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ABSTRACT

Gaussian mixture (GMM)-HMMs, though being the predominant
modeling technique for speech recognition, are often criticized as be-
ing inaccurate to model heterogeneous data sources. In this work, we
propose the stranded Gaussian mixture (SGMM)-HMM, an exten-
sion of the GMM-HMM, to explicitly model the dependence among
the mixture components, i.e., each mixture component is assumed to
depend on the previous mixture component in addition to the state
that generates it. In the evaluation over the Aurora 2 database, the
proposed 20-mixture SGMM system obtains WER of 8.07%, 10%
relative improvement over the baseline GMM system. The experi-
ments demonstrate the discriminating power that would be possessed
by the mixture weights in their advanced form.

Index Terms: Dynamic Bayesian network, Gaussian mixture
model, hidden Markov model, robust speech recognition

1. INTRODUCTION

State-of-the-art speech recognition systems assume the availability
of tremendous speech data to achieve accurate and robust recog-
nition performance. Efficient modeling techniques that are highly
scalable to the data volume consist of N-gram language models
to maintain accurate word prediction, context-dependent phoneme
models to represent pronunciation variations, and multiple mixtures
of Gaussians to account for extraneous non-speech variabilities.
Among them, the last approach is often criticized as being inaccu-
rate to model heterogeneous data sources: the mixture components
that are obtained in different acoustic conditions for one sound can
be concatenated to match at a high probability with the speech ob-
servations from another sound, a problem referred to as trajectory
folding [1].

One approach to improve the modeling accuracy is to relax the
HMM conditional-independence assumption, and condition the dis-
tribution of each observation on the previous observations in addition
to the state that generates it [2], [3]. This method is known as con-
ditional Gaussian HMMs or autoregressive HMMs. However, it has
been shown that the conditional Gaussian HMMs often do not pro-
vide a benefit if the dynamic features are used [4], [3]. Another
class of methods explores the use of more complex HMM struc-
tures, such as multiple-path modeling [5], [6]. This model is com-
posed of multiple parallel paths, each of which may account for the
acoustic variability from a specific source. The multiple-path model
may over-correct the trajectory folding problem associated with the
GMM-HMM, as the allowable mixture paths are exponentially re-
duced. Most of such systems have been only evaluated on some sim-
ple recognition tasks using a small number of parallel paths. How to
achieve a model that is intrinsically robust to speaker and environ-
mental changes is still a challenging and interesting problem, though

we have observed less efforts being attempted along this direction in
recent years.

In this paper, we propose a stranded Gaussian mixture (SGMM)-
HMM, an extension of the GMM-HMM, to explicitly model the
dependence among the mixture components. In other words, each
mixture component is assumed to depend on the previous mixture
component in addition to the state that generates it. Another moti-
vation for the SGMM model comes from the hope to make use of
the discriminating power that would be possessed by the mixture
weights, which have now evolved as the mixture transition probabil-
ities. The SGMM model implicitly relaxes the HMM conditional-
independence assumption for observations. Also, the model con-
tains the multiple-path models as special cases by properly setting
the mixture transition matrices. The effectiveness of the proposed
model is evaluated on the Aurora 2 database.

The remainder of the paper is organized as follows. In Section 2,
we describe the structure of the SGMM-HMM model and the associ-
ated learning and decoding algorithms. We present the experimental
results and conclusions in Section 3 and Section 4, respectively.

2. STRANDED GAUSSIAN MIXTURE HMMS

As opposed to the regular GMM-HMM, the SGMM-HMM aims to
explicitly model the relationships among the mixture components,
that is, the distribution of the mixture component is assumed to de-
pend on the previous mixture component in addition to the state that
generates it. The model can be represented by a dynamic Bayesian
network (DBN) [7] as shown in Fig. 1. Note that additional links be-
tween successive mixture variables are added in comparison with the
GMM-HMM. Let xT

1 = x1, ...,xT be a sequence of observations
of length T , and sT1 = s1, ..., sT and mT

1 = m1, ...,mT are the
hypothesized state and mixture sequences, respectively. The joint
probability of the three sequences in the SGMM model is given by

p(xT
1 , s

T
1 ,m

T
1 ) =

T∏
t=1

p(xt|st,mt)p(st|st−1)p(mt|mt−1, st)

(1)

The factorization of the probability specifies the model parameters
Λ we need to define in the SGMM-HMM, including the transition
probability aij = p(st = j|st−1 = i), and the observation proba-
bility given state j and mixture l distributed in a Gaussian manner

b
(j)
l = p(xt|st = j,mt = l) = N (xt;μ

(j)
l ,Σ

(j)
l ) (2)

Also, the mixture transition probabilities are defined as

p(mt = l|mt−1 = k, st = j) =

{
c
(ij)
kl if aij > 0

0 if aij = 0
(3)
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Fig. 1. A dynamic Bayesian network representation of the SGMM-
HMM. Square nodes denote discrete variables, and shaded circles
indicate continuous observed variables.

