
The PARADE Environment for

Visualizing Parallel Program Executions:

A Progress Report

John T. Stasko

Graphics, Visualization, and Usability Center

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

E-mail: stasko@cc.gatech.edu

Technical Report GIT-GVU-95-03

Abstract

This report describes the current status of the PARADE visualization environment.

PARADE supports the design and implementation of software visualizations of parallel and

distributed programs. It contains primary components for monitoring a program's execu-

tion, building the software visualization, and mapping the execution to the visualization. In

this report we provide brief descriptions of many of the projects that comprise the PARADE

environment, and we provide references to more detailed information on the projects.



1 Introduction

Every year an increasing amount of software is being written for parallel and distributed

computers. Unfortunately, parallel programs are more di�cult to write, debug, evaluate,

optimize, and understand than serial programs because of the concurrency they manifest.

Programmers must coordinate and synchronize communication between processes, they

must control access to shared resources, and they must carry these actions out as e�ciently

as possible.

One approach to facilitating the growth of parallel and distributed programming involves

the development of new programming languages and new hardware. Recently, however, re-

searchers have begun to focus on the importance of good software tools to assist developers

of concurrent programs[Che93, PC94]. These tools include debuggers, performance moni-

tors, execution analysis and replay tools, and other aids.

Our research also has focused on tools for program understanding and development,

but we have a di�erent emphasis: software visualization tools[SP92]. A key component

of understanding a program execution is knowing what is occurring in the program, how

individual processes are working, and how they are communicating. By visualizing the

operations of a program, we help convey to the programmer what those operations are, and

if they are behaving in the desired manner.

Software visualization taps into the highly developed visual systems of humans. People

have a tremendous ability to track patterns, observe images, and detect anomalies in the

things they see. A well constructed picture, diagram, or visualization can communicate

much more information in a small space than a corresponding textual description[Tuf83,

Tuf90].

Recently, increasing attention has focused on the use of software visualization to assist

parallel programming (see [KS93] in particular and [CE93] for a collection of articles on this

topic). This paper is a progress report on a project called PARADE (PARallel program

Animation Development Environment) that was started in 1991. Its goal was to develop

an environment that facilitates the creation and use of visualizations by programmers de-

veloping concurrent programs. A report roughly summarizing the original proposal for the

project can be found in [SAK91]. Primary support for the project has been a three year

National Science Foundation grant (CCR-9121607). Portions of the project also have been

supported by Kendall Square Research and by an Intel Graduate Fellowship.

In the remainder of this report we describe the current status of the PARADE environ-

ment and we describe the components and sub-projects within it.

2 Overview

A number of objectives have guided our e�orts in building the PARADE environment:

� PARADE should support visualizations of many di�erent types of programs from

di�erent architectures, di�erent programming models and languages, and di�erent

applications. It should support the creation of automatic, canonical program views as

well as application-speci�c, algorithm animation style views. It should support both

performance visualizations and correctness visualizations.

1



Program of
    interest

--------
--------
for (i=12;..)
 x=17;
--------
--------

Execution and
trace data
collection

Choreographer

Analysis POLKA animation
displays

val

Events Scenes

Figure 1: PARADE system overview, highlighting the three major components.

� The environment should be easy to use. A developer need not be a graphics expert

to work with it.

� The visualizations developed in the environment should be relatively sophisticated

and also aesthetically pleasing. They should support color, animation, and be able to

depict concurrency in a program's execution.

� The environment should support visualizations that portray other feasible program

executions. That is, a viewer may wish to examine a program execution as it occurred

with respect to a global clock, as it occurred under some logical clock ordering[Lam78],

or as it might have occurred under some other valid event ordering.

It is easy to see how these objectives have led us to develop a 
exible environment with

many di�erent components and tools, as opposed to a monolithic system built to do only one

thing. In fact, the PARADE environment can be conceptualized as having three primary

components. Figure 1 presents a high-level overview of the organization of PARADE.

The �rst component is the program monitoring aspect of the environment. Basically, to

drive a visualization, information about the program's execution is required. Many details

about the execution must be known in order to build an appropriate visual presentation of

it.

