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An Evaluation of The Neocognitron

David R. Lovell, Member, IEEE,Thomas DownsMember, IEEEand Ah Chung TsoiSenior Member, IEEE

Abstract—We describe a sequence of experiments investigating The neocognitron was proposed well before multilayer
the strengths and limitations of Fukushima’s neocognitron as a perceptrons and backpropagation became popular. Why has
handwritten digit classifier. Using the results of these experiments so little independent empirical research been published on this

as a foundation, we propose and evaluate improvements to tem? O be th lati lexi f th
Fukushima’s original network in an effort to obtain higher recog- system? One reason may be the relative complexity of the

nition performance. The neocognitron’s performance is shown to nNetwork (as mentioned in [9, p. 199], [10, p. 187]) and, in light
be strongly dependent on the choice of selectivity parameters and of this, we present a review of the neocognitron’s operation
we present two methods to adjust these variables. Performance (Section Il) followed by a concise definition of the system
of the network under the more effective of the two new selectivity (Section IIl). (A less mathematical review is given in [9].)
adjustment techniques suggests that the network fails to exploit In Section IV ine how th it loulat
the features that distinguish different classes of input data. To n . e.c an » we examl.ne ow the neocognitron calculates
avoid this shortcoming, the network’s final layer cells were the similarity between an input pattern and the pattern classes
replaced by a nonlinear classifier (a multilayer perceptron) to it has been trained to identify. Section IV highlights the
create a hybrid architecture. Tests of Fukushima’s original system importance of S-celselectivityin obtaining good performance
and the novel systems proposed in this paper suggest that it may f,om the network.

be difficult for the neocognitron to achieve the performance of . , L C .
existing digit classifiers due to its reliance upon the supervisor's H'ldebrandts method for adjusting Selec?'v't'es Is briefly re-
choice of selectivity parameters and training data. These findings Viewed in Section V before two new techniques are presented
pertain to Fukushima’s implementationof the system and should and evaluated using real-world digit data. The most effective
not be seen as diminishing the practical significance of the concept of these methods is used as a basis for further improvements
of hierarchical feature extraction embodied in the neocognitron. to the neocognitron—described in Section VI—in which the
Index Terms—Handwritten character recognition, neocogni- distinguishing features of different classes of digits are ex-
tron, selectivity ploited to achieve more accurate classification. Effectively,
in Section VI, we attempt to fine tune the neocognitron to
|. INTRODUCTION maximize recognition performancg. B
The paper concludes with a review of the empirical results

HE NEOCOGNITRON[1]-{7] is a massively parallel, ghiained and the implications they have for the neocognitron,
hierarchical neural network, designed, primarily, for twoz 4 its variants, as practical digit recognition systems.
dimensional (2-D) pattern recognition. Proposed by Fukushima

in 1979 [1], it was inspired by Hubel and Wiesel's serial
model of biological vision [8] and, for the last decade, it
has been acclaimed as a shift and distortion tolerant character Il. OVERVIEW OF THE NEOCOGNITRON
recognition system. The neocognitron classifies input through a succession of
Some of the neocognitron’s biological plausibility wasunctionally equivalent stages. Each stage extracts “appropri-
sacrificed in 1983 when Fukushima moved away from thrae” features from the output of the preceding stage and forms
original paradigm of self-organization and introduced a supes-compressed representation of those extracted features. This
vised training scheme in an effort to improve the network'sepresentation preserves the spatial location of the extracted
handwritten character recognition performance [2]. Howevdgatures and becomes the input to the next stage.
to the best of our knowledge, there have been no concrete perClassification is achieved by steadily extracting and com-
formance statistics published to indicate whether the desirpigssing feature representations until the input is transformed
improvement was achieved. Unlike Hubel and Wiesel's serigito a vector whose elements are measures of the similarity
model of vision, which has undergone rigorous scrutiny to telsetween the input pattern and the input classes that the
its validity, the capabilities of the neocognitron have not beereocognitron has been trained to recognize. Iwianer-
critically reviewed to any significant extent. take-all fashion, the final layer unit with the highest output
determines the class assigned to an input pattern.
Feature extraction is performed by arraysSs€ells(called
Manuscript received Sepbemter 11, 1995; revised August 12, 1996, Januarplane} trained to respond to certain featudsemed by the

1, 1997, and May 4, 1997. . - supervisorto characterize input patterns. Each S-cell receives
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Fig. 2. A cell's position within its plane is given by the coordinates of its

projection onto the input cell plane. This projection is the center of the cell's
receptive field and may lie outside the physical input cell-plane, UCO. Here
the UCO plane is 11x 11 cells in size and the location of the black cell is

ucCo Us1 UC1 usz2 ucCz2 atn = (2,12).

