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ABSTRACT

In this paper we address the problem of robustness of speech
recognition systems in noisy environments. The goal is to
estimate the parameters of a HMM that is matched to a noisy
environment, given a HMM trained with clean speech and
knowledge of the acoustical environment. We propose a
method based on truncated vector Taylor series that
approximates the performance of a system trained with that
corrupted speech. We also provide insight on the
approximations used in the model of the environment and
compare them with the lognormal approximation in PMC.

1. Introduction

Speech recognition systems built in the lab with clean speech
can often offer very high accuracies. But accuracy degrades
significantly when such systems are used in the real world,
mostly because of the mismatch between the clean speech in
training and the real world speech [1].

If there is a mismatch between acoustical environments, it is
sensible to retrain the HMM. This is done in practice for
telephone speech where only telephone speech, and no clean
high-bandwidth speech, is used in the training phase.
Unfortunately, training a large vocabulary speech recognizer
requires a very large amount of data, which is often not
available for a specific noisy condition. For example, it is
difficult to collect a large amount of training data in a car
driving at 50 mph, whereas it is much easier to record it at idle
speed or in a lab. Often we want to adapt our model given a
relatively small sample of speech from the new acoustical
environment.

If additive noise is the only degradation, one option is to take a
noise waveform from the new acoustical environment, add it to
all the utterances in our training database and retrain the system
[3]. If the noise characteristics are known ahead of time, this
method allows us to adapt the model to the new environment
with a relatively small amount of data from the new
environment, yet use a large amount of training data. This
simple technique can provide good results at no cost during
recognition if the noise sample is available offline. If the target
acoustical environment also has a different channel, we can
also filter all the utterances in the training data prior to
retraining [5]. If this noise were not available beforehand, the
noise addition and model retraining would need to occur at
run-time. This is feasible for speaker-dependent small
vocabulary systems where the training data can be kept in
memory and where the retraining time can be small, but is
probably not feasible for large vocabulary speaker-independent
systems because of memory and computational limitations. We
can also pool training data from different environments [3].

It is useful to consider whether this retraining can be done only
from the HMM itself, instead of requiring all the training
waveforms, since this would greatly diminish the memory
required. Parallel Model Combination [4] is one such approach
that estimates the matched noisy model from the clean HMM
using a nonlinear transform, derived from a variant of the
model of the environment described in Section 2. PMC makes
the approximation that the nonlinear function of Gaussian
random vectors is also Gaussian so that the same decoder can
be used.

In this paper we propose an approximation based on Taylor
series, which is an extension of [8] from the feature space to
the model space. Our proposed approach differs from [8] in
that we derive expressions for the variance of the noise and
delta and delta-delta means and variances. We compare the
proposed approximation with the lognormal approximation in
PMC. The proposed method approaches the error rate of a
noisy-matched trained system.

In Section 2 we describe the model of the environment. Section
3 analyzes the empirical distribution of the corrupted speech.
Section 4 introduces the new approach. The approximations
and a comparison with PMC are analyzed in section 5. Section
6 presents some experimental results.

2. A Model of the Environment

Figure 1 shows a commonly used model for the acoustical
environment [1], which assumes the speech signal x[m] is
corrupted by additive noise n[m] and channel distortion h[m]:
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Figure 1. A model of the acoustical environment.

It is convenient to express Eq. (1) in the frequency domain. To
do that, we window the signal, take a 2K-point DFT and then
take the square of the magnitude:
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Statistically, the expected value of the last term in Eq. (2) is
zero since x[m] and n[m] are statistically independent. In
practice, this term is not zero (see Figure 7), though it is small
if we average over a range of frequencies, as is often done
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when computing the popular mel-cepstrum [2]. When using a
filterbank, we can obtain a relationship for the energies at each
of the M filters:
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( ) ( ) ( ) ( )i i i iY f X f H f N f= + (3)

An implicit assumption of Eq. (2) and (3) is that the length of
h[n], the filter’s impulse response, is much shorter than the
window length 2N. That means that for filters with long
reverberation times, Eq. (3) is inaccurate. For example, for

2
( ) 0N f = , a window shift of T and a filter’s impulse

response [ ] [ ]h n n Tδ= − , we have 1[ ] [ ]t m t mY f X f−= , i.e. the

output spectrum at frame t does not depend on the input
spectrum at that frame. This is a more serious assumption,
which is why speech recognition systems tend to fail under
long reverberation times [9].

Taking logarithms in Eq. (3) and after some algebraic
manipulation we obtain
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Let’s define the following length (M+1) cepstrum vectors
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with C being the DCT matrix. Combining Eq. (4) with (5)
results in

( )= + + − −y x h g n x h (6)

where the nonlinear function g(z) is given by

( )1

( ) ln 1 e
−

= + C zg z C (7)

Eq. (6) and (7) say that we can compute the cepstrum of the
corrupted speech if we know the cepstrum of the clean speech
x, the cepstrum of the noise n and the cepstrum of the filter h.
In practice, the DCT matrix C is not square, so that dimension
of the cepstrum vector is smaller than the number of filters.
This means that we are losing resolution when going back to
the frequency domain, and thus Eq. (6) and (7) represent only
an approximation.

