
I. J. Computer Network and Information Security, 2012, 12, 31-39
Published Online November 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijcnis.2012.12.03

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

Threshold Based Kernel Level HTTP Filter
(TBHF) for DDoS Mitigation

Mohamed Ibrahim AK and Lijo George
Trichy Engineering College, Tiruchirappalli, Tamil Nadu, India

{ibrahim.awn, lijogeorgemail}@gmail.com

Kritika Govind and S. Selvakumar
National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

{kritika, ssk}@nitt.edu

Abstract — HTTP flooding attack has a unique feature of
interrupting application level services rather than
depleting the network resources as in any other flooding
attacks. Bombarding of HTTP GET requests to a target
results in Denial of Service (DoS) of the web server.
Usage of shortened Uniform Resource Locator (URL) is
one of the best ways to unknowingly trap users for their
participation in HTTP GET flooding attack. The existing
solutions for HTTP attacks are based on browser level
cache maintenance, CAPTCHA technique, and usage of
Access Control Lists (ACL). Such techniques fail to
prevent dynamic URL based HTTP attacks. To come up
with a solution for the prevention of such kind of HTTP
flooding attack, a real time HTTP GET flooding attack
was generated using d0z-me, a malicious URL shortener
tool. When user clicked the shortened URL, it was found
that the user intended web page was displayed in the web
browser. But simultaneously, an avalanche of HTTP GET
requests were generated at the backdrop to the web server
based on the scripts downloaded from the attacker. Since
HTTP GET request traffic are part of any genuine
internet traffic, it becomes difficult for the firewall to
detect such kind of attacks. This motivated us to propose
a Threshold Based Kernel Level HTTP Filter (TBHF),
which would prevent internet users from taking part in
such kind of Distributed Denial of Service (DDoS)
attacks unknowingly. Windows Filtering Platform (WFP),
which is an Application Programming Interface (API),
was used to develop TBHF. The proposed solution was
tested by installing TBHF on a victim machine and
generating the DDoS attack. It was observed that the
TBHF completely prevented the user from participating
in DDoS attack by filtering out the malicious HTTP GET
requests while allowing other genuine HTTP GET
requests generated from that system

Index Terms — HTTP GET, Shortened URL, Kernel,
Windows Filtering Platform

I. INTRODUCTION

Distributed Denial of Service (DDoS) attack uses a
large number of computers to cause a coordinated DoS

attack against a targeted web server. Flooding attack is
usually caused by continuously sending multiple requests
to bring down the targeted server. This eventually fills the
server’s buffer space. Once the buffer memory is full no
further connections can be made to the server, thus
making the service unavailable. This scenario is attained
by misusing the URL shortening service which eventually
leads to the formation of HTTP botnet [1]. URL
shortening service is a technique, used in the World Wide
Web (WWW) to substantially shorten a lengthy URL into
a shorter one while redirecting the user to the requested
webpage. This is achieved by referring HTTP redirect
information from the available database of the URL
shortener tool. This redirect information is required for
redirecting the shortened URL to the requested original
URL. Thus attacks could be launched using shortened
URL. On making use of shortened URL service the user
requested web page gets loaded in the web browser along
with malicious scripts downloaded from the attacker.
This is done by misusing the html iframe tag [2]. Thus
HTTP GET flooding attack is initiated in the background
by using the client side scripts downloaded from the
attacker without interrupting the user’s browser activity
[3]. The attack will continue as long as the web page is
active and it will not leave any trace of code unless the
cache of the browser is not cleared on the client side.

The rest of the paper is organized as follows: Related
work is discussed in Section II. Section III discusses the
Threshold Based Kernel Level HTTP Filter (TBHF)
algorithm in detail. HTTP GET attack generation and
analysis are explained in Section IV. Performance
analysis of TBHF is discussed in Section V and finally,
Section VI concludes the paper.