Fig. 1. Cell-planes are identified by a serial numbeMWhen necessary to
refer to two cell-planes in different layers, Fukushima use® denote the
second serial number. Layers of S-planes are labeled US1, US2, etc., while
layers of C-planes are labeled UCO, UC1 and so on.

C-plane activity is a compressed approximation of the
activity in the preceding S-planes. This compression of repre- -1
sentation also provides a degree of translational invariance to 0
the neocognitron [11].

1

[ll. FORMAL DEFINITION OF THE NEOCOGNITRON 2

Despite the neocognitron's complexity, its formal descrlF}:_ig. 3. The weight sharing mechanism used in the neocognitron makes it

tion can still be organized into a logical progression Qfsnyenient to specify a particular connection in termspfhe position of a
concepts. We address three major issues: source cell within a destination cell’s input region. In this<s5 cell input

1) theorganizationof the cells in the neocognitron; region the black cell is at = (—1.0).

2) theinterconnectiondetween them;

3) thefunctional descriptiorof those cells. V-cells provide information to S-cells about the amount of

We have adopted Fukushima’s system of terminology (usagltivity present within each S-cell’s input regions. Only one V-
in almost all neocognitron literature) but, for the sake of bot€ell plane ¥-plang per layer is necessary to store the values of
completeness and clarity, new notation to describe trainid¢gighted root-mean-square input region activity (see Fig. 4),
patterns is introduced in Section IlI-C (completeness) afgnce a particular V-cell is specified by
abbreviated vector notation is defined in Section IV (clarity). « the type of cell (i.e., V);

Since its inception, certain aspects of the neocognitron have the layer, ¢, that the cell belongs to;
been altered by Fukushima. We shall adhere to Fukushima’'s the location n, of the cell within the V-plane.

most recentcompletedescription of the neocognitron [4] in The outputs of V-cells are given the general notatign ().

the following discussion. The possible values of parametérs andn are determined
by the architecture of a specific network. In layerS-planes
A. The “Morphology” of the Neocognitron are numbered one t& s;; C-planes range from one th ¢y

There arethreetypes of processing element in the neocodS€€ Fig. 1). A cell's location within an S, C or V-plane is
nitron: S-cells, C-cells, and V-cells. Any individual S or C-celpPecified by a 2-D position vecton. This vector describes
is identified by four pieces of information: the position of a cell's receptive field center in relation to the

« the type of cell (S or C); input cell plane, UCO, as depicted in Fig. 2.

« thelayer, 4, that the cell belongs to;

« the cell-plane %, that it is part of B. The Synaptic Organization of the Neocognitron

* thelocation =, of the cell within that cell-plane. The neocognitron is structured like a large sandwich of
The outputs of S and C-cells are given the general notatialternating S and C-plane layers. Only adjacent layers of cell-
use(n, k) and uce(n, k). planes are directly connected and an S-cell is connected with
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Fig. 4. V-cells have fixed weight links from input regions in all immediately preceding C-planes. Each V-cell's output is approximately equal to the
magnitude of activity within its input regions. In layér every cell in S-planég: receives inputs from a V-cell that has the same input regions. The
strength of this input is weighted by the inhibitory coefficidnt(%).

cells in all immediately preceding C-planes. Individual linkénput region, D,. A set of S-cell to C-cell weights is given
from C-cells to an S-céllare identified by four pieces of the notationd,(v). Since a particular C-plane may receive

information input from one or more S-planes, S to C-plane connectivity
« thelayer, ¢, of the S-plane that they connect to; is described by the factgi(«, k). If S-planer and C-plane:
« the serial number ]{;7 of that S-p|ane; are connected, theﬂlﬁj, k‘) >0, otherwisé, j(lﬁ;, k‘) =0.
« the serial numbey «, of the C-plane from which the link ~ The notation defined so far does not provide a way to
originates; express the spatial relationships and interconnectivity between
« the location, v, within the connection regiond,, of the cells. Rather than formalize this issue with more defini-
C-cell from which the link originates. tions, Fukushima presents this information diagrammatically,