3. Empirical Distribution of Corrupted
Speech

In continuous-density HMM-based speech recognition systems,
the output pdf for the cepstrum of the clean speech x is
typically a mixture of Gaussians. In this section, we examine
the effect to that distribution under the model of the
environment of Figure 1. Even if we assume that the noise n
follows a Gaussian distribution, the cepstrum of the corrupted
speech y in Eq. (6) is no longer a mixture of Gaussians because
of the non-linearity in Eq. (7). Nonetheless it is convenient to
assume it still follows a mixture of Gaussians because that way
we can use the same decoder we use for clean speech.
Furthermore, it is generally assumed that each mixture
component is still Gaussian after undergoing the transform in
Eq. (7) because of expediency [4].

It is difficult to visualize the effect on the distribution given the
non-linearities involved. To provide some insight, let’s
consider Eq. (4) for a given frequency when no filtering is

done, i.e. ( ) 1H f = , with 2ln | ( ) |n N f= , 2ln | ( ) |x X f= :

( )( )ln 1 expy x n x= + + − (8)

Now let’s assume that both x and n are Gaussian random
variables. We can use Monte Carlo simulation to draw a large
number of points from those two Gaussian distributions, and
obtain the corresponding noisy values y using Eq. (8). Figure 2
shows the resulting distribution for several values of xσ . We

fixed 0n dBµ = , since it is only a relative level, and set

2n dBσ = , a typical value. We also set 25x dBµ = and see that

the resulting distribution can be bimodal when xσ is very

large. Similar graphs are shown in [4][8]. Fortunately, for
modern speech recognition systems that have many Gaussian
components, xσ is never that large and the resulting

distribution is unimodal.
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Figure 2 Distributions of y in Eq. (8) for 0n dBµ = ,

2n dBσ = , 25x dBµ = and xσ of 25, 10 and 5 dB

respectively.

Figure 3 shows the distribution of y for two values of xµ given

the same values for the noise distribution, 0n dBµ = and

2n dBσ = , and a more realistic value for 5x dBσ = . We see

that the distribution is unimodal, though not necessarily
symmetric, particularly for low SNR ( x nµ µ− ).
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Figure 3 Distributions of y in Eq. (8) for 0n dBµ = ,

2n dBσ = , 5x dBσ = and xµ of 10 and 5 dB

respectively.

4. Vector Taylor Series (VTS)

Moreno [8] suggests the use of Taylor series to approximate the
non-linearity in Eq. (7) as a feature preprocessor with a
Gaussian mixture in the spectral domain. Here we extend that
work to the model space, whose Gaussians are in the cepstral
domain, include the covariance of the noise and extend it to the
delta and delta-delta features.

Assume that x, h and n are Gaussian with means xµ , hµ and

nµ and covariance matrices xΣ , hΣ and nΣ respectively, and

furthermore that x, h and n are independent. After algebraic
manipulation it can be shown that the Jacobian of Eq. (6) with



respect to x, h, and n evaluated at = − −n x hµ µ µ µ , can be

expressed as
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where the matrix A being given by
1−=A CFC (10)

and F is a diagonal matrix whose elements are given by vector
( )f µ , which in turn is given by

1
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Using Eq. (9) we can then approximate Eq. (6) by a first order
Taylor series expansion around ( , , )n x hµ µ µ as
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The mean of y, yµ , can be obtained from Eq. (12) as

( )y x h n x h≈ + + − −µ µ µ g µ µ µ (13)

and its covariance matrix yΣ by

( ) ( )T T T≈ + + − −y x h nΣ AΣ A AΣ A I A Σ I A (14)

so that even if xΣ , hΣ and nΣ are diagonal, yΣ is no longer

diagonal. Nonetheless, it can be assumed it is diagonal because
this way, we can transform a clean HMM to a corrupted HMM
that has the same functional form and use a decoder that has
been optimized for diagonal covariance matrices.

To compute the means and covariance matrices of the delta and
delta-delta parameters, let’s take the derivative of the
approximation of y in Eq. (12) with respect to time:
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Since delta-cepstrum is computed through 2 2t t t+ −∆ = −x x x ,

Gopinath et al [6] showed that it is related to the derivative by
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and similarly
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where we assumed that h is constant within an utterance so that
0∆ =h .

Similarly, for the delta-delta cepstrum, the mean is given by
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and the covariance matrix is given by
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where we again assumed that h is constant within an utterance
so that 2 0∆ =h .

Eq. (13), (17) and (19) resemble the MLLR adaptation
formulae [7] for the means, though in this case the matrix is
different for each Gaussian and is heavily constrained.