Here, the state st−1 is excluded from the variable list on which the
mixture mt depends, as we assume that the state st−1 = i can be in-
ferred from the mixture component mt−1 = k. The mixture transi-
tion probabilities for each state transition from i to j with a non-zero

probability form a matrix C(ij) =
[
c
(ij)
kl

]
. Each mixture transition

matrix satisfies the following statistical constraint individually∑
l

c
(ij)
kl = 1, for any feasible i, j, k (4)

We see that the mixture components in state i have multiple matri-
ces of mixture transitions. Which transition matrix is activated at
a particular time depends on the mastering state transitions. Also,
we may refer to C(ij), i = j as within-state mixture transitions, and
C(ij), i �= j as cross-state transitions.

In this work, we present the SGMM model where the mix-
ture components are Gaussian distributed as in (2). However, it is
straightforward to extend the model such that each mixture compo-
nent itself is a mixture of Gaussian distributions. Thus, the states
in the extended SGMM model will contain mixtures of mixtures
of Gaussians, and the interdependence of the top-level mixtures be
accounted.

2.1. Properties of the SGMM-HMM

First, the HMM conditional independence assumption for observa-
tions is implicitly relaxed in the SGMM-HMM. This can be verified
in Fig. 1 through the d-separation rule [3]: the observation variables
are not d-separated by the state sequence due to the connection of
the mixture variables.

The SGMM-HMM may also be portrayed in a state transi-
tion graph as in Fig. 2. The transitions between the states and the
transitions between the corresponding mixture components (or sub-
states) constitute a two-layer diagram, and are synchronized with
each other. At first glance, it appears that the SGMM-HMM can
be converted to an HMM by regarding each state/mixture pair as
an augmented state. The resulting flat HMM has the same model
topology as the lower-layer transition graph in Fig. 2, except that
its transition probabilities are the product of the corresponding state
and mixture transition probabilities in the SGMM model.

However, the SGMM-HMM is different and has several advan-
tages over the flat HMM. First, unlike the flat HMM, the two-layer
structure of the SGMM-HMM enforces the synchronization among
different HMM paths. This extra constraint has great practical im-
portance in modeling. When we learn the model parameters in
the presence of numerous observation sequences, we hope that one
observation sequence might be matched by one such HMM path.
Through synchronization, other less likely paths have to go with

Fig. 2. Example of the two-layer state transition diagram for a 3-
state 2-mixture left-to-right SGMM-HMM. The top layer consists of
a Markov chain, in which each state corresponds to a column of the
mixture components in the lower layer. The transitions between the
mixture components are synchronized with the state transitions. The
initial and final states are non-emitting, and represented by double
circles.

the dominant path, and not to warp themselves to repeatedly match
the current observation sequence. Thus, the synchronization pre-
vents the path repetition problem, which might greatly discount the
modeling power of the multiple-path model.

Second, the two-layer decomposition of the SGMM-HMM re-
tains the essential interpretation of the state transitions, and allows
the manipulation on the mixture transitions with great flexibility. In
particular, the type of the model, such as ergodic or left-to-right, is
decided by the state transition matrix, regardless of the mixture tran-
sitions. This means that we can modify or prune the mixture tran-
sitions at ease, only if the statistical constraint (4) is satisfied. Such
operations pose a challenge to the flat HMM, where arbitrary prun-
ing of the transitions might, for example, cause some states trapped
in a dead loop.

Finally, in many applications of HMMs, it is often of interest to
find the most likely state sequence, excluding the mixture component
sequence. In Section 2.3, we propose a modified Viterbi algorithm to
find the best state sequence through the SGMM model by integrating
out the mixture variables. This choice is infeasible for the flat HMM,
which can only find the best sequence of the augmented states.

The SGMM-HMM contains the multiple-path models as special
cases. If we set the within-state transition matrices to the identity
matrix, it results in a model composed of parallel HMM paths with
cross-coupled connections [8]. Further forcing the cross-state tran-
sition matrices to be a permutation matrix gives rise to a mixture
of separate parallel paths [5], [6]. Since the SGMM-HMM still im-
poses the synchronization between the HMM paths, to be precise,
we should say that the SGMM-HMM can represent parallel and syn-
chronous HMM paths.