The third component of the environment, shown to the right side of Figure 1, is the

support visualization/animation system. In PARADE the Polka animation system is used

to build all the graphical views. Polka runs on top of the X Window System and it achieves

the objectives mentioned earlier.

The second or middle component of the environment provides the mapping from pro-

gram execution data to appropriate visualization actions. In PARADE, simple mappings

are possible, but usually we utilize a system called the Animation Choreographer. The

Choreographer's primary functionality is to control the temporal mapping of program oper-

2



ations to visualization actions. In particular, it provides the capability to view animations

of the program execution under di�erent logical orderings of program events or operations.

In the next section we expand on the descriptions of these three components and describe

our progress to date on each.

3 PARADE Components

3.1 Program Monitoring

To build a visualization of a program execution, adequate descriptive information about

the execution is required. For example, a programmer may want to know which processes

are active, which functions are being invoked, what the values of variables are, and so on.

Often, this program monitoring can be the most challenging problem in building a software

visualization.

In order to learn about a program's execution, we must instrument it at some level to

transmit tracing information. Hardware level instrumentation is sometimes available, but it

is usually too low level except for things such as performance monitoring. Therefore, we rely

on software-level instrumentation which can be utilized at many levels such as the operating

system, the run-time system, system-supplied libraries, libraries used as alternatives to

system-supplied libraries, or in the source code of the program under study. Typically,

software level instrumentation is very machine and language speci�c, however, so building

a general monitoring mechanism is unrealistic. In PARADE we utilize techniques that are

speci�c to the machine and language of the intended application, but all these di�erent

techniques have some common, general principles.

Perturbation of the program under study is also a side e�ect of instrumentation. In

PARADE we have not focused on the perturbation issue. We simply make an e�ort to

minimize its in
uence whenever possible using established techniques.

A key issue in program monitoring is whether the software visualization will run on-line

(display as the program runs with some relative time delay) or post-mortem (the program

produces a trace which is post-processed at a later time). In PARADE our primary method

of operation is to use post-mortem visualization with trace �les. This is necessary to take

full advantage of the Animation Choreographer. It also allows us to minimize perturbation,

as we can utilize substantial bu�ering in our software-level instrumentation.

The techniques for performing on-line visualization in PARADE involve mechanisms

to transmit program events to the animation component in a timely fashion. It is more

complex than a simple transmit/receive action though. Such an approach breaks down

due to transmission latency or lack of synchronization in timestamps across processes. For

instance, it would not be uncommon for the animation to receive a message receive program

event before the corresponding message send program event. Our approach uses �lters that

preserve the causal ordering of program events by applying simple ordering rules to the

event transmissions[GEK+94].

To generate post-mortem visualizations with PARADE, the primary method used in

the environment, we utilize three di�erent software instrumentation techniques. Below we

describe these in decreasing level of programmer involvement.

3



The most basic way to gather execution information is to have the programmer hand

annotate his or her source code with output statements. Typically, a print statement is

added that will produce a line of output containing the event name or type, a process-id, a

timestamp if available and any other event speci�c parameters. The programmer can have

all processes write to one �le (contention is a clear problem here) or each process can write

its information to a unique �le. Because of the direct programmer involvement and amount

of work required, this method can be time-consuming and error-prone. Nevertheless, it

is the one method that is truly general, and it is the method that can produce the most

detail about a program's execution. For example, if a visualization requires the value of a

program variable at key points, hand annotation may be the only adequate instrumentation

technique.

The second method of software instrumentation we have utilized is to override a stan-

dard parallel communication library with a set of replacement macros. For example, KSR

machines provide a C library called pthreads that includes basic process control and commu-

nication calls such as pthread create, pthread mutex init, pthread barrier checkin,

and so on. We have developed a set of macros called gthreads that can be used to mon-

itor KSR pthreads programs[ZS95]. In essence, we de�ne a macro for each pthread call

that �rst writes a trace event of that call, then calls the original pthread routine. Because

this method can only trace actions that correspond to pthreads routines, we added two

supplemental calls, gthread enter and gthread back, that programmers can add to their

source. These macros are used to signal function entry and exit, tracing information not

available from the basic pthreads calls. The monitoring information from all these macros

serves as the input to a visualization package we have developed for KSR pthreads pro-

grams. It will be discussed more thoroughly in the next section. The pthreads monitoring

macros are available via anonymous ftp from the machine ftp.cc.gatech.edu as the �le

pub/people/stasko/gthread.KSRtracing.tar.Z.