Weights from C to S-cells are given the general notatigi® Shown in Fig. 5. For simplicity, this diagram presents
ac(v, &, k). Since all cells in S-plank share the same Weights,connectlon information as though there were but a single S and

the connection (v, , k) doesnot contain the argument to C-plane in each layer of the network—links between additional
? ? . . .
define a specific S-cell as the destination of that link. THe!I-Planes obey the same scheme of interconnection. Fig. 5
location of a link's source cell is identified by the positiorp!'OWS how the ratios of S and C-cells in layers two, three and
vectory (see Fig. 3). S-cell weights have nonnegative valudQUr cause activity to converge to a single cell. Overlapping

as do all other weights and parameters in the neocognitronf?onnec““’,”S ensure this compression is achieved without un-
S-cells also receive input from subsidiary V-cells (Fig. 4)(;Iersampl|ng. Note that the finite width of cell planes can cause

The degree that V-cells affect cells in a given S-plabieis cells at the edge of a plane to receive only partial connection
determined by the positive value of tiwhibitory coefficient t© the previous layer.
be(k).

Fig. 4 shows that V-cells are linked with preceding C-plangs 11 “Cytology” of the Neocognitron
in the same way that S-cells are. Unlike C-plane to S-cell . . ]
weights though, connections between C-planes and any V-celNOW the naming conventions used by Fukushima have
are fixed and specified as a function of a C-cell's positign, 2€€n presented, we can define the equations governing S, C,
within the connection regiont,. Each of the sets of weights@nd V-cell function and the rules specifying the evolution

(or mask} between a V-cell in layer and the previous of weights in the neocognitron. This section is deliberately
C-planes is denoted;(v). terse; explanation of the following equations is relegated to

Connections from S-cells to a C-cell are also fixed amg€ction 1V so thatefinitionandinterpretationof cell function
expressed as a function of S-cell position within a C-cef@n remain distinct.

1The prepositiongo and from specify the direction of information flow
along a connection between cells. The output asoairce cell flows to a 2Fukushima implies that the actual value fifx, k) for connected cell-
destinationcell; a destination cell receives inpftom a source cell. planes is one [4].
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Fig. 5. This two dimensional “slice” through the neocognitron shows the interconnections between one S and C-plane from each layer of the network.
It shows, for instance, how each of the cells in ax133 layer 2 C-plane receives input from differentx7 7 cell regions in the preceding layer 2

S-plane. This figure is based on the network described in [3].

The output of an S-cell in théth S-plane of the/th layer
of the neocognitron is given by

U,S[(’n, k)

def
= /]’é

Koot

1+ Z Z acW, &, k) uce—1(n+v, k)
k=1 V€EA;
X @ ! T - -1
+ P by (k) - uy(n)
1)

The function ¢(-) is a threshold-linear transfer function,

defined by
def [O if <0
wlr) = {a: if 0< . )

The transfer function)(-), limits C-cell output to the range
[0, 1).

V-cells have an inhibitory effect andormalizean S-cell's
response with respect to its input region activity. A V-cell's
output is equal to the weighted root-mean-square value of the
C-cell activity within its input regions

Keoe-1

Z Z CZ(V)'U’QCZ—l('"’"i_Vv’i)' (5)

k=1 VcA,;

There are four different kinds of weights used in the
neocognitronu, (v, k, k), be(k), ce(v) andd,(v). The first two
of these are determined during training, the last two are
specified as

def
uye(n) =

vV
ce(v) =

d[(ll) :Sg . (5}”'

(6)
(7)

Theselectivity parameter,, determines how closely the cell'swhere 0 < ~,, 8, < 1 and 0 <4,.
input must correspond to the inputs it has been trained WithAIgorithm 1 uses pseudocode to describe the training of

in order to elicit a response.
The double summation in the numerator of (1) is@ighted

the neocognitron; this allows us to present modifications to
Fukushima’s learning algorithm as straightforwardly as pos-

sumof the outputs of C-cells in the preceding layer. C-celliple. To present Fukushima&ipervisedraining algorithnd

output is expressed as

Kse
uce(n, k) € [Zi('ﬁ k). > dew) - use(n+ v, k)
r=1 veD,
3)
where
det ()
v e o @

in this way, it is necessary to define further notation for the
training exemplars.