2.2. Training Procedure

The parameters of the SGMM-HMM can be learned in an expectation-
maximization (EM) algorithm, similar to the regular HMM. As both
the states and the mixture components are latent variables, we need
to maximize the following EM auxiliary function

Q(Λ̂|Λ) =
∑
sT1

∑
mT

1

p(sT1 ,m
T
1 |xT

1 ,Λ) log p(x
T
1 , s

T
1 ,m

T
1 |Λ̂) (5)

4302



where Λ and Λ̂ denote the existing and new estimates of the model
parameters, respectively. In the E step, the Q function requires find-
ing the following sufficient statistics: the posterior probability of be-
ing in mixture k of state j at time t, γt(j, l); the joint posterior prob-
ability of two successive state/mixture pairs, ξt(i, k, j, l); and the
joint posterior probability of two successive state variables, ζt(i, j),
so that

γt(j, l) = p(st = j,mt = l|xT
1 ,Λ) =

αt(j, l)βt(j, l)

p(xT
1 |Λ)

(6)

ξt(i, k, j, l) = p(st−1 = i,mt−1 = k, st = j,mt = l|xT
1 ,Λ)

=
αt−1(i, k)aijc

(ij)
kl b

(j)
l βt(j, l)

p(xT
1 |Λ)

(7)

ζt(i, j) = p(st−1 = i, st = j|xT
1 ,Λ) =

∑
k

∑
l

ξt(i, k, j, l) (8)

where we have defined the forward and backward probabilities as

αt(j, l) = p(xt
1, st = j,mt = l|Λ) (9)

βt(j, l) = p(xT
t+1|st = j,mt = l,Λ) (10)

The two quantities can be evaluated recursively in the forward-
backward algorithm.

In the M step, differentiating the Q function with respect to the
model parameters and equating them to zero yields

âij =

∑T
t=1 ζt(i, j)∑T

t=1

∑
j ζt(i, j)

(11)

ĉ
(ij)
kl =

∑T
t=1 ξt(i, k, j, l)∑T

t=1

∑
l ξt(i, k, j, l)

(12)

The re-estimation formulae for the Gaussian means and variances
are identical to those for the regular GMM-HMM, and omitted here.

One problem in learning the SGMM-HMM is how to gradually
increase the mixture components to achieve a model with an optimal
performance. In this work, the model is learned in two steps. First, a
standard GMM-HMM is achieved by gradually increasing the num-
ber of the mixtures to the required number; then, the SGMM model
is re-estimated by initializing the mixture transition probabilities to
the weights of the Gaussian mixtures. It is admitted that there may
exist more efficient methods to train the SGMM model. For exam-
ple, we can run some sequential-data clustering algorithm to find a
suitable initialization for multiple HMM paths, then establish con-
nections among these paths for a complete SGMM re-estimation.

2.3. Decoding Algorithm

A direct method to infer the SGMM-HMM is to simultaneously find
the most likely state/mixture pair sequence {sT1 ,mT

1 } for a given
observations sequence. This method may not be optimal, as in most
cases we are only interested in the governing state sequence. Here,
we propose a modified Viterbi algorithm to find the best state se-
quence through the SGMM model. The proposed algorithm embeds
the forward algorithm in the dynamic programming procedure to in-
tegrate out the latent mixture variables. Let δt(j) be the highest
probability of observing the partial sequence xt

1 and being in state j
at time t

δt(j) = max
st−1
1

p(xt
1, st = j) (13)

Fig. 3. WER (%) as a function of the number of mixtures per state
using the SGMM-HMMs on the Aurora 2 test set.

and δt(j, l) = p(xt
1, st = j,mt = l), its associated portion on

each mixture component l. Obviously, we have δt(j) =
∑

l δt(j, l).
The best state sequence for δt(j) can be found using the dynamic
programming

δt(j) = max
i

aij

∑
l

∑
k

δt−1(i, k)c
(ij)
kl b

(j)
l (xt) (14)

It should be noted that the above recursive procedure is an approx-
imate inference, because the maximized quantity δt−1(i) may not
warrant to be the highest after a re-weighted sum of its portions,

as
∑

k δt−1(i, k)c
(ij)
kl in (14). The approximation will be accurate

enough when, as is often the case, the probability δt(j) is dominated
by one or a few of its mixtures.

3. EXPERIMENTS AND RESULTS

The proposed algorithm is evaluated on the Aurora 2 database [9] of
connected digits. The test set consists of three different parts. Test
Set A and Set B each contain 4 types of additive noises, and the data
in Set C are contaminated with 2 types of additive noises as well as
channel distortion. For each noise type, a subset of the clean speech
utterances is contaminated at SNRs ranging from 20 to -5 dB at a
5 dB step size, which, including the clean condition, constitute 7
different SNR levels.