The third and least programmer-involved method we have used to gather post-mortem

trace information is to actually modify the resident parallel communication library for a

system. We utilize this approach with Conch, an experimental heterogeneous network

computing system[BFK+94]. Conch contains communication primitives for send-receive

communication, barriers, rendezvous, and so on. We have modi�ed the native code of these

routines to support run-time activation or deactivation of the trace production[TSS94]. At

run-time the programmer simply speci�es a command-line 
ag to turn on tracing. We also

have provided a way to gather more \subtle," application-speci�c trace information from a

Conch program, that is, information not available from the communication calls. We have

added the routine c parade log() that a programmer can place anywhere in source code.

This routine generates a trace event in a manner similar to a C printf statement, but it

only works when tracing is turned on.

Our monitoring techniques in Conch also are unique in the addition of logical clock times-

tamping. Determining an ordering of events across processors is di�cult in a distributed

system. We have added a logical clock to the system to help alleviate this problem.

The monitoring in Conch occurs with minimal perturbation as well. Program execution

times with tracing on are quite close to those without tracing.

All these techniques to extract program execution data have a common element. They

produce trace records or events that capture important operations in a program. In PA-

RADE we have developed a speci�cation �le format that captures and describes what this

4



monitoring information will be for a particular program. Below is an example of a simple

event speci�cation �le.

KSR_C

1

INIT:id INIT:_synch pid:d ts:d

INPUT:id pid:d ts:d index:d value:d

READY:id pid:d ts:d index:d

EXCHANGE:id pid:d ts:d from:d to:d

FORK:id FORK:_synch pid:d ts:d forkedpid:d

The �rst line always describes the environment (machine and language) of the program,

and the second line tells the �eld in which the event type or name will appear in all the

event records. Subsequent lines describe the di�erent event types and detail the trailing

arguments of each. Left-hand sides provide parameter names which can be special reserved

symbols such as pid (process-id) or ts (timestamp), or they can be user de�ned values such

as index. Right hand sides of parameters specify the type (printf argument style) of the

parameter.

We also have created these type of speci�cation format �les for the other two primary

components of the PARADE environment: the visualization and the event-to-visualization

mapping. All three speci�cation �les are used as input to the Animation Choreographer

when a user generates a software visualization of a program execution. Details of this

process will be described later in the report.

3.2 Visualizations

Visualizations in PARADE are built using the Polka animation system[SK92, SK93]. Polka

supports color, 2-D visualizations, and in particular, it provides high-level primitives for

smooth animation e�ects. It also supports independent scheduling and execution of anima-

tion actions, thus permitting easy design of concurrent animation scenarios.

This last capability is important because of the number of di�erent ways a concurrent

program may execute. On one run, an essentially serial ordering of operations may occur,

and the animation of the program should re
ect this. On another run, a number of oper-

ations may occur concurrently (or be thought of as logically concurrent) and the program

animation should illustrate this concurrency. Most importantly, the same visualization code

should su�ce to illustrate both scenarios; the animation designer should not be forced to

write di�erent code for each potential scenario. Polka meets these expectations.

Polka provides an object-oriented design model to developers. Animations can include

any number of windows or Views. Within a View, a designer utilizes Location, AnimObject,

and Action objects to implement the animation activities. The focus of the system has been

to provide sophisticated graphics capabilities, yet keep the paradigm easy to learn and use.

Very expressive, complex animations can be developed with relatively little code.

Polka is implemented in C++ on top of the X Window System and Motif. It is

available via anonymous ftp as the �le pub/people/stasko/polka.tar.Z on the machine

ftp.cc.gatech.edu. Detailed documentation and example animations are provided with

5



the distribution. We also have developed a 3-D version of Polka written in GL on Silicon

Graphics workstations[SW92, SW93]. We have used it to develop a number of interesting

software visualizations of parallel programs as well.

As was done in the program monitoring component, we have created a speci�cation

format describing a Polka visualization. A sample visualization speci�cation appears below.

