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SUMMARY

Database query processing can benefit significantly from parallelism. Parallel database algorithms
combine substantial CPU and I/O activity, memory requirements, and massive data exchange between
processes, all of which must he considered to obtain optimal performance. Since parallel external sorting
is a very typical example, we have focused on sorting to tune Volcano, a new query processing system.
The purpose of the Volcano project is to provide efficient, extensible tools for query and request
processing in novel application domains, particularly in object-oriented and scientific database systems,
and for experimental database performance research. It includes all query processing algorithms conven-
tionally used in relational database systems as well as several new ones, and can execute all of them in
parallel. In this article, we present Volcano’s parallel external sorting algorithm and a sequence of
enhancements to improve its performance. We obtained very good absolute performance, 84 seconds for
100 MB of data, as well as near-linear speedup with sixteen CPUs and disks. Furthermore, these results
were achieved on a shared-memory machine despite the common belief that parallel query processing is
best implemented on distributed-memory systems. We detail our tuning measures and report on their
effectiveness.
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1. INTRODUCTION

Several research and development projects over the last decade have shown that
database query processing can benefit significantly from parallel algorithms, as shown
by several research projects and products. 1,2 The main reasons why parallelism is
relatively easy to exploit in database query processing systems are that (1) query
processing is performed using a tree of operators which can be executed in separate
processes and processors connected with pipelines ( inter -operator parallelism), and
(2) each operator consumes and produces sets which can be partitioned or fragmented
into disjoint subsets to be processed in parallel ( intra -operator parallelism). Both
forms of parallelism require data exchange between processes. For example, in order
to perform a relational join by two processes, one process could join all tuples with
odd join attribute values (from both join inputs) while the other joins tuples with
even join attribute values. If a tree includes multiple operations on different attri-
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butes, data must be repartitioned between operations, even if the same processes
are used for multiple operations.

Parallel query processing algorithms are characterized by their complex combi-
nation of resource needs. While most research on parallel algorithms focuses on
processing and communication, parallel database algorithms also require I/O, prefer-
ably parallel, 3 and usually benefit from large memories. 4’5 For best performance, it
is imperative to balance not only CPU and IPC performance but also I/O bandwidth
and memory allocation.

Sorting is an excellent example for a parallel query processing algorithm. Most
parallel query processing algorithms require significant CPU and I/O activity as well
as massive data exchange between processes. All these elements are present in
sorting; thus, gaining experience with and understanding of the performance of
parallel sorting will help tuning other parallel database algorithms as well. I/O activity
is required not only to read the input and write the final sorted file, but also to write
intermediate sorted runs and to merge them. Input and final output are sequential
as is writing the sorted runs, whereas input for merging is random and requires many
seeks on disk. The CPU activity stems from several sources. The main sources in
most database systems are probably interpretation of predicates, comparisons, hash
functions, etc.; copying data between different work areas and for assembling pages
of intermediate files; concurrency control (latching and locking); and internal table
management, in particular in the buffer manager. The data exchange needs depend
on the original and desired final distribution of data and on the sorting algorithm
itself. In our experiments, we assumed that input data are randomly and evenly
distributed over several disks and that the desired final data must be range-partitioned
(non-overlapping key ranges are assigned one to each disk) and sorted within each
range. Since we assigned one process to each disk, almost all data had to be passed
from one process to another. Finally, it is well-known that external sort performance
improves with memory size: the larger the available memory, the longer the initial
runs and the larger the merge fan-in, i.e. the number of runs that can be combined
into one sorted run in a single step.

Novel database applications demand not only high functionality but also high perform-
ance. To combine these two requirements, the Volcano project provides efficient,
extensible tools for query and request processing in novel application domains, particu-
larly in object-oriented and scientific database systems. The three mainstays of Volcano’s

 6,16 efficient query execution algorithms,performance are a new optimizer generator,
and parallel execution based on a novel ‘parallelism’ operator that allows several forms
of parallel execution in any combination.  7,8 Volcano’s design goals are extensibility,
modularity, performance, effective use of parallelism, and versatility as experimental
platform. For the last goal, we focused on mechanisms to support policies chosen by a
human experimenter or a query optimizer. Volcano includes all query processing
algorithms conventionally used in relational database systems (file and index scans and
maintenance, sort- and hash-based join, semi-join, outer join, intersection, union,
difference, aggregation, and duplicate elimination) as well as several new ones (e.g.,
hash-based relational division or universal quantification, 9 ) and can execute all of them
in parallel. As with any system designed for performance research, we had to spend a
fair amount of effort on tuning. Since only the best sequential algorithms should be
parallelized, we focused on both complementary aspects, i.e., sequential performance
and parallel execution.
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In this article, we present Volcano’s parallel sorting algorithm and a sequence of
performance enhancements that we used to tune parallel sorting on our machine.
This study was initiated because other researchers had preferred ‘shared-nothing’ 10

or distributed memory over shared memory for parallel database machines, e.g.,
Gamma, 1 Bubba, 11 Teradata, 12 and Tandem. 2 Our goal was to explore how or how
far shared memory can be used for parallel database query processing. Using all the
improvements explored in this study, we observed almost linear speedup from 2 to
16 processors and disks, with 84 seconds for 16 processors and disks for sorting a
100 MB file. The tuning efforts resulted in both improved throughput per processor
and disk and improved parallelism speed-up. We believe that the techniques explored
in this article are applicable to a variety of other algorithms within Volcano as well
as to other query processing systems.

Several improvements were not obvious to us at the beginning; therefore, we
guide the reader through our tuning study step by step in the same way we explored
it. In the next section, we present an overview of the Volcano query processing
software and its sort algorithms. Section  3 describes the hardware platform, the
benchmark workload, and the initial performance measurements. In Sections 4 to
6, we present the tuning modifications and report on their effectiveness. In Section
7, we summarize the study and present our conclusions.

2. OVERVIEW OF VOLCANO

In this section, we provide a brief overview of Volcano. Most of the design has been
described elsewhere, 7–9,13’14 and is provided here to show Volcano’s similarity to the
query execution mechanisms of existing database systems. This similarity ensures
that the experiences and conclusions reported here are applicable to other systems
as well.