II. RELATED WORK

Client side prevention of browser initiated flooding
attacks is mainly done by Client side Caching
optimization and implementation of the Human
Interaction Proof (HIP) protocol [4]. In client side, a cache
is maintained at browser level. All HTTP GET requests
which are sent for the first time are cached in the local
persistent storage [5]. Subsequent requests to the same

32 Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

URL are served from the local cache. However, this
method fails when the attacker requests different URLs,
thereby making the technique ineffective.

Another method is Completely Automatic Public
Turing tests to tell Computers and Humans Apart
(CAPTCHA) [6] where the user is puzzled with an image,
which contains randomly skewed alpha numeric
characters. This is used to distinguish between human and
bot behaviour. In the normal scenario when a host is
making a large number of requests to a specific URL, the

system detects an anomaly and redirects the user to a
CAPTCHA page. If the user is able to complete the
challenge, then the actual URL is served again. In the
case of a bot requesting the URL, the CAPTCHA cannot
be cracked, leading to inaccessibility of the URL. But in
the current HTTP-GET attack scenario, the host requests
different pages under the same server. Hence, no anomaly
is raised and the CAPTCHA page is not served thereby
surpassing the technique which leads to the flooding
attack. Techniques such as blackholing are used by ISPs
to mitigate DDoS attacks, where in traffic to a specific IP
is blocked [7]. The blocked traffic may also contain
genuine packets thus making the service unavailable to
the legitimate user. Access Control Lists (ACLs) [8] are
altered in order to stop users from participating in DDoS
attack. But this technique becomes inefficient when
attackers spoof genuine IP address.

III. PROPOSED WORK

A. Threshold Based Kernel Level HTTP Filter (TBHF)
The block diagram in Fig. 1, shows the different

modules of the proposed TBHF, viz., Traffic capture,
Parameter extractor, and the Analyzer module. First the
packets are captured at kernel level by the traffic capture
module. The output of the traffic capture module, the
outbound TCP packets alone, are filtered and sent to the
parameter extractor module which extracts the features
such as remote IP address and the arrival time of packets.
Then the packets are subjected to the Analyzer which
decides whether to drop or allow the packets into the
network based on the threshold set.

The analyzer module contains an IP frequency list to
store the number of occurrences of individual IP address
over a period of time. It checks the frequency of each IP
address in IP frequency list and further decides whether
to block or allow the packets.

The flow chart for the basic functioning of TBHF is
given in Fig. 2. Threshold value as mentioned in section
IV is set to restrict the number of HTTP requests to a
particular IP address for a given period of time. Based on
the parameters extracted from the packets ∆T values are
calculated, which gives the time interval between current
and previous instance of a packet for a particular IP

address. Based on the threshold set if the value of the IP
frequency list exceeds the threshold value, then the
packets are dropped else they are allowed into the
network.

B. Proposed TBHF Algorithm
 The proposed TBHF algorithm goes through the

following steps: The network traffic (which includes all
varieties of packets) is given as input to the TBHF. In
Step 1 the outbound HTTP GET request packets are
filtered and it is sent through the other modules for

User Space

K
er

ne
l S

pa
ce

HTTP
GET

packets

Traffic Capture

Filters Outbound HTTP GET
packets

Remote

IP,
Arrival
Time

Parameter Extractor

Extracts Required Parameters

Genuine
packets

Analyzer

Allow or Drop packets

Network Interface
Figure.1 Block schematic of Threshold Based Kernel Level HTTP Filter

 Decision Making

IPAddrList

t1, IP1 t2, IP2 tn, IPn

∆T Calculation
∆T = t2 (IPi) – t1 (IPi)

IPFreqList[i] ++

Yes

No Add IP to
IPAddrList

∆T <
1 sec

Yes IPFreqList[i]
 > Threshold

Drop packet
No

Figure.2 Functioning of TBHF

Network

Traffic Capture

No HTTP
GET

Yes
IP1, IP2, …. IP2,

t1, t2,…. tn

Outbound Packets

 Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation 33

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

further processing. In Step 2, the parameters such as
remote IP address and arrival time of packets are
extracted from the filtered packets. The presence of the
extracted IP address is checked in the IP address list and
accordingly the IP frequency list is updated. If the IP
address is not found in the IP address list, then the new IP
address and its corresponding arrival time are stored in
the IP address list. Then in Step 3, the difference in time
(interval) between two packets of same IP address (∆T) is
calculated. If the time interval is less than 1 second, then
the IP frequency list value for the corresponding IP
address is incremented by 1. Otherwise the IP address is