Supervised training of the neocognitron requires that each
S-plane be exposed to one or more training patterns. We define

3Supervised training produces better recognition performance than self-
organization [2] and since we are interested in maximizing the neocognitron’s
performance we shall only discuss this so-calkedining-with-a-teacher
method of learning. The reader is referred to [12] for information about
unsupervised learning in the neocognitron.
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the set of training patterns for S-plakein layer ¢ as calculated by S-cells has a direct mathematical representation
g, def {trer, -t ot ) (8) as in (1). This representation has a geometrical interpretation,
e ARREL T Bhlmo T PRl with weights and inputs represented in Euclidean space. Before

where [ty| is the number of elements ity,. The seed- rendering this view of S-cell behavior, we must define some

cell nysn is associated with thenth training pattern. Both additional vector notation.

training patterns and their corresponding seed-cell locationsf the connection region of a#ith layer S-cell is defined

are specified by the supervisor. as the set of all input cell position vectors in a preceding
Assuming that all connections described dyr, x, k) and C-plane, i.e.,

be(k) are initially equal to zero, the process of training a def
neocognitron with layers 1 td, can be written as shown in Ae = {vn vz, v} ©)
Algorithm 1 at the bottom of the page. then the weight, mask, and input vector of any cell in kitle
The procedurenctivate(€) represents the propagation ofS-plane of laye# can be written as
activity from the S-cell inputs to the C-cell outputs of layer © vy, k)
£, according to the transformations defined by (1)—(5). The .
parameteyy, is a positive number known as thearning rate :
of layer#. Note that this algorithm is completely deterministic. arW)a,; 1, F)
This concludes the formal specification of the neocognitron def ar(v1,2, k)
but there is still much more to tell. Several people o= :
(including Fukushima) have analyzed how the neocognitron ar(V)4,),2, k)
extracts features [13]-[15]. The following section gives .
an interpretation of (1)-(7) and establishes concepts which :
Lag(V)a,), Koo, k) |

will be useful to us later.

- () T
IV. THE CALCULATION OF SIMILARITY :
The neocognitron is based on the notion of similarity. On a ce(|Ae])
small scale, individual S-cells calculate the similarity between qer | ce(D)
the patterns of activity in their input regions and the features to & = :
which they have been trained to respond. On a large scale, the '
: o ce(]Ae])
outputs of the neocognitron represent the similarities between )
the input pattern and each of the different input classes that :
the network has been trained to recognize. Only the similarity Lee(|Ael)

Algorithm 1: Fukushima’s Supervised Training Algorithm
procedure train_neocognitron(){

for £=1to L { # For each layer of the neocognitron
trainlayer(f); # learn S-cell weights.
¥
¥
procedure train_layer(€) { # Update S-plane weights
for k=1to K { # for each S-plane in layer £ and
for m =110 |tre| { # for each training pattern of the kth S-plane.
UCO = trem; # Load the mth pattern into the input plane,
for layer =0to £ — 1 # propagate activity from input to layer {-1,
activate(layer);
train_S_cell(nyem, k, £); # then update the weights of the seed cell.
¥
¥
¥
procedure train_S_cell(ngem, k,£) { # Update the a,(v,k, k) and b,(k) weights
for k =110 Key—1 { # for each C-plane in the preceding layer
forall v e A, { # and for all input region cell positions.
aé(”v i, k) = CL[(V, Ky k) +qc- CZ(V) . U'Cf—l(nkérn + v, ’i);
}

} be(k) = be(k) + qe - wve(niem);
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o)
(@) (b)

Fig. 6. (a) A two-dimensional example of vectorsy and the angle between
them, 8.,. (b) The locus ofcos 8.y - § asy takes all possible directions in
the plane.