At the current time, Volcano is a query execution engine only—it does not include
a high-level user interface, a data model, a schema, or a query optimizer. It was
designed and implemented as a research tool for query processing algorithms and
strategies. As such, it provides mechanisms from which an experimenter can choose.
Very soon we will also provide a query optimizer that embeds and determines
policies. Building on earlier experience, 15 we are currently designing a new optimizer
generator for Volcano. 6,16

Most of Volcano’s file system is rather conventional. It provides data files, scans
with predicates, and B+-tree indices. The unit of I/O and buffering, called a cluster
in Volcano, is set for each file individually when it is created. Files with different
cluster sizes can reside on the same device. Volcano uses its own buffer manager
and bypasses operating system buffering by using raw devices.

Queries are expressed as complex algebra expressions; the operators of this algebra
are query processing algorithms. All algebra operators are implemented as iterators,
i.e., they support a simple open–next–close protocol similar to conventional file scans.
Calling open on a Volcano iterator prepares the iterator to produce data. The next
operation returns exactly one data item or an end-of-stream error. It is meant to be
called repeatedly until this error is returned. The close operation performs final
house-keeping tasks such as deallocating a hash table.
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Associated with each algorithm is a state record. The arguments for the algorithms,
e.g. a hash table size or a predicate evaluation function, are kept in the state record.
All operations on records, e.g. comparisons and hashing, are performed by support
functions which are given in the state records as arguments to the iterators, allowing
the query processing modules to be implemented without knowledge of or constraint
on the internal structure of data objects. Support functions are compiled prior to
execution and passed to the processing algorithms by means of pointers to the
function entry points, although mechanisms to use an interpreter are also provided.

In complex queries or algebra expressions, state records are linked together by
means of input pointers. All state information for an iterator is kept in its state
record; thus, an algorithm may be used many times in a query by including more
than one state record in the query. The input pointers are also kept in the state
records. An input is represented by a structure that consists of four pointers to the
entry points of the three procedures implementing the operator (the open, next, and
close procedures) and a state record. Because an operator invokes its input by means
of function pointers, an operator does not need to know what kind of operator
produces its input, and whether its input comes from a complex query tree or from
a simple file scan. We call this concept anonymous inputs or streams. Streams are
a simple but powerful abstraction that allows combining any number of operators
to evaluate a complex query. Together with the iterator control paradigm, streams
represent the most efficient execution model in terms of time and space for single
process query evaluation. They have been used in numerous relational database
systems such as System R, SQL/DS, DB2, Ingres, Informix, and Oracle, as well as
in the E database implementation language  17’ l8 and the algebraic query evaluation
system of the Starburst extensible relational database system.  19’20

The tree-structured query evaluation plan is used to execute queries by demand-
driven dataflow. The return value of next is a structure called NEXT_RECORD which
consists of a record identifier and a record address in the buffer pool. This record
is pinned in the buffer. The protocol for fixing and unfixing records is as follows.
Each record pinned in the buffer is owned by exactly one operator at any point in
time. After receiving a record, the operator can retain it for a while (e.g. in a hash
table or while quicksorting a pointer array), unfix it (e.g., when a predicate fails),
or pass it on to the next operator. Complex operations such as join that create new
records have to fix them in the buffer before passing them on, and have to unfix
their input records.

This protocol of fixing records combines two important advantages over mechan-
isms used in several commercial systems that copy data out of the I/O buffer and
use a ‘data transfer area’ between any two operators. First, Volcano’s procedure
permits transfer of records between operators entirely without copying. This is a
significant consideration, in particular on a shared-memory machine with a single
bus. Second, the protocol is flexible enough for individual records to pass or fail
predicates in subsequent operators.

The concept of anonymous inputs, i.e., each operator using a function pointer to
invoke its input operator(s), is commonly used in database query processing systems.
In Volcano, it was exploited further by the design and implementation of a ‘parallel-
ization’ operator that interfaces with all other operators and encapsulates all parallel-
ism issues. 7 This module is described in the next section.
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2.1. Multi-processor query evaluation

When we considered exploiting multi-processors with Volcano, we decided that it
would be desirable to use the query processing code without any change. The result
is very clean, self-scheduling parallel processing. The module responsible for parallel
execution and synchronization is the exchange iterator. Since it is an iterator with
open, next, and close procedures, it can be inserted at any one place or at multiple
places in a complex query tree.

The first function of exchange is to provide vertical parallelism or pipelining
between processes. The open procedure creates a new process after creating a data
structure in shared memory called a port for synchronization and data exchange.
The child process, created using the UNIX fork system call, is an exact duplicate of
the parent process. The exchange operator now takes different paths in the parent
and child processes.

The parent process serves as the consumer and the child process as the producer
in Volcano. The exchange operator in the consumer process acts as a normal iterator,
the only difference to other iterators is that it receives its input via inter-process
communication. After creating the child process, open_exchange in the consumer is
done. Next_exchange waits for data to arrive via the port and returns them a record
at a time. Close_exchange informs the producer that it may close, waits for an
acknowledgement, and returns.

The exchange operator in the producer process becomes the driver for the query
tree below the exchange operator invoking open, next, and close on its input. The
output of next is collected in packets of NEXT_RECORD structures. When a packet is
filled, it is inserted into the port and a semaphore is used to inform the consumer
about the new packet. The last packet is marked with an end-of-stream tag to inform
the consumer that no more input is available.

While all other modules are based on demand-driven dataflow (iterators, lazy
evaluation), the producer-consumer relationship within the exchange operator uses
data-driven dataflow (eager evaluation). If the producers are significantly faster than
the consumers, they may pin a significant portion of the buffer, thus impeding overall
system performance. A run-time switch of exchange enables flow control or back
pressure using an additional semaphore, If flow control is enabled, after a producer
has inserted a new packet into the port, it must request the flow control semaphore.
After a consumer has removed a packet from the port, it releases the flow control
semaphore. The initial value of the flow control semaphore, e.g., 4, determines how
many packets the producers may get ahead of the consumers.

There are two forms of horizontal parallelism which we call bushy parallelism and
intra-operator parallelism. In bushy parallelism, different CPUs execute different
subtrees of a complex query tree. Bushy parallelism and vertical parallelism are
forms of inter-operator parallelism. Intra-operator parallelism means that several
CPUs perform the same operator on different subsets of a stored dataset or an
intermediate result.