added to the IP frequency list. The time interval to refresh
list is set to 1 second and also the IP frequency list values
are reset to null after the elapse of every second. The
threshold value (N) is set to 20 based on the experiments
conducted in our lab, viz., only 20 HTTP GET requests
are allowed to a particular IP in one second. The HTTP
GET packets are allowed to an IP address till the
corresponding IP frequency list value reaches N. If the IP
frequency list value for an IP address exceeds N, then the
packets are dropped. The value of N was set based on our
research experiments conducted in various environments
and their results are listed in Table 1.

Step 1:

Input: Network Traffic
IF (Outbound packets)

THEN
IF (Packet == HTTP GET)

THEN

Step 2:

//ExtractParameters

// IP1, IP2, …, IPi - remote IP address
// t1, t2, …, ti - Arrival time of packets
//IPAddrList – IP Address List

IPAddrList[IPi][0] = IPi;
IPAddrList[IPi][1]=ti;

Step 3:
// ∆T - Difference in time between two instance of same IP address
// N - Threshold value
//IPFreqList – IP Frequency List

∆T = t2(IPAddrList[IPi][1]) – t1 (IPAddrList[IPi][1]);

IF (∆T < 1 second)

THEN
IPFreqList[i]++;
IF (IPFreqList [i] < N)

THEN
Allow packet to Network;
ELSE

Drop packet;
END IF

END IF

ELSE

Allow packet to Network;
END IF

END IF

34 Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

IV. WORK DONE

A. HTTP GET attack generation
The Fig. 4 shows the log from Web Console tool in

Mozilla Firefox on the Victim machine. Mark A shows
the Link which is shortened using genuine URL shortener
service provided by Google namely http://goo.gl. Mark B
shows the Genuine URL, to which the user is redirected,
to get the user requested web page.

Fig. 5 shows the log from Web Console using Mozilla
Firefox during attack scenario. The Mark A in Fig. 5
shows the shortened URL that was provided by the
attacker URL Shortening Service. In a genuine case when
user clicks the link provided by shortened URL service,
the user is redirected to the user requested web page but
in case of an attack scenario, when a user clicks a
malicious link provided by the attacker the user requested
web page is displayed by exploiting the HTML iframe tag.
Simultaneously GET requests are generated to victim
server [9]. The Mark B shows the victim server IP
address to which the HTTP GET Flooding attack has
been initiated. The Mark C shows the dynamic resource
name hich is intended to overcome the browser level
caching mechanism. Dynamic resource names are
randomly generated unique IDs to access the resources
from the web server.

WAMP server was set up in attacker side to host the
malicious web page. On clicking the malicious link, the
script to generate HTTP GET attack was downloaded
from attacker web server to the victim browser. The
script did not install any malicious software in the victim
machine rather used the browser script engine to generate
the malicious requests.

TABLE 1 – HTTP GET ATTACK RESULTS *

Web
browsers

used

Total No.
of Packets

(for 30
second)

HTTP GET
requests
(for 30
second)

Average
HTTP GET

request
(per second)

Safari 32184 15891 529
Google
Chrome

59507 29708 990

Mozilla
Firefox

87442 43654 1455

* Results shown for 30 second time interval during attack
period

Figure.3 Graph analysis of HTTP GET attack using Wireshark

Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation 35

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

Figure.4 Web Console log using Mozilla Firefox during normal scenario

36 Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

Figure.5 Web Console log using Mozilla Firefox during attack scenario

Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation 37

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

Figure.6 Statistics of HTTP GET attack before installing TBHF

Figure.7 Statistics of HTTP GET attack after installing TBHF

Figure.8 Suppression of HTTP GET attack traffic after TBHF installation

** Results shown for 30 second time interval before and after
loading TBHF filter

TABLE 2 – PERFORMANCE ANALYSIS**

Before
After

87442
371

43692
132 112

43685 43656 43654
83 79

Total No. of
Packets

OUTBOUND TRAFFIC

Total
No.