O

and Fig. 7. The locus 08" (x, y)-7 for all directions ofy. Sinced, = cos™! 7,
the higher the threshold, the narrower the locus abobcomes. Thus, high
UCé—l(’n + v, 1) 1 values of7 restrict the range of input vectors for whieff (z, y) is greater
. than zero (i.e., thacceptance regignA). In two dimensionsA is a triangular
. region (between the dotted lines above), in three dimensions it is conical, and
UCé—l(’n + V0a,l» 1) in higher dimensions the shape of the acceptance region is described as a

UCé—l(’n + v, 2) hypercone
Uce—1 = .
This modified similarity measure avoids the problem of zero
length input vectors and is approximately equal to the similar-
: ity measure of (10) whefu,||uce—1| > 1 (a condition which
Luce—1(n+v)4,), K1) can be assurgd by using a Iar'ge learning rate, @:gx 105.
3 suggested in [4]). The relation between (1) and (11) is not
immediately apparent; subsequent equations should clarify the

uce—1(n+v4,,2)

respectively. The vector of seed-cell inputs corresponding
themth training pattern of théth S-plane in layef is denoted

by situation. . _ N
The purpose of an S-cell is to respond to an irgufficiently
uce—1(Rim +v1,1) i similar to the patterns it has been trained with. Fukushima
uce—1(Ppim +v2,1) has incorporated (11) into the mathematical description of

the S-cell so the degree of input and weight vector similar-

U1 (Rt + V) 4,05 1) ity necessary for nonzero S-cell response can be adjusted.

uci—1(Prim +v1,2) By introducing athreshold parameter,r € [-1,1], and a
UGy def Uci—1(Nrim + V2, 2) thre.shpldl-linear transfer. function as in (2), a further measure
X of similarity can be defined by
: , 3
U,CZ—l('nlklrn + V|A4|72) S//(a[,’u,cg_l) d:ef [ 5 (aéﬂfcf;_l) T . (12)

' If s'(as,uce—1) < 7, the nonnegative functions(-) en-
et (Mrim + Vi), Koe) - sureésé”(ajfué)é_l) = 0. If, howeg\]/er, the Weigr:l’i[(a)md in-
The inputs and weights of an S-cell are vectorpattern ¢ vectors are similar enough that(ag, uc_1)> 7 then
spaceand a convenient measure of the|rS|m|Ia_\r|ty |s_d:lma|ne 0< 5" (ag, uce_1) < 1. Sinces'(ag, uce_1) ~ cosfaue,_,

of the angle betwe(_en the_m. The degree of similarity betwe%r lacluce_1| > 1), the parameter defines athreshold
these two vectors is defined as angle 6, = cos~! 7. Fig. 7 is a geometrical interpretation of
def @7 UC(—1 (10) (12) and shows how can control the range of input vectors

- |ae||uce—1] that makes”(-) positive. The volume of pattern space in which

1" 1 i
that is, the cosine dg,u,.,_, [see Fig. 6(a)]. Fig. 6(b) shows * ()>0 is referred to as thacceptance regianA.

a 2-dimensional example of thdirection cosinesurface de- It Erqtua;tlonb(li)than?] parar::i?rte; dlcr: ?Ot dapfpl):e?(r |rk1]irgtf,1er
scribed when the similarity measure of vectarsand y is erature about the neocognitron. nsteadrolFukushima s

projected in the direction of. S-cell description uses selectivity parameterr, to regulate

Since there may be no activity within a cell’s input regiong:_e acceth_ttzmge rig[()n: Thle thrre]zsho{d>par()ar:1e;er s related to
(ie., every element ofuc¢_; could be zero), (10) cannot' s duantty byr = r/(r +1), wherer > —0.5, hence
be used directly as a similarity measure. The S-cell function / __r

- - . L s'(ag, uce—1)
described in (1) is based upon a variation of (11) " (@, beemr) = ¢ . r+1

— TR RO (11) T+l
1+ lac|luce-1| =¢[(r+1)s'(ag,uce-1) =]  (13)

s(ag, uce—1)

/ det 1+ afuce—1
s'(ag, uce-1) =
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Q,

O

Fig. 8. Once training is complete, an S-cell's weight vector is Fig. 10. For a given training pattern, the output of the S-cell is equal to the

proportional to the vector sum of the inputs presented during trainingngth of the line from the origin to the locus of S-cell output (the teardrop
1 2 . . . . .