Bushy parallelism can easily be implemented by inserting one or two exchange
operators into a query tree. Intra-operator parallelism requires data partitioning.
Partitioning of stored datasets is achieved by using multiple files, preferably on
different devices. Partitioning of intermediate results is implemented by including
multiple queues in a port. If there are multiple consumer processes, each uses its
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own queue. The producers use a support function to decide which of the queues (or
actually, which of the packets being filled by the producer) an output record has to
go to. Using a support function allows implementing round-robin, key range, or
hash partitioning.

Clearly, the file system required some modifications to serve several processes
concurrently. In order to restrict the extent of such modifications, Volcano currently
does not include protection of files and records other than the volume table of
contents. Furthermore, typically non-repetitive actions like mount must be invoked
by the query root process before or after a query is evaluated by multiple processes.

The most difficult changes were required for the buffer module. While we could
have used one exclusive lock as in the memory module, decreased concurrency would
have removed most or all advantages of parallel algorithms. Therefore, the buffer
uses a two-level scheme. There is a lock for each buffer pool and one for each
descriptor (cluster in the buffer). The buffer pool lock must be held while searching
or updating the hash tables and bucket chains. It is never held while doing I/O;
thus, it is never held for a long period of time. A descriptor or cluster lock must be
held while updating a descriptor in the buffer, e.g., to decrease its fix count, or
while doing I/O.

2.2. Volcano’s sort algorithm

Sorting contributes probably more to the cost of database query processing than
any other algorithm. Sorting can be required for two reasons. First, a user request
may state explicitly that the result data be returned in a particular sort order, e.g.,
using the SQL ORDER BY clause. Second, several query processing algorithms, in
particular for join and aggregation, require sorted input data. 21’22 Although equival-
ent hash-based algorithms are commonly regarded as more efficient, there are cases
in which sort-based algorithms outperform hash-based algorithms, in particular in
complex queries that permit exploiting interesting orderings.  23’24

External sorting is known to be an expensive operation, and many sorting algor-
ithms have been devised; most relevant techniques have been described by Knuth . 25

For Volcano, we needed a simple, robust, and efficient algorithm. Therefore, we
opted for quicksort in main memory with subsequent merging. The initial runs are
as large as the sort space in memory. Initial runs are also called level-0 runs. When
several level-0 runs are merged, the output is called a level-1 run. The sort module
does not impose a limit on the size of the sort space, the fan-in of the merge phase
or the number of merge levels in Volcano.

In order to ensure that the sort module interfaces well with the other operators
in Volcano, e.g., file scan or merge join, we had to implement it as an iterator, i.e.,
with open, next, and close procedures. Most of the sort work is done during open.
This procedure consumes the entire input and leaves appropriate data structures for
next to produce the final, sorted output. If the entire input fits into the sort space
in main memory, open leaves a sorted array of pointers to records in the buffer
which is used by next to produce the records in sorted order. If the input is larger
than main memory, the open procedure creates sorted runs and merges them until
only one final merge step is left, i.e., the number of runs is less than or equal to
the maximal fan-in. The last merge step is performed in the next procedure, i.e.,
when demanded by the consumer of the sorted stream. Similarly, the input to
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Volcano’s sort module must be an iterator, and sort uses open, next, and close
procedures to request its input.

2.3. Volcano’s parallel sort algorithms

Much work has been dedicated to parallel sorting, but only a few algorithms have
been implemented in database settings, i.e., where the total amount of data is a
large multiple of the total amount of main memory in the system. Most algorithms
are variants of the well-known merge-sort technique and require a final centralized
merge step. 26–29 In a highly parallel architecture, any centralized component that
has to process all data is bound to be a severe bottleneck.

Most recent investigations of parallel sorting focussed on load-balancing
issues  30–33 In this paper, we assume that sufficiently accurate quantiles for partition-
ing and therefore load balancing are available, e.g., based on sampling techniques. 34

We have described our algorithm in detail in, 14 so we only provide an overview
here.

Volcano’s preferred sort method starts by exchanging data based on logical keys. 14

Provided a sufficiently fast network in the first step, all data exchange can be done
in parallel with no node depending on a single node for input values. First, all sites
with data redistribute the data to all sites where the sorted data will reside. Second,
all sites that have received data sort them locally. This algorithm does not contain
a centralized bottleneck, but it creates a new problem. The local sort effort is
determined by the amount of data to be sorted locally. To achieve high parallelism
in the local sort phase, it is imperative that the amount of data be balanced among
the receiving processors. The amount of data at each receiving site is determined by
the range of key values that the site is to receive and sort locally, and the number
of data items with keys in this range. In order to balance the local sorting load, it
is necessary to estimate the quantiles of the keys at all sites prior to the redistribution
step. Quantiles are key values that are larger than a certain fraction of key values
in the distribution, e.g., the median is the 50 per cent or 0.5 quantile. * For load
balancing among N processors, the i/N quantiles for i = 1, . . . . N – 1 need to be
determined, e.g., by sampling. 34

This sorting method, data exchange followed by local sorts, can readily be
implemented using the methods and modules described so far, namely the exchange
module and the sort iterator. In fact, since the exchange iterator has been modified
for distributed-memory and hierarchical-memory machines, Volcano’s sort iterator
can also be used on these architectures and presumably scaled to very high degrees
of parallelism.

3. ENVIRONMENT, WORKLOAD, AND INITIAL PERFORMANCE

3.1. Hardware and operating system environment

In order to explore shared-memory query processing, we used a Sequent Symmetry
machine, which is a bus-based shared-memory multiprocessor that can contain from

* If the distribution is skewed, the mean and the median can differ significantly. Consider the sequence 1,1,1,2,
10,10,10. The mean is 35/7 = 5, whereas the median is 2.
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two to thirty CPUs.
 35 Each processor subsystem contains a 32-bit microprocessor, a

floating point unit, and a private cache. The system features a 53 MB/s pipelined
system bus, up to 240 MB of main memory, and a diagnostic and console processor.
A Symmetry can support five dual-channel disk controllers (DCCs), with up to 8 disks
per channel. Each channel can transfer at 1·8MB/s. Earlier experiments exhibited
performance impairment if the I/O transfer load is very high and more than 2 disks
are attached to a single channel, in particular if sequential I/O dominates.