To target
server

HTTP GET PACKETS
Total No. To target

server

PACKET CAPTURE STATISTICS IN VICTIM MACHINE
(30 SECONDS)

38 Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

3436-5E’VBNM,alysis
When observed using Wireshark, an enormous amount

of HTTP GET requests were generated to the target IP
address in a very short span of time which usually does
not happen in a genuine case. Based on this observation,
a threshold was set to ascertain the number of HTTP GET
requests generated to a particular IP address in a certain
time period.

V. PERFORMANCE ANALYSIS

A. Experimental setup
The effective working of the proposed system was

tested by generating HTTP GET attack in Local Area
Network (LAN) and using the TBHF driver for its
mitigation. HTTP GET attack was generated using client
side scripting in victim web browser. Traffic analysis was
done with respect to HTTP packets using Wireshark.
Based on the obtained results, the parameters to be set for
filtering out malicious HTTP GET packets using TBHF
were decided. The same was implemented and the
performance of the TBHF was studied.

B. Detection module at victim machine for kernel level
packet filtering

Sun virtual box with Windows 7 installed in it was
made the victim. The developed TBHF driver was
installed on the victim machine. A GUI called Open
System Resources (OSR), was used to load or unload the
packet filter in the victim machine. The loading or
unloading of the filter can also be done manually which
involves making registry changes and then starting the
filter through command prompt.

C. Results
A real time HTTP GET attack was generated in the

victim machine. Table 1 shows the web traffic that was
generated using three different browsers, viz., Safari,
Google Chrome, and Mozilla Firefox.

Table 1 comprises of the total number of packets,
number of HTTP GET packets sent to the targeted web
server, and the average number of HTTP GET requests
sent per second. The variation in the request generation
depends on the capability of the browser script engine
and system configuration. A Core 2 Quad processor with
4 GB of RAM running Windows 7 Operating System (OS)
was made the victim machine.

Once the attack was initiated, traffic was captured
using Wireshark and is shown in Fig. 3. The graph in
Fig. 3 showing the attack packets, reveals the presence of
continuous bombarding of HTTP GET packets from
victim machine to the target server.

Fig. 6 shows the statistics of HTTP attack before
installing the TBHF filter driver. In Fig. 6, the
highlighted portion shows the packet count of HTTP
GET packets sent from the victim machine to the target
server before loading the TBHF filter driver for the
interval of 30 seconds.

Fig. 7, shows drastic drop in the http packet count
between the victim and target server over the same period
of time after installing the TBHF filter driver. Thus from
Fig. 7, it is evident that the developed filter was able to
mitigate the DDoS attack.

The performance analysis of the proposed TBHF was
done by measuring the number of outbound packets in the
victim machine before and after loading the filter. Table 2
shows the number of HTTP GET requests sent to the
target server before and after the filter installation. It is
evident from the 2nd row that the flooding packets
generated to target server were dropped by TBHF. The
accuracy in terms of mitigating the DDoS attacks by
TBHF works out to be 99.82% which is calculated as the
ratio of the number of HTTP GET attack packets blocked
to the total number of HTTP GET attack packets
generated (43575 / 43654 * 100).

Fig. 8, shows the decline in the attack traffic after
driver installation. X-axis shows the time in seconds and
Y-axis shows the number of HTTP GET packets. It is
observed that after the driver installation there is a drastic
drop in flow of attack traffic which signifies that the
HTTP GET attack is mitigated.

VI. CONCLUSION

Application layer attack has become a major threat to
the internet in today’s world. The focus of this paper was
to come out with an effective solution for the detection
and prevention of clients from inadvertently taking part in
such attacks. Accordingly, a Threshold Based Kernel
Level HTTP Filter (TBHF) was proposed and
implemented in Windows 7 OS. Experiments were
conducted by generating HTTP GET attacks and using
TBHF for its mitigation. It was evident that the TBHF
suppressed the flooding packets and thus prevented the
client system from taking part in such an attack. The
ongoing work is to implement TBHF in other OS and
mobile platforms.