We are interested in estimating the environmental parameters

nµ , hµ and nΣ given a set of T observation frames ty . This

estimation can be done iteratively using the EM algorithm on
Eq. (12). If the noise process is stationary, ∆nΣ could be

approximated, assuming independence between 2t +n and 2t −n ,

by 2∆ =n nΣ Σ . Similarly, 2∆ n
Σ could be approximated,

assuming independence between 1t +∆n and 1t −∆n , by

2 4
∆

= nn
Σ Σ . If the noise process is not stationary, it is best to

estimate ∆nΣ and 2∆ n
Σ from input data directly.

5. Analysis of the Approximations

There are three main variants of the PMC method [1]
depending on how the means and covariance matrices are
computed. Numerical integration is the most accurate way of
estimating the mean and covariance matrix of each transformed
Gaussian component, but it also is very computationally
expensive. Data-driven PMC (DMPC) is another variant that
obtains the mean and covariance matrix through Monte Carlo
simulation, and that requires a sample of at least 100 vectors
per Gaussian to obtain similarly accurate results. Finally, the
popular lognormal approximation is yet another variant of
PMC that approximates the sum of two lognormal distributions
as lognormal, but is not as accurate as the two above and also
cannot be used for the delta and delta-delta parameters.

Here we compare the Monte Carlo approximation, the
lognormal approximation, and the VTS approximation of
Section 4. For simplicity the simulations were done in the
spectral domain and not the cepstral domain, as it is simpler to
interpret the results. In Figure 4 we show the mean and
standard deviation of y in dB from Eq. (8) as a function of the

xµ where 10dBxσ = , 0dBnµ = and 2dBnσ = . We see

that the VTS approximation is more accurate than the
lognormal approximation for the mean and especially for the
standard deviation.
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Figure 4 Means and standard deviation of y in Eq. (8)
for the MonteCarlo method, lognormal and VTS
approximations for 0dBnµ = , 2dBnσ = , 10dBxσ =
and xµ varying from –25dB to 25dB.

Figure 5 is similar to Figure 4 only that 5dBxσ = , a more

realistic number in speech recognition systems. In this case,
both the lognormal approximation and the first order VTS
approximation are good estimates of the mean, though the
standard deviation estimated through the lognormal
approximation in PMC is not as good as that obtained through
first order VTS.
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Figure 5 Means and standard deviation of y in Eq. (8)
for the MonteCarlo method, lognormal and VTS
approximations for 0dBnµ = , 2dBnσ = , 5dBxσ =
and xµ varying from –25dB to 25dB.

Figure 6 shows that in practice, VTS is doing a reasonable job
of approximating the noisy distribution, though the cross terms
are not negligible as shown in Figure 7.

-3 -2 .5 -2 -1 .5 -1 -0 .5 0 0 .5 1
0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

P hone A A , C
1

S enone : 3

x

p(
x)

C lean
V TS
M ontec a rlo

Figure 6. Distribution of y[1] of senone 3 of /AA/ for
10dB white noise: clean model (dashed line), VTS
(solid line) and Monte-Carlo simulation (dotted line).

-0 .4 -0 .2 0 0 .2
0

1

2

3

4

5
P h o n e : A A s e n o n e : 3 c o m p o n e n t : 1 1

p(
C

11
)

C 1 1
-0 .4 -0 .2 0 0 .2
0

5

1 0

1 5

2 0
C ro s s te rm e rro r o f c o m p o n e n t 1 1

p(
er

ro
r(

C
11

))

e rro r

Figure 7. Distribution of y[11] of senone 3 of /AA/ for
10dB white noise (left) and error histogram in this
component due to the omission of the cross-terms
(right).

6. Experimental Results

For evaluation we used the standard 5000-word continuous
speech speaker-independent Wall Street Journal task with a
bigram language model, a training set of about 16,000
sentences and a test set of 167 sentences. The baseline system
is a tied-state continuous-density HMM with 6000 states and
20 Gaussians per state and a 33-dimensional feature vector
composed of static, delta and delta-delta MFCC. The baseline
word error rate under the clean acoustic environment is 4.87%.
Office noise was added to the test set at SNRs ranging from 20
to -10 dB. The error rate of the clean uncompensated model for
office noise increases to 55% at -10dB. For the matched
condition, noise was also added to the training data. The
proposed algorithm approached the matched noisy conditions.
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Figure 8 Word error rate as a function of the testing
data SNR (dB) for both a system trained on clean data
(solid line), a system trained on noisy data at the same
SNR as the testing set (dotted line) and the VTS
algorithm. Office noise at different SNRs is added.

7. Conclusions and Future Work

A method for estimating the HMM model parameters under
noise and channel distortions has been presented, based on
truncated Taylor series. The performance of this method is
close to that of a system trained with that corrupted speech. The
Taylor series approximation appears to be more accurate than
the lognormal approximation in PMC.

Future work includes estimation of the environment parameters
from data using maximum likelihood, in a EM fashion, or MAP
if prior knowledge about the environment is available.
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