A Symmetry Model B system with 16 MHz Intel 80386/80387 processors delivering
about 4 MIPS per CPU* was used for this study. In this system, each CPU has a
private 64 KB local cache supporting a copyback cache coherence protocol. The
cache coherence protocol is based on the concept of ownership. To perform a write
operation, a cache has to perform first an exclusive read operation on the bus
(assuming a cache miss) to gain ownership of the block. Only then can the block be
updated in the cache. Thus, if another cache holds the block in modified state, it
has to respond to the exclusive read request and invalidate its copy.

Hardware synchronization on the Symmetry model uses cache-based locks. The
locks are also ownership based. A locked read from a processor is treated like a
write operation by the cache controller. The cache controller performs an exclusive
read operation on the bus (assuming a cache miss) to gain ownership of the block.
The atomic operation is then completed in the cache. These locks are optimized for
multi-user systems where locks are lightly contended and the critical sections are
short. They do not work very well in some parallel applications in which locks are
heavily contended, and other software synchronization schemes can be used to
reduce contention for the hardware locks . 36

The DYNIX operating system is a parallel version of UNIX implemented by
Sequent for its Balance and Symmetry machines. It provides all services of AT&T
System V UNIX as well as Berkeley 4.2 BSD UNIX.

3.2. Work load and system configuration
As our workload, we used a file with 1,000,000 records of 100 bytes. Sorting this

file is one of the three work loads suggested by Gray et al. 37 because it allows
measuring a system’s internal performance independently of the application and the
application interface. When the measurements start, the input records are partitioned
randomly but evenly over all disks, and the buffer is empty. The measurement stops
after all records have been written to disk, range-partitioned and sorted within each
range. In range partitioning, the key domain is split into disjoint ranges and each
disk drive has one subset assigned to it.

The experimental system was equipped with 10 CPU boards (20 CPUs), 5 DCCs
(10 channels), and 20 disks, 2 disks on each channel. One of the DCCs and its disks
were used for DYNIX file systems. In order to measure only comparable numbers,
we used only the other four DCCs in the experiments reported here. These 16 disks
were opened in raw mode, i.e., DYNIX did not provide buffering, read-ahead, or
write-behind for these disks. Of the 96 MB physical memory available in the system,
about 15 per cent were used by the operating system for code, internal tables, and
file system I/O buffer space.

* Since we performed this study, faster CPUs have become available. However, the absolute hardware speeds
and sizes do not affect the concepts and ideas explored in this tuning study.
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In our experiments, we allocated 12 MB of sort space within 15 MB of I/O buffer
space. For other tables (e.g. state records and the arrays used in quicksort) and to
prevent failure due to memory fragmentation, we allocated another 15 MB, just to
be safe. This space was allocated in a shared memory segment; in other words, it
was allocated only once independently of how many processes or processors were
used. Volcano’s page size was set to 4 KB, and the cluster size was set to one page.

3.3. Initial performance measurements

Throughout our experiments, we used the same number of processes as disks.
While we observed some performance improvements in earlier experiments using
more processes than disks, eliminating one variable makes the sequence of perform-
ance measurements reported here more readable. Furthermore, we were particularly
interested in exploiting parallel I/O capabilities, and in achieving speedup linear with
the I/O capability of the system.

Figure 1 shows the initial measurements taken with our system. The time measure-
ments are shown using a solid line and refer to the labels on the left. The speedups
are shown with a dashed line and refer to the labels on the right. The ideal speedup
is also shown by the dotted line.

The performance did indeed improve as additional resources were committed to
the problem. The performance improvement from 2 to 8 disks was good, reasonably
close to linear, although not as close as we had hoped. The parallel efficiency can
be calculated as (2 × 1346 s)/(8 × 379 s) = 88·78 per cent. However, there seemed
to be a barrier of 300 seconds (5 minutes), which this software or hardware could
not break. Since this is rather undesirable, we considered and measured several
modifications.

4. DATA ACCESS IMPROVEMENTS

In this section, we report on three directions to improve data access performance.
For disk access, a first thought is to cluster pages of a file to eliminate seeks during
file scans. Unfortunately (or fortunately), Volcano already clusters data in contiguous
disk space. In our experiments, the unit of space allocation was 4 MB of contiguous

Figure 1. Initial measurements
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disk space. Another method to improve disk bandwidth is to increase the unit of
I/O. If more data is transferred with each operation, total I/O initialization, seek,
and latency costs are reduced.

Because memory accesses on word or cache line tends to be faster than unaligned
access, packing records densely on pages might not align records in an optimal way.
Thus, ‘padding’ might be introduced to improve memory access speed. The sensible
alignment choices for our system are unaligned, dense record layout to minimize
storage requirements; 4-byte alignment according to CPU word boundaries; or 16-
byte alignment to ensure that record boundaries coincide with cache line boundaries.

In order to avoid I/O operations, it may be beneficial to increase the buffer size.
In general, fewer I/O and improved performance will result. While this makes sense
in general, it does not pay off in our situation, as will be explained below. In this
section, we report the effects of changing the I/O cluster size, of aligning records
(and comparison keys), and of increasing the buffer size.

4.1. Increasing the unit of I/O and buffering

Volcano is designed to support units of I/O larger than single pages. Such units,
called clusters, can be any multiple of a page. All requests to the buffer and I/O
managers are in terms of clusters. When a new cluster is requested, the buffer
manager removes clusters from the bottom of its LRU* list and deallocates their
memory until the required new cluster will fit into the preset buffer size, and then
allocates an appropriate segment of memory for the new cluster. The buffer manager
does not shuffle data; rather, it calls on the memory manager to find a suitable
contiguous segment in memory. For these experiments, the page size was compiled
to be 4 KB.

Figure 2 shows the effects of increasing the cluster size. When compared to the
initial measurements, there was a definite improvement, both for 8 disks and for 16
disks. However, while there seemed to be a limit of 300 seconds for 4 KB clusters,

Figure 2. Increased cluster sizes

* L  east -R ecently -U sed is a simple and widely used (though not always optimal) buffer replacement algorithm;
see Reference 38 for a survey of database buffer management techniques. Volcano’s buffer manager augments LRU
with hints to keep a page in its LRU list or to toss it immediately, similarly to IBM’s Starburst.  20
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there seemed to be a similar limit at about 240 seconds (4 minutes) for larger clusters.
Increased cluster sizes, while helpful, did not provide a performance breakthrough
nor did they solve the problem why the parallelism speedup is far from linear. In
all runs reported below, the cluster size was set to 32 KB.