View BlocksView qsort.H

Init name:s

Input pid:d ts:d pos:d value:f

Ready pid:d ts:d totalnum:d

Exchange pid:d ts:d pos1:d pos2:d

View Chart qsort.H

Init name:s

Bounds ts:d pid:d num:d

Swap ts:d pid:d pos1:d pos2:d

The two sections here de�ne the two di�erent Views (windows) of the animation. This

particular animation is the one discussed in the next paragraph. Below each View name

(with the �le in which the include information appears) are listed the individual animation

scenes (C++ member functions) provided by the View. The �rst argument is the scene

name and the trailing arguments are the parameters to the scene function.

Many di�erent software visualizations and animations of concurrent programs have been

built using Polka. At one level, it is possible to build an application-speci�c visualization of

a particular program by writing the Polka code oneself. For instance, Figure 2 shows a two

View animation of a parallel quicksort program. The left View shows the classic algorithm

animation style blocks sorting view (we use color to indicate the process responsible for

a comparison or exchange of an element) and the right View encodes time along its y-

dimension to portray the history of exchanges in the program. This entire animation with

smooth motion and potentially concurrent animation e�ects takes only 175 lines of Polka

code.

At a second level, it is possible to use Polka to build a canonical view library for a

particular machine or programming paradigm. Then, software developers simply use the

library as an application|they write no Polka code themselves.

We have done this for a few di�erent programming paradigms. Figure 3 shows the set

of views built for the KSR pthreads package mentioned earlier in the Program Monitoring

section[ZS95]. These views highlight the state of threads, barriers, and mutexes; They show

where each thread is within the program call graph, and they show a history of the threads

over time.

Figure 4 shows the set of views developed for the Conch distributed system also men-

tioned earlier[TSS94]. Here, views show message communication between processes, the

status of di�erent processing elements, and the history of the computation. We currently

also are developing a visualization library for the PVM[Sun90] distributed system. It will

soon be available via anonymous ftp at the site mentioned at the end of this report.

Figure 5 shows our preliminary work in building a view library for High Performance

FORTRAN programs. Individual views here show the processor grid, data distribution,

6



Figure 2: Two Views from an application-speci�c animation of a parallel quicksort program.

Figure 3: Library of views ued to illustrate KSR pthreads programs.

7



Figure 4: Library of views used to illustrate Conch programs. Particular importance is paid

to message sends and receives.

8



Figure 5: Library of views used to illustrate High Performance FORTRAN programs. This

view illustrates important arrays in the program. Color is used to indicate the di�erent

processors.

and the important arrays manipulated in the program. Color, image 
ashing, and arrows

are used to indicate data access, movement, and work between the processors.

Finally, views of the state of cthreads programs have been developed using Polka as

well[GEK+94].

Moving to the actual design of animations themselves, one key challenge is how to \scale

up" the views. That is, how do we visualize very large programs or execution of programs

on very large data sets? We utilize a concept called semantic zooming that is useful in

such situations[MS95]. With semantic zooming, we can present the entire program and

its data set within one view by using abstraction and clustering. From there viewers can

interactively select graphical objects to zoom in on areas of interest. But rather than zoom

in by a straightforward magni�cation, the view adjusts to the next semantic level and the

presentation may change dramatically.

Figure 6 shows the data in a parallel sort of 10,000 elements. Each rectangle represents

a contiguous 10% of the values being sorted, and geometric properties of each rectangle

depict the maximum, minimum, average, and sortedness of the region. When a rectangle

is selected, a new view is shown, focusing only on the selected portion of the array. As less

and less elements are shown in the view, the presentation adjusts to provide more detail.

We also have used the Polka-3D system to build visualizations of large programs. In

particular, we used natural 3-D perspective and zooming to depict executions of program

running on a MasPar machine[WS93].

9



Figure 6: Visualization of sort of 10,000 elements using a semantic zooming technique. This

animation allows a viewer to examine characteristics of the entire data set and to zoom in

on particular regions of the array.

10



To further help simplify the development of Polka visualizations, we are currently work-

ing on a tool that will allow users to build visualizations without any textual graphics coding.

The tool will provide a number of view templates for things such as scalar variable views,

grids, graphs, charts, etc. Individual attributes of these views such as size, color, level, and

value will be modi�able through point-and-click direct manipulation means. Each attribute

will be able to be \attached" to particular values from program events. The designer will

be able to interactively specify the mapping between the two.