The multi-style training set is used to learn the baseline GMM-
HMM and the SGMM-HMM systems. Following the standard Au-
rora 2 recipe for acoustic model training, each digit is modeled by a
16-state left-to-right HMM, and the silence and the short pause are
modeled by three and one states, respectively. The number of mix-
tures per state for the silence model is roughly 1.5 times the size for
the digit models. Each feature vector consists of 12 mel-cepstral co-
efficients and log energy, and their delta and delta-delta coefficients,
to which cepstral mean subtraction (CMS) are applied in an utter-
ance level. The 20-mixture GMM baseline yields word error rate
(WER) of 8.96% by averaging over SNRs between 20 and 0 dB of
three test sets.

Fig. 3 compares the recognition accuracy of the proposed
SGMM system with the GMM system in different numbers of
mixture components per state. The significant improvements over
the GMM system are observed at all levels of the model complexi-
ties. With more than 6 mixtures, the SGMM system can reduce the
WER by from 8% to 11%.
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Table 1. WER (%) of the 20-mixture SGMM system with various
configurations.

System WER (%)

GMM-HMM 8.96

SGMM-HMM 8.07

With state transitions fixed 8.07
With Gaussian means & variances fixed 8.48

Diagonalizing within-state mixture transitions 8.57
Diagonalizing cross-state mixture transitions 9.70
Diagonalizing both within-state & cross-state 10.92

Fig. 4. Box plots of the ordered outgoing transition probabilities for
the 20-mixture SGMM system. Top 10 transitions for within-state
and cross-state are enclosed, respectively.

The second experiment investigates the 20-mixture SGMM sys-
tem with different configurations, as shown in Table 1. First, the
SGMM yield WER of 8.07%, 10% relative improvement over the
GMM system. To quantify the incremental contribution of differ-
ent model parameters in the course of refining SGMM system based
on the GMM system, we produce two systems by fixing some pa-
rameters to the baseline GMM system, as shown in the third part
of Table 1. We can see that the further refinement of the Gaussian
means and variances is helpful in achieving a good performance for
the SGMM system, whereas refining the state transition probabili-
ties has not effect. This is not unexpected as the Gaussian parame-
ters possess much more discriminating power than others in a GMM
system.

The last part of Table 1 shows the performance of the SGMM
system configured as several multiple-path models. We modify the
mixture transition matrices of the well-trained SGMM system, such
that each row has 1 in one entry and 0 everywhere else. This op-
eration is loosely referred to as diagonalizing. For the within-state
transition matrices, ones are assigned to the main diagonals. For
the cross-state transition matrices, ones are assigned to those entries
with probabilities as high as possible, provided the resulting ma-
trix is a permutation matrix. After diagonalizing the mixture transi-
tion matrices, the re-estimation is then repeated for several times
until convergence. Hence, the first row of the last part of Table
1 represents the system of cross-coupled parallel HMM paths [8],
and the third row for a mixture of separate parallel paths [5], [6].
It is shown that these multiple-path models do not produce higher
recognition accuracy than the SGMM system, and the models whose

cross-state transition matrices are diagonalized perform even worse
than the regular GMM system. This observation may indicate that
the multiple-path models, in a simplistic setup as described in this
paper, over-correct the trajectory folding problem associated with
the GMM-HMM.

Finally, we analyze the distributions of the mixture transition
probabilities for the 20-mixture SGMM system. Usually, the more
peaked the transition probabilities, the more discriminability they
may hold. The outgoing transition probabilities of each mixture are
sorted in a descending order. Then the within-state and cross-state
transitions of all mixtures at separate order levels are pooled, respec-
tively, and their statistics are illustrated with the box plots in Fig. 4.
It is observed that the ordered probabilities decay dramatically along
with the level of orders. In fact, if we place a threshold of 10−5 on
the effective outgoing transitions, the average fan-out will be 4.0 for
within-state, and 5.1 for cross-state, respectively. Moreover, the first
order bar of the within-state transitions, which mainly consists of the
self-loop transitions, is more prominent than the first order bar of the
cross-state transitions.

4. CONCLUSION

We have proposed the SGMM-HMM to explicitly model the rela-
tionship among the mixture components, and achieve more accurate
representation of heterogeneous data. Due to its close similarity to
the GMM-HMM, the SGMM system can be learned starting from an
existing GMM system to achieve an incremental improvement. An-
other advantage is that the SGMM system is less expensive, and can
work readily with many acoustic modeling techniques established in
the literature, like MLLR and HLDA. Our initial experiments on the
Aurora 2 database have showed the significant gain over the standard
GMM system, encouraging further investigation on more challeng-
ing tasks. In the future, we plan to explore more effective methods
to produce the mixture transition matrices with greater sparsity, such
that less computational load and more discriminating power could
both be achieved.
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