4.2. Record alignment

We realized that another area for improvement was the alignment of records and
sort keys in memory and on disk pages. Record alignment has two effects in database
systems. On the positive side, aligning records (and in particular comparison keys
within records) on word boundaries will ensure faster access by our CPUs, which
use 32-bit words. While the CPUs can perform non-aligned access, aligned access is
faster. Similarly, aligning records on cache line boundaries ensures that the same
cache line is never held by two CPUs and their caches simultaneously, and may thus
contribute to better caching of records. On the negative side, aligning records
requires padding. Even if the data volume does not change, the number of records
per cluster changes, thus requiring more clusters to be moved from and to disk.

We tried three alignment boundaries. Single-byte alignment stands for densely
packed records, 4-byte alignment was chosen to conform with the machine’s word
size, and 16 bytes were chosen to observe differences in the cache performance if
data were aligned according to cache lines. The results in Figure 3 do not show
appreciable performance effects, meaning that the positive and negative effects of
alignment just about cancelled out in these measurements. Since we intended to
study cache performance later on, records were aligned to 16-bytes boundaries in
all runs reported below.

4.3. Increasing the buffer size

It is well-known that sort performance is a function of the memory size allocated
for sorting. Therefore, we experimented with smaller and larger buffer sizes. In

Figure 3. Record alignment
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Table I we show the performance for a larger buffer size. Instead of 12 MB sort
space, 3 MB additional I/O buffer space, and 15 MB work space administered by
Volcano’s memory module, we measured the performance for twice the amount of
memory.

Interestingly, we observed a small performance degradation, by about 1 or 2 per
cent. The explanation can be found in two considerations. First, the increase in
buffer size did not reduce the number of merge levels. With 8 MB or more of sort
space, only a single merge level is required for 100 MB of data. To avoid merging
altogether, 100 MB (the file size) of sort buffer space would be required. Thus, the
increase in buffer size did not reduce the number of I/O operations. This confirms
Sacco and Schkolnik’s observations of discontinuities in the cost functions of database
query processing algorithms which led to the design of the hot-set buffer management
model . 39 Second, additional sort space requires more management of tables, both
internally in Volcano, e.g., when sweeping the hash table during a buffer flush, and
externally in the operating system, in particular while forking new processes.

In light of the negligible impact, we left the space allocation at 12 MB sort space,
3 MB additional I/O buffer space, and 15 MB work space.

5. ALLEVIATING CONTENTION IN THE BUFFER MANAGER

At this point, we suspected that Volcano’s buffer manager was the source of the
problem. The buffer manager was invoked each time a record was unfixed, i.e.,
when an operator was done with an input record but did not pass it to the next
operator. In our implementation, the buffer manager was called 3,000,000 times for
this purpose: once for each record by the filter operator that collected records of one
partition, once by the sort operator when it had appended a record to a run file,
and once by the query processing driver for each record in the sorted output.

During a buffer manager operation, several data structures must be accessed and
therefore protected against concurrent updates. In particular, the ‘pool lock’ must
be held while searching or updating the hash tables used to find clusters in the
buffer. We instrumented the buffer manager to collect timing information when the
buffer pool was locked or a process waited to acquire the buffer pool lock.

Figure 4 shows some statistics about utilization and contention of the buffer pool
lock. The dashed lines and the scale on the right indicate the time each process
holds or waits for the buffer pool lock, shown as fraction of elapsed time and
averaged over all processes. With a constant workload, the total lock hold time is
constant and the amount of time each process needs to hold the buffer pool lock is
inversely proportional to the number of processes. Since the speedup was not linear,
the elapsed time was not inversely proportional to the number of processes, and the
fraction of time during which each process held the lock decreases. The waiting

Table I. Increased buffer size

Sort buffer (MBytes) 8 disks time (s) 16 disks time (s)

12, 3, 15 258·31 242·62
24, 6, 30 261·364 247·25
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Figure 4. Initial measurements, including buffer statistics

time, on the other hand, increased dramatically as the degree of parallelism increases,
and a relief had to be found to obtain better performance.

Figure 4 also explains the performance barrier observed in the initial measurements
( Figure 1 ). Since all buffer operations combined required the pool lock between 150
and 180 seconds, no amount of parallelism could improve the performance beyond
this elapsed time.

In this section, we consider two possible relief measures. First, we used multiple
buffer pools, thus creating multiple buffer pool locks. Second, we introduced a more
sophisticated scheme that reduced the number of buffer manager invocations.

5.1. Multiple buffer pools

Since Volcano was designed to support multiple pools, a simple change of a
compile time constant was all that was required to explore the performance effects
of multiple buffer pools. The policy function that assigned devices to buffer pools
calculated the device number modulo the total number of buffer pools.

Figure 5 shows the times observed with 1 to 16 buffer pools. The effects of multiple

Figure 5. Multiple buffer pools
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buffer pools are quite impressive, both in the decrease of elapsed time and of lock
waiting time; it seemed that the ‘log jam’ had been broken. Both lock wait time and
elapsed time were reduced substantially, while the lock holding time remained
basically constant (the fraction of time during which the lock is held increases as the
elapsed time decreases).

However, running a database system with multiple buffer pools, in particular as
many as 16 or even more in larger systems, has a very undesirable side-effect. In
general, processing loads are not spread as evenly as in our experiments, and the
buffer contention may vary widely between buffer pools. In the extreme, some of
the buffer pools might be thrashing while other ones retain stale data. Furthermore,
as seen in the slight increase of elapsed time from 8 to 16 buffer pools in Figure 5,
there is some of this effect for even loads. For a real system, it seems that a large
number of buffer pools is not realistic. Therefore, we looked for an alternative
solution.