3.3 Program-to-Animation Mapping

The third component of the PARADE environment is the mapping from program executions

to their animations. At a �rst glance this may seem unnecessary|Whenever an event or

a state change occurs in a program, we could simply display the corresponding animation.

This solution might be su�cient for serial programs, but we believe it is inadequate for

concurrent programs.

One basic problem with this approach is how to decide when to display concurrent

animations (program execution events) in a view window. If the timestamp between two

events is very small, are they concurrent? Similarly, if two events can logically be thought

of as simultaneous (or potentially simultaneous), are they concurrent?

In the PARADE framework, we believe these questions must be answered by the pro-

grammer or viewer. That is, we de�ne a number of di�erent temporal perspectives under

which an animation of a program execution can be viewed. We provide a system and in-

terface, the Animation Choreographer, that allows a viewer to interactively choose one of

these perspectives and to further adjust the perspective interactively[KS94a, KS94b].

The Animation Choreographer of PARADE must know the operations of the program

being visualized, the set of available animation views and scenes, and the mappings between

these two sets. The �rst two are described by the event and visualization speci�cation �les

described in the prior two sections. The third is described by a mapping speci�cation �le,

an example of which is shown below.

INIT -> BlocksView.Init 1 ti 3

INIT -> Chart.Init ti 1

1 -> BlocksView.NewVal 1 ti 4

READY -> Chart.Axes ti 1 @0.0 @10.0

Each line de�nes a program event to animation scene mapping. The �rst line states that an

INIT event in the program should be presented by calling the Init scene of the BlocksView

view. The trailing parameters describe which arguments of the program event should be

passed to the scene, whose parameters are speci�ed in the linear order in which they appear.

Values preceded by the '@' character mean to always pass a literal value to the scene for

that parameter. The 'ti' characters mean that the Choreographer should pass the time

(when to schedule the animation actions) in as that parameter.

Once the Choreographer has these three speci�cation �les, it knows how to proceed

with generating animations for this program. We use a Choreographer generator program

that reads all three speci�cation �les and outputs the source code for a Choreographer

appropriate to this particular animation. This source code is compiled together with generic

11



Choreographer code and the Polka animation code to generate the �nal binary. At run-time

the Animation Choreographer reads the set of post-mortem trace �les from a program, then

it is ready for interaction. A summary of this framework in PARADE is shown in Figure 7.

The Animation Choreographer portrays a program execution as a directed acyclic graph

whose nodes are events. This depiction is presented in Figure 8. Each column corresponds

to a process or thread, and time starts from the top of the display and proceeds downward.

Dependences between events, such as a send-receive pair, are indicated by an edge between

the events.

The Ordering menu at the top contains our default temporal orderings of program

events. Currently, it includes

� Timestamp { Portray the events at times consistent and relative to how they oc-

curred with respect to a global clock.

� Serial { Portray a serialization of all the events using their causal order.

� Minimal distortion { Portray the events relative to how they occurred in global

time, but resolve problems in the logical or causal order.

� Maximum concurrency { Portray the events as they would occur to generate max-

imum concurrency under their causal ordering.

When a viewer selects one of these options, the presented event graph adjusts itself

to re
ect the selected ordering. Choosing the Run option then starts the animation of

the program execution under that temporal ordering. When the maximum concurrency

ordering is chosen, for instance, the animation displays have many concurrent animation

actions occurring at once. When timestamp order is chosen, one often encounters large

bursts of animation followed by idle periods, thus mimicking (of course at a slower rate)

the actual program execution.

To achieve this functionality we needed to analyze the semantics of the di�erent commu-

nication and synchronization operations of the program being examined. Obviously, these

primitives vary between machines, architectures, and languages. Currently, the Choreogra-

pher \understands" shared memory type primitives as exempli�ed by cthreads or pthreads

(barrier, mutex, condition, etc.) and message passing primitives common on distributed

systems such as PVM and Conch. We continue to add more semantics.

Additionally in PARADE we have built a few animations not using the Animation

Choreographer to do mappings. Essentially, these animations use a particular hard-wired

choice of one of the Choreographer mappings. When a particular perspective is sought and

a low-tech solution is su�cient, this approach is reasonable.