ACKNOWLEDGEMENT

The authors thank the National Technical Research
Organization (NTRO), New Delhi, Government of India
for sponsoring this research work under the Collaborative
Directed Basic Research in Smart and Secure
Environment project.

REFERENCES

[1] www.infosecisland.com/blogview/10442-DDoS-
Attacks-Possible-via-URL-Shortener.html.

[2] Patsakis C, Asthenidis A, Chatzidimitriou A., “Social
Networks as an Attack Platform: Facebook Case
Study”, Eighth International Conference on
Networks, ICN '09, March 2009: p. 245-247.

[3] Takeshi Yatagai, Takamasa Isohara, and Iwao Sasase,
“Detection of HTTP-GET flood Attack Based on

 Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS Mitigation 39

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 12, 31-39

Analysis of Page Access Behavior”, IEEE PACRIM
'07: p. 232–235.

[4] Daniel Lopresti, “Leveraging the CAPTCHA
Problem”, Second International Workshop on
Human Interactive Proofs, Bethlehem, PA, May
2005, Vol. 3517/2005 p. 97-110.

[5] www.developers.google.com/speed/docs/best-
practices/ caching#LeverageBrowserCaching.

[6] Huy D. Truong, Christopher F. Turner, Cliff C. Zou,
“iCAPTCHA: The Next Generation of CAPTCHA
Designed to Defend Against 3rd Party Human
Attacks” IEEE International Conference on
Communications (ICC), June 2011, p. 1-6.

[7] J. Van der Merwe, A. Cepleanu, K. D'Souza, B.
Freeman, A. Greenberg, D. Knight, R. McMillan, D.
Moloney, J. Mulligan, H. Nguyen, M. Nguyen, A.
Ramarajan, S. Saad, M. Satterlee, T. Spencer, D. Toll,
S. Zelingher, “Dynamic Connectivity Management
with an Intelligent Route Service Control Point”,
INM '06 Proceedings of the 2006 SIGCOMM
workshop on Internet network management,
September 2006, p. 29-34.

[8] www.cisco.com/en/US/prod/collateral/vpndevc/ps58
79/ps6264/ps5888/prod_white_paper0900aecd8011e
927.html.

[9] www.secureworks.com/research/threats/botnet.

Mr Mohamed Ibrahim AK has completed his B.E.
(Computer Sci. and Eng.) at Trichy Engineering College,
Anna University, Chennai, Tamil Nadu. He has a keen
interest towards coding and his field of interest includes
Network Security.

Mr Lijo George has completed his B.E. (Computer Sci.
and Eng.) at Trichy Engineering College, Anna
University, Chennai, Tamil Nadu. His interest includes
coding for cyber security.

Ms Kritika Govind received her B.E. (Computer Sci.
and Eng.) from Sakthi Mariamman Engineering College,
Anna University, Chennai, Tamil Nadu, in 2009. She is
working as a Research Assistant at Department of
Computer Science and Engineering, National Institute
Technology (NIT), Tiruchirappalli, Tamil Nadu. She is
also pursuing her Master of Science (MS by Research) in
Computer Science and Engineering at NIT,
Tiruchirappalli. Her interests include: Cyber security and
network security.

S. Selvakumar is a Professor in the Department of
Computer Science and Engineering, National Institute of
Technology, Tiruchirappalli, Tamil Nadu, India. He
received his Ph.D. from the Indian Institute of
Technology Madras (IITM), Chennai in 1999. His
research interests include group communication in high-
speed networks, routing, multimedia communication,
scheduling for QoS guarantee, mobile networks, network
security, wireless sensor networks, and network
computing. He has to his credit of publishing 54 research
papers. He is currently the Investigator of the
Collaborative Directed Basic Research–Smart and Secure
Environment (CDBR-SSE) Project sponsored by NTRO,
Government of India, New Delhi. He is presently the
member of All India Board of IT Education, AICTE,
New Delhi.