5.2. Grouping buffer calls

Instead of spreading the load over multiple pools, we considered ways to reduce
the load. Consider the sequence of buffer unfix operations that are performed, for
example by the query driver in each process. If records of one cluster are processed
sequentially, consecutive unfix operations pertain to the same cluster. For example,
if N records from one cluster are passed from a query tree to the driver and the
driver calls the buffer manager for each record, the buffer manager’s fix count for
the cluster is originally N and is decremented by one in each call. The last of the N
calls reduces the fix count to zero, which allows the buffer manager to place the
cluster on the free list and eventually replace it in the buffer pool. The first N -1
buffer manager calls have no effect on buffer contention or replacement options,
and there is no harm in delaying them. Thus, we considered grouping all these N
calls and calling the buffer manager only once with an additional parameter N. In
the modified scheme, unfix operations referring to the same cluster are gathered
and the buffer manager is invoked much less frequently, i.e., only when consecutive
records do not belong to the same cluster.

It is important that these references be gathered in space private to the process,
not in a shared memory segment, to ensure that no concurrency control is needed.
In addition, the comparison function that determines whether or not two consecutive
records belong to the same cluster must be faster than a hash table lookup in the
buffer manager, which requires a hash calculation and possibly many comparisons.

Notice that grouping buffer manager calls has an inherent limitation. In the best
case, all records from one file are passed to one operator, which unfixes all of them
in the buffer. If some records are removed from a stream using some predicate,
however, two operators perform unfixing operations, and the buffer manager is
called twice for each cluster. Similarly, if a stream (and also the set of records from
one cluster) is partitioned and forwarded to multiple consumer processes, the buffer
manager is invoked once for each cluster by each consumer. However, this situation
is still preferable over unfixing individual records as well as over copying data.

Volcano always used the idea of invoking the buffer manager once for a cluster’s
load of records when fixing records. In a file scan, for example, a cluster is fixed
immediately after reading it from disk with the fix count equal to the number of
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record slots. As records are passed from the file scan to the requesting iterator, a
counter called ‘over-fixed’ is decremented in the scan descriptor. Obviously, it is
easier to implement and exploit this idea in a stream-originating iterator such as file
scan (where clusters and cluster boundaries can easily be made visible) than in a
consumer iterator with its algorithmic control flow focussed on records. The unmodi-
fied version of the sort iterator, for example, fixed its output records one cluster at
a time but unfixed its input one record at a time.

Gathering and unfixing records received by an iterator were implemented both by
a procedure that performs the gathering function for all iterators (in space private
to the iterator, of course) or by an equivalent macro because macro implementation
of very frequently used functions such as lock requests is very common in commercial
database systems.

In the case that input records originate from multiple sources, e.g., the output of
a merge iterator, 14 the gathering idea will not work. To provide efficient support for
this situation, we implemented procedure and macro in such a way that they can
work with a small hash table. The buffer manager is invoked to unfix a hash table
entry when a hash collisions occurs, and the old hash table entry is overwritten.
While this alternative is more expensive than the single-entry version, it is not as
expensive as invoking the buffer manager for each record.

Table II shows the times measured for five unfixing schemes. The ‘Total lock’
columns indicate the amount of time the buffer pool lock was held by some process;
the ‘Total wait’ columns indicate the sum of all waiting times for the buffer pool
lock by all processes. Note that these two times reflect the sum over all processes.
For the group unfixing schemes, the size of the hash table is given. All times were
measured with a single buffer pool. The first row shows results for the original,
‘simple’ scheme in which the buffer manager is invoked to unfix each record. When
the simple scheme was replaced by the ‘group’ scheme, the performance improved
dramatically. This improvement can be seen in the lock holding times (reflecting
fewer buffer invocations) and, even more so, in the waiting times for the buffer pool
lock. Whether the group scheme is implemented as a procedure or as a macro does
not make much difference. Similarly, whether the records are gathered with a single
entry or a small hash table had only very little effect in these experiments. The
differences between the individual group schemes are minimal and easily explained.
Macros are a little faster than procedures, and because the multiple entries do not
provide any benefit in this particular experiment, they do not improve performance
here. The performance is slightly less since multiple entries have a higher compu-
tation cost for the hash function. More importantly, perhaps, is that they may

Table II. Alternative record unfixing schemes

Unfix scheme Time, s 8 disks Total wait, s Time, s 16 disks Total wait, s
Total lock, s Total lock, s

simple 258·31 120 452 242.62 130 2062
procedure [1] 168·00 7·260 0·738 93.69 9·725 3·168
macro [1] 166·10 7·418 0·687 90.34 9·690 3·168
macro [4] 170·78 7·241 0·732 91.07 9·337 2·955
macro [16] 171·76 7·485 0·642 91.57 9·985 3·219
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increase buffer contention because clusters that should be completely unfixed remain
in some group-unfix hash table, thus increasing both search time in the buffer tables
and I/O of buffer pages.

The group unfixing schemes work, best with large clusters because large clusters
contain more records. On the other hand, the effect of group unfixing is reduced if
data are repartitioned between operations because each receiving process receives
only some of the records of each input cluster. The higher number of buffer manager
calls for 16 compared to 8 processors can be seen in the higher total lock time in
Table II. In principle, if input records can come from multiple sources, it is unlikely
that consecutive records are in the same cluster. However, since Volcano’s exchange
operator groups records into packets before transferring them to another process,
some of the grouping effect is retained.

5.3. Grouping buffer calls and multiple buffer pools

Seeing the success of both of these techniques to reduce buffer contention, we
considered combining them. Table III shows the result for multiple buffer pools
using the macro[l] group-unfixing scheme. Two buffer pools showed some improve-
ment over a single pool—in fact these were the first runs below 1½ minutes—but it
is obvious that the bulk of the improvements came from the improved unfixing
technique. In all runs reported below, the macro [1] group unfixing mechanism was
combined with two buffer pools.

6. HARDWARE-ORIENTED ENHANCEMENTS

The Symmetry system has a built-in performance monitoring capability, which allows
system designers and users to observe the performance of the system hardware for
different applications. This tool has become very useful for monitoring contention
for hardware resources, and for designing and evaluating software modifications. In
this section, we describe some of the improvements considered as a result of observ-
ing the behavior of this application using the hardware monitor.