4 Using PARADE

In this section we brie
y summarize how programmers use the PARADE environment to

visualize their programs and code. Let us begin with the case where the program trace events

are generated \automatically" (tracing of parallel primitives has been activated through a

macro or run-time library approach) and the visualization is prede�ned. This is the situation

with the KSR pthreads and the Conch visualizations discussed in prior sections. In this

12



Figure 7: Overview of how the Choreographer �ts within the PARADE environment.

13



Figure 8: User interface for the Animation Choreographer that presents the ordering and

constraints between program execution events.

14



case, Animation Choreographers for each of these programming environments can be pre-

developed since all three speci�cation �les are known a priori. Consequently, a programmer

simply runs his or her program, gathers the trace �les, and then invokes the appropriate

Choreographer with the trace �les' name as an argument. The Choreographer starts up,

displays the graph interface, and allows the viewer to interact with it in order to view

animations of program executions under di�erent temporal orderings.

Now consider a scenario in which a programmer is building an application-speci�c,

algorithm animation style visualization of a program. Here, the programmer must generate

semantic events beyond the simple parallel primitives, and the programmer hand codes the

visualization with Polka. In this situation, the programmer carries out the steps below to

generate a PARADE visualization.1 Figure 7 can be used as a helpful summary of this

process also.

1a. Design and implement the Polka animation views and scenes for the visualization.

Compile this code to make an object �le.

1b. Annotate the concurrent program with output statements so that it generates the

desired trace events. Run the program and gather the trace �les.

2. Create the program event, visualization, and mapping speci�cation text �les.

3. Run the Animation Choreographer generator program with the three speci�cation �les

as input. It will generate source code for the application-speci�c Choreographer used

in the next step.

4. Compile the Choreographer source code and link it with the Polka scenes code from

step 1a and the generic Animation Choreographer object code in order to create the

Choreographer binary.

5. Run the Animation Choreographer, giving it the trace �les from step 1b as input. Now

the viewer interacts with the interface and watches animations.

Clearly, this last scenario is involved enough so that it is impractical for day-to-day

debugging chores. Rather, it is useful when a particular program requires detailed study

or a person wants to prepare a visualization as an explanatory instructional aid. The �rst

scenario in which a programmer simply runs their program and then invokes a pre-built

Choreographer is appropriate for program testing, debugging, and optimization chores, we

believe.

5 Conclusion

In this article we have described the current status of the PARADE environment for vi-

sualizing concurrent program executions. PARADE consists of three primary components:

Program monitoring and tracing, a visualization system, and the mapping from program

actions to their visualizations. Currently, a number of di�erent projects are underway in

each of these components. This report has provided a brief summary of those e�orts and it

also serves as a reference on where to acquire more detailed information about them.

1Lettered steps within one number signify that they can be done in any order. The numerical steps must

be carried out in the speci�ed order.

15



6 Acknowledgments

PARADE has been and is the cumulative e�ort by a group of people. Bill Appelbe, Charles

Hardnett, Eileen Kraemer, Song Liang, Jeyakumar Muthukumarasamy, John Stasko, Brad

Topol, Joe Wehrli, and Alex Zhao all have contributed to the project. PARADE has

been supported by the National Science Foundation under grant CCR-9121607, Kendall

Square Research and an Intel Graduate Fellowship. For up-to-date information on the

status of PARADE and publications relating to it, please examine the World Wide Web

page http://www.cc.gatech.edu/gvu/softviz/parviz/parviz.html. All ftp-able soft-

ware mentioned in this article can be found on the machine ftp.cc.gatech.edu in the

directory pub/people/stasko. All GVU technical reports referenced here can be acquired

via ftp also, on the same machine in the directory pub/gvu/tech-reports.

References

[BFK+94] Doug Bowman, Adam Ferrari, Melisa Kelley, Brian Schmidt, Brad Topol, and

Vaidy Sunderam. The Conch network concurrent programming system. Tech-

nical report, Emory University, Atlanta, GA, January 1994.

[CE93] Thomas L. Casavant (Editor). Special issue on tools and methods for visualiza-

tion of parallel systems and computation. Journal of Parallel and Distributed

Computing, 18(2), June 1993.

