheme, conflict misses are significantly
decreased, from 39.5% to 27.2%.

For theswim program, conflict misses are more dis-
tributed among a larger set of data structures.

3.4. Critical code sections

Most of the memory penalties are in many cases caused by
a very small percentage of the code. Identifying these most
penalizing sections may help the programmer/compiler to
focus the effort on such parts of the code.

For instance, figure 5 shows the percentage of cache
misses (over the total number of misses) that are caused by
every innermost loop, for two applications. Besides, for
each loop, its corresponding percentage of misses is split
into the three different types: compulsory, capacity and
conflict. An 8 KB, direct-mapped cache with 32 bytes per
line is assumed.

Notice that in both cases the vast majority of misses
are due to a very few sections of code: three innermost
loops for swim and six innermost loops forturb3d. For
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swim, most of the misses are due to conflicts whereas in
turb3d, both capacity and compulsory misses have a signif-
icant contribution.

4. Conclusions

In this paper we have presented a detailed analysis of the
locality exhibited by the SPECfp95 benchmark suite. This
detailed evaluation has been performed by means of a new
data locality analysis tool that is very fast, which allows to
obtain statistics for the whole execution of real programs
and many different cache configurations with a negligible
slowdown.

We have shown that different programs exhibit very
different locality characteristics. Detailed evaluation of the
locality exhibited by a program may then be essential to
choose the best approach to be taken to improve it.

Fully-automatic optimization tools have proved so far
insufficient due to the variety of different scenarios that
they should cope with. We then believe that the best
approach today towards memory optimization is by means
of an iterative (and interactive) process in which repetitive
analysis and optimization steps are interleaved until the
final result is acceptable. Therefore, the speed of the analy-
sis tool as well as the range of information that it can pro-
vide are critical. We have shown that the type of analysis
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presented in this paper can be very useful for such an
approach.
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