When we observed bus activity during our sort runs using a bus monitor, we found
that the different phases in the sort and exchange code are reflected in the patterns
of bus activity. Therefore, we tried to identify hot spots of bus activity and alleviate
the problems by suitably modifyingVolcano’s software.The contention for the buffer
manager was first observed in the hardware, and we identified the buffer pool lock
as a ‘hot lock’ in Volcano. As a result, the two enhancements reported above were
explored.

Table III. Grouping buffer calls and multiple buffer pools

Buffer Time, s 8 disks Total wait, s Time, s 16 disks Total wait, s
pools Total lock, s Total lock, s

1 166·10 7·418 0·687 90·34 9·690 3·000
2 169·03 7·410 0·233 89·96 9·651 1·091
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6.1. Staggering buffer flushes

Using the bus monitor, we found a significant peak in bus contention at the
beginning of buffer flushing. We suspected that this occurred when all processes had
finished sorting and requested the buffer pool locks to gain access to the hash tables
for buffer flushing. Recall that processes terminate at very much the same time,
namely when the last process sends a packet with the end-of-stream tag.

The spin locks we used during these experiments are quite simple, using a single
byte of shared memory. In the case of very high lock request traffic, the hardware
negotiation for the exclusive ownership of this lock byte is relatively slow. In order
to alleviate such lock contention, we artificially delayed processes when they entered
the flush phase. Figure 6 shows the effect of such delays. Each process was delayed
by the time shown in the table multiplied with its process number (0-15). Thus, the
largest delay in the table is 15 × 4 ms = 60 ms.

Figure 6 shows that even minimal delays make a difference. In fact, we observed
even smaller delays than shown in Figure 6 to make a difference, although not a
systematic one. Longer delays did not increase the improvement, largely because
bus contention was almost entirely removed once lock requests were staggered
sufficiently to allow one process to acquire the lock before the next request on the
bus. On the other hand, even the longest delays in Figure 6 are so small that they
have hardly any effect on the elapsed times. In the following experiments, we used
2 ms delays.

6.2. Process-to-processor affinity

CPU caches were invented and are used in modern computer systems because
they can result in substantial performance improvements if the fault rate can be k
low. If processes are scheduled in their previous CPU after a preemption or an I/O,
cache loading time (i.e., many cache faults) after rescheduling a process can be
reduced or eliminated. In DYNIX, processes can be firmly bound to CPUs using
the affinity system call, which had been used very effectively to improve transaction
processing (OLTP) performance on our hardware.

Since affinity in DYNIX is a firm assignment, i.e., the process cannot run in any
other CPU that the one it has an affinity to, it requires the application to perform
load balancing among the processors in the system. In our situation where both
problem and processing are very symmetrical, load balancing did not seem to be a

Figure 6. Staggering buffer flushes
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Table IV. Processor affinity

Alignment 8 disks 16 disks
Time, s

Off 164·46 88·86
On 163·34 88·09

major problem. In general, however, we suggest making process ‘sticky’, i.e., aug-
menting the CPU scheduler with a heuristic to increase the probability that a process
is assigned repeatedly to the same CPU and cache but at the same time permitting
the operating system to assign a process to a different CPU if the processing loads
become very unbalanced.

In Table IV, we show the performance of our sort program with and without
affinity. As can be seen, affinity did not have a major impact on the elapsed sort
times. We suspect, however, that the impact would have been larger if the number
of processes had exceeded the number of processors, and most context switches had
occurred due to time slicing rather than due to I/O as in our experiments. In the
remaining experiments, affinity was enabled.

6.3. Revisiting record alignment

When looking for further improvements, we revisited the decision to use 16-byte
alignment. After all, aligning 100-byte records to 16-byte boundaries requires 12
bytes of padding per record. In other words, all I/O operations had to transfer 12
per cent additional data bytes. Expressed differently, we hoped to save 12 per cent
I/O by not padding 12 bytes to each 100-byte record, and expected that the savings
would offset the loss in memory and cache access performance.

Table V shows that this is indeed the case. For all degrees of parallelism, 4-byte
alignment significantly outperforms 16-byte alignment. While we did not realize 12
per cent, the average improvement was close to 5 per cent, indicating that fragmen-
tation and cache alignment had competing effects on performance.

7. SUMMARY AND CONCLUSIONS

In this article, we have considered a number of performance improvements to the
Volcano query execution software, and explored their effects on parallel sorting. In
light of the original time for 16 processors and 16 disks above 5 minutes, a final

Table V. Final performance measurements

Alignment, 2 disks, s 4 disks, s 8 disks, s 12 disks, s 16 disks, s
bytes

16 663·32 327·56 163·34 111·96 88·09
4 623·42 31O·8O 158·12 106·26 83·66
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result of less than 1½ minutes represents a substantial improvement. The sorting
throughput improved from 323 KB/s to over 1·1 MB/s. As each data item was moved
from or to disk four times and sixteen disks were used, the disk bandwidth utilization
was 4 × 100 MB/83·66 s/16/l·8 MB/s = 16·6 per cent, which is a satisfactory result
considering that our cluster size did not coincide with the disks’ track size and that
½ of all I/O (input and output during merging) was random I/O with many disk arm
movements. Since each data item had to travel over the system bus at least seven
times (two times from disk to memory to cache to disk plus process-to-process data
exchange of almost all data), the bus bandwidth of 53 MB/s was used to 7 × 100
MB/83·66 s/53 MB/s = 15·8 per cent by actual and necessary data transfer, with
additional bus usage for instruction transfer and process synchronization. Further-
more, our second goal of linear speedup was almost attained. To verify this, we
calculated the parallel efficiency as (2 × 623·42 s)/(16 × 83·66 s) = 93·15 per cent.

The best performance for parallel sorting has recently been obtained by DeWitt
et al. using the Gamma database machine. 30 Using 30 processors and disks and a
hypercube interconnection network, they observed around 57 seconds clasped time
for sorting 100 MB of data. The processors and disks used in Gamma and Volcano
were very similar (Intel 80386 CPUs and SCSI disk drives). The main differences in
the experiments were the interconnection technology (shared memory vs.
hypercube), the number of processors and disks (16 vs. 30), and the assumption
about the data distribution. While we assumed quantiles for data partitioning known
a priori, DeWitt et al. investigated sampling techniques to determine appropriate
quantiles from the data. The effect of these three differences makes the sorting
throughput of Gamma and Volcano very similar.