[Che93] Dorren Y. Cheng. A survey of parallel programming languages and tools. Tech-

nical Report RND-93-005, NASA Ames Research Center, Mo�ett Field, CA,

March 1993.

[GEK+94] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko,

Je�rey Vetter, and Nirupama Mallavarupu. Falcon: on-line monitoring and

steering of large-scale parallel programs. Technical Report GIT-CC-94-21, Col-

lege of Computing, Georgia Institute of Technology, Atlanta, GA, April 1994.

[KS93] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: An

overview. Journal of Parallel and Distributed Computing, 18(2):105{117, June

1993.

[KS94a] Eileen Kraemer and John T. Stasko. Toward 
exible control of the temporal

mapping from concurrent program events to animations. In Proceedings of the

8th International Parallel Processing Symposium (IPPS '94), pages 902{908,

Cancun, Mexico, April 1994.

[KS94b] Eileen Kraemer and John T. Stasko. Toward 
exible control of the temporal

mapping from concurrent program events to animations. Technical Report GIT-

GVU-94/10, Graphics, Visualization, and Usability Center, Georgia Institute of

Technology, Atlanta, GA, March 1994.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558{565, July 1978.

16



[MS95] Jeyakumar Muthukumarasamy and John T. Stasko. Visualizing program ex-

ecutions on large data sets using semantic zooming. Technical Report GIT-

GVU-95/02, Graphics, Visualization, and Usability Center, Georgia Institute of

Technology, Atlanta, GA, January 1995.

[PC94] Cherri M. Pancake and Cutis Cook. What users need in parallel tool support:

Survey results and analysis. In Proceedings of the Scalable High Performance

Computing Conference (SHPCC '94), pages 40{47, Knoxville, TN, May 1994.

[SAK91] John T. Stasko, William F. Appelbe, and Eileen Kraemer. Utilizing program

visualization techniques to aid parallel and distributed program development.

Technical Report GIT-GVU-91/08, Graphics, Visualization, and Usability Cen-

ter, Georgia Institute of Technology, Atlanta, GA, June 1991.

[SK92] John T. Stasko and Eileen Kraemer. A methodology for building application-

speci�c visualizations of parallel programs. Technical Report GIT-GVU-92-10,

Graphics, Visualization, and Usability Center, Georgia Institute of Technology,

Atlanta, GA, June 1992.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building application-

speci�c visualizations of parallel programs. Journal of Parallel and Distributed

Computing, 18(2):258{264, June 1993.

[SP92] John T. Stasko and Charles Patterson. Understanding and characterizing soft-

ware visualization systems. In Proceedings of the 1992 IEEEWorkshop on Visual

Languages, pages 3{10, Seattle, WA, September 1992.

[Sun90] V.S. Sunderam. PVM: A framework for parallel distributed computing. Con-

currency: Practice & Experience, 2(4):315{339, December 1990.

[SW92] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation visualiza-

tion. Technical Report GIT-GVU-92-20, Graphics, Visualization, and Usability

Center, Georgia Institute of Technology, Atlanta, GA, September 1992.

[SW93] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation visualiza-

tion. In Proceedings of the 1993 IEEE Symposium on Visual Languages, pages

100{107, Bergen, Norway, August 1993.

[TSS94] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. Integrating visualization

support into distributed computing systems. Technical Report GIT-GVU-94/38,

Graphics, Visualization, and Usability Center, Georgia Institute of Technology,

Atlanta, GA, October 1994.

[Tuf83] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics

Press, Cheshire, CT, 1983.

[Tuf90] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.

[WS93] Joseph Wehrli and John Stasko. Interactive three-dimensional visual debugging

in massively parallel computation (extended abstract). In Proceedings of the

1993 ACM/ONR Workshop on Parallel and Distributed Debugging, pages 235{

237, San Diego, CA, May 1993.

17



[ZS95] Qiang A. Zhao and John T. Stasko. Visualizing the execution of threads-based

parallel programs. Technical Report GIT-GVU-95/01, Graphics, Visualization,

and Usability Center, Georgia Institute of Technology, Atlanta, GA, January

1995.

18