U1 T UGy T shaped lobe) in the direction of the appropriate input vector.

2
Ue

0 Ue

Fig. 9. If selectivity is chosen independently of training vectors, there isgig. 11. SOFT adjusts the S-cell's selectivity to ensure the smallest output, in
risk of settingr, so hlgh that one or more training vectors falls outside thgesponse to a training vector, is equakto, . . Note the increased response
acceptance region, as is the case for exemplay_, . of the S-cell to the second and third training patterns.

and, using some algebraic manipulation and the fact thatln practice [16], it was found that OCFT adjusted selec-
o(r - z) = r - ¢(z) for positive values of-, it can be shown tivities so that some S-cells would fail to recognize even
that this equation is approximately equal to (1). the exemplars they were trained with, severely degrading
What (13) and Fig. 7 show is that S-cell output (an@verall performance. Thigraining feature rejectioroccurred
hence network classification performance) depends strong§gcause OCFT determines selectivities on the basis of the
on selectivity. A high value of selectivity will cause an Saverageof S-plane training features. OCFT does not guarantee
cell's acceptance region to be quite acute—the cell will onipat selectivity will be adjusted simdividual training vectors
respond to inputs highly similar to the patterns with whiche within the appropriate acceptance regions (as depicted in
it was trained. Low selectivity produces a broad acceptantigs. 8 and 9).
region and an S-cell that will respond to a wide range of
inputs—possibly inputs quite unlike those it was trained t8. Suboptimal Feature-Based Training

recognize. In the next section we consider how to adjustone solution to the problem of training feature rejection

selectivity to maximize recognition. is to adjust S-cell selectivity tguaranteea minimum S-cell
response tall training patterns. This is the basis of the subop-
V. ADJUSTING SELECTIVITY timal feature-based training (SOFT) algorithm described here.

Hildebrandt [15] was the first to propose a comprehersive The strategy of SOFT is to scale an S-cell's response to
scheme for adjusting S-cell selectivities. However, for red training feature by adjusting the cell's selectivity from its
sons not initially apparent, Hildebrandt's optimal closed-fordfitial value. This adjustment is carried out using the training
training (OCFT) algorithm failed to produce a network tha@attern which elicits the weakest response from the S-cell.
performed well. Using the general notation of Sections Ill and IV, the output

Without going into great detaflthe central idea of OCFT Of the seed cell in theth S-plane of layet, in response to the
is to adjust S-cell selectivity so the acceptance regions of cegh training pattern, isus(nxem, k). The initial selectivity of
in different S-planes (within a given layer) are as large 4Bat cell is7y,. We define the weakest response to a training
possible without overlapping. Hildebrandt reasoned that tHigttern for this S-plane as
would allow S-cells to tolerate the largest amount of distortion
in input without compromising their ability to discriminate.

4Selectivity adjustment was discussed briefly in [12]. SOFT adjusts the selectivity of the S-cell from, to 7, so
SOCFT and its mode of failure are discussed fully in [16] and [17]. that the weakest S-cell response to a training pattern becomes

min, g, x) o min wse(Riem, k). (14)
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use,..,- 1N€ parametens,, . is referred to as thguaranteed and substituting in (17) gives an explicit expression for the

minimum S-cell responsand satisfie® < ug,,, <1. value of r;, in terms of the current selectivity and cell
To explain how SOFT adjusts selectivity, we need to defirgetivation, and the desired output:

S-cell activation as

def The + i, (1) —u
zse(n, k) = (rre + 1)8' (@g, uei—1) = e (15) , The + 1 Slanin (20)
7’]% = ; T .
which is essentially the argument of-] in (13). In a similar 1— <7ké + Inlnwsc(k))
fashion to (14), the minimum S-cell activation in response to Tre +1

a training vector is defined as Now we can incorporate (20) into a precise specification of the

(16) SOFT algorithm (see Algorithm 2 at the bottom of the page).