Figure 7 shows the initial and final measurements. The time measurements are
shown using solid lines and refer to the labels on the left. The speedups are shown
with dashed lines and refer to the labels on the right. The initial times and speedups
are marked with      s while the final ones are marked with ∆ s. The ideal speedup is
also shown by the dotted line.

It is immediately obvious from the solid lines that the final times are significantly
lower than the initial ones, demonstrating the effect of our tuning measures. For
two to eight processors and disks, performance improved by a factor slightly more

Figure 7. Initial and final sort performance
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than 2, which is largely due to increased cluster size and reduced I/O cost. The effect
did not show in our earlier comparison because this was the first improvement we
attempted while still using the simple buffer unfixing scheme. Beyond eight pro-
cessors and disks, the dashed lines indicate that the modifications and adjustments
also improved the speedup which had been quite unsatisfactory with the initial
software. For sixteen processors and disks, the fully tuned software performed about
3·6 times better than the original version. A comparison of the dashed and dotted
lines shows very close to linear speedup with the fully tuned software. Thus, the
tuning improved the parallel behavior as well as the absolute performance.

One of the options we did not explore in this study was read-ahead and write-
behind. Since we used raw devices, the DYNIX operating system did not perform
any buffering or read-ahead/write-behind in these experiments. Volcano does include
an optional buffer daemon process for this purpose, but we did not use it for three
reasons. First, its implementation is not fully tuned, in particular messages and
synchronization between work processes and daemon processes, and we did not have
time to tune it while we had access to the large machine. Second, additional space
would have been committed 4 and we only wanted to use buffer space for the sort
operation proper. Third, we wanted to use an equal number of processes and
processors since earlier studies had indicated performance problems if processes
migrate too much, and we felt that the space and process management issues were
too complex to explore in the limited time available. Using a rough ‘back-of-the-
envelope’ calculation, we estimate that carefully tuned read-ahead and write-behind
would save about 20 of the 84 seconds, but we do not have experimental data to
substantiate this estimation.

Beyond the lesson that performance tuning is a never-ending task (which we
should have known !), we have drawn a number of conclusions from this effort.
First, and most importantly, shared-memory architectures with limited degrees of
parallelism are very well-suited for database query processing and do indeed allow
linear speedup. We realize that there is a limit beyond which a distributed-memory
architecture must be employed. However, our results show that shared-memory
systems have a place in query processing just as in online transaction processing, 40

and that the limit to which shared-memory systems can be pushed depends not only
hardware characteristics (e.g., CPU speed, bus speed, and cache size), but also
on how carefully the software has been tuned. Because of faster and cheaper
synchronization and communication in shared-memory machines, we believe that
nodes in distributed-memory machines should be shared-memory multiprocessors in
spite of the complexities of such hierarchical designs. As shown in the most recent
extension of Volcano’s exchange operator, these complexities can be hidden from
the data manipulation operators even in distributed and hierarchical memory archi-
tectures. 16’41

Second, implementing parallel query processing engines by combining operators
designed and implemented for sequential architectures with a generic parallelism
operator is a sound, modular approach that does not prevent good performance and
linear speedup. We hope that the similarly encouraging results can be obtained on
distributed and hierarchical memory machines.

Third, it is very important that query processing modules be designed and
implemented to allow future modifications, tuning, and performance enhancements.
In other words, extensible database management systems that are intended to support
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a variety of new database applications like EXODUS , 42 Postgres 43 and Starburst 20

should be designed to be extensible and modifiable not only in the data modelling
level of the software architecture but also in their run-time system in order to permit
not only representing a new application domain but also tuning the database system
to the application’s needs and to the hardware and operating system environment.
For our tuning study, it was very useful that the Volcano software was designed and
implemented to support a large number of choices, many of them as run-time
parameters, e.g., the unit of I/O and buffer hint mechanisms. Volcano’s design goal
to provide mechanisms such that a query optimizer or a human experimenter could
choose policies was met and proved extremely valuable. This encourages us to
use Volcano as an experimental vehicle for further research, namely in query
optimization  6’13’16 and query processing in scientific and object-oriented database
systems 44’45

Fourth, it seems to be a general concept that contention can be relieved by
reducing the number of critical sections and lock requests, by maintaining multiple
copies of resources protected by critical sections, and by making the critical sections
perform faster. The last method can be achieved by tuning the code, i.e., shortening
the instruction path length. Volcano’s buffer code had been very carefully tuned
over an extended period of time such that there was only limited leverage left in
this direction. The other two methods, replicating critical resources to spread the
load over more resources and reducing the number of resource requests, proved to
be powerful tuning measures. Because multiple copies of a resource always introduce
the danger of uneven load and therefore performance degradation, we focused on
reducing the number of critical sections and lock requests. It turned out that this
could be done to such an extent that spreading the load over many resources (buffer
pools) had only limited additional effect, and we could safely limit the number of
buffer pools to two. The particular technique employed, unfixing records in groups,
was very effective for the problem at hand. It is a curious observation that the buffer
pool contention could be relieved by ‘buffering’ buffer manager calls, i.e., by
gathering multiple requests in process-private space and calling the shared buffer
manager only when we experienced a ‘buffer fault’ as the unfix requests progressed
from one cluster to the next.

We are currently extending this research in several directions. First, we undertook
this study of the parallel sort algorithm as one example database query processing
algorithm that requires CPU processing, memory, I/O, and data exchange. While
we expect that most of the improvements identified here also apply to other algor-
ithms, e.g., sort- and hash-based join and aggregation algorithms, we will have to
verify it experimentally. Second, we will explore the effects of our tuning measures
in different environments and situations, in particular when data need to be repar-
titioned multiple times between the operations in a complex query evaluation plan.
Third, we are exploring detrimental effects of parallelism. For example, as the
number of processes sharing memory increases, each process’ space becomes smaller.
For parallel sorting, this means that both the size of initial runs and the merge fan-
in decrease, which may lead to overall performance degradation. Another well-
known example is the need for finer load-balancing for higher degrees of parallelism.
Finally, to put all these directions together, we are working on more comprehensive
methods for resource distribution among competing operators in a complex query
evaluation plan, both for single-process and parallel query evaluation plans.
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