As with Fukushima’s supervised training algorithm, this
From (11) we know’(a,, uc¢_1) depends only on the angletraining scheme commences with all connectiopé, », k)

formed between the vector of inputs to an S-cell,_;, and andb.(k) set to zero, as shown in Algorithm 2.

that cell's weight vectorg,. Using (15), we can calculate what

the modified similarity measure of an S-cell must be, giveB. Implementation Issues with SOFT

that the activation and selectivity of the cell arén,;, ) and

e, Fespectively:

. def .
Mg, (k) = Hrlrlln $sz(ﬂkénm/f)-

While SOFT alleviates the problem of training feature
rejection, its implementation requires that three additional

/ Tre + M, (1) issues be addressed.
s'(ag, uce-1) = ———————. 17) o .
Tre + 1 1) Instead of eliminating (or even reducing) the number
The goal of SOFT is to adjusf to 7, So thatmin,, ,, ) = of parameters that need to be chosen, SO&flaces
usq,.. . This means that the set of selectivity parameters with a set of guaran-
, , , teed minimum S-cell response parameters. We have no
Ut = (The +1)5" (@0, Ucr—1) — T (18) guidelines as to how to choose suitable valuesf ..
Rearranging this to isolate the required selectivity value gives  (S€€ Fig. 12).
, 2) We cannot apply SOFT to S-cells that have only one
- s'(a0, uci-1) — Uty (19) training pattern (Fig. 13). After training is complete,

1= s'(ag, uce-1) an S-cell with only one training pattern will have the

Algorithm 2: (The Suboptimal Feature-based Training Algorithm

procedure train_neocognitron() {

for £=1to L {; # For each layer of the neocognitron
train_layer(?); # learn S-cell weights
tunelayer(f); # then adjust S-cell selectivities.
¥
¥
procedure tune_layer(£) { # Tune the selectivities
for k=1t0 Ks¢ { # for each S-plane in layer L.
e = 1; # Initialize selectivity of the kth S-plane,
ming .. x) = 1; # initialize minimum S-cell response, and
for m =110 |t { # for each training pattern of
# the kth S-plane
UCO = tyem; # load the mth pattern into the input plane
for layer =010 ¢ # and propagate activity from input
activate(layer); # to layer £.
¥
# If seed-cell’s activation <current minimum then

# update the current minimum S-cell response.
if z5¢(Rpem, k) < ming, ) then
ming , (k) = T5¢(Mkem, K);

}
# Adjust 7, so that the minimum S-cell response
# to any training pattern will be USlopin
The + NG g, (k) The + NG g, (k)
The =\ ——— 7~ USlun l-———— )
Tre + 1 Tre +1
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TABLE |

IN THIS COMPARATIVE TABLE “KF-1988" ReEFERS TO THENETWORK DESCRIBED IN [3], “DL-1992" Is THE NETWORK DESCRIBED IN [17]. RECOGNITION
RELIABILITY IS DEFINED AS THE PROPORTION OFDIGITS CORRECTLY CLASSIFIED OUT OF ALL DIGITS NOT REJECTED IN EXPERIMENT 9, THE MLP SECTION OF THE

NETWORK WAS TRAINED WITH 4840 GEDAR DiGITS, WiTH 4400 (EDAR DIGITS USED AS A VALIDATION SET TO DETERMINE WHEN TO STOP TRAINING

Expt | Network | Training Alg. | Test Data Size | Correct | Wrong | Reject | Reliability
1 KF-1988 | Algorithm 1 | Lovell’s 400 | 52.50% | 26.25% | 21.25% | 66.67%
2 KF-1988 | OCFT Lovell’s 400 | 3.25% | 10.00% | 86.75% | 24.53%
3 KF-1988 | SOFT Lovell’s 400 | 74.00% | 26.00% | 0.00% | 74.00%
4 KF-1988 | SOFT CEDAR 400 | 47.25% | 52.00% | 0.25% | 47.61%
5 KF-1988 | SOFT CEDAR (thinned) 400 | 51.50% | 48.50% | 0.00% | 51.50%
6 DL-1992 | SOFT CEDAR 400 | 55.75% | 26.75% | 17.50% | 67.58%
7 DL-1992 | SOFT CEDAR (thinned) 400 | 58.75% | 26.00% | 15.25% | 69.32%
8 DL-1992 | SHOP CEDAR (thinned) 400 | 75.75% | 23.75% | 0.50% | 76.13%
9 NCMLP | SHOP + BP | CEDAR 2711 | 84.73% | 3.14% | 12.13% | 96.43%

a,
a,
O

Fig. 13. If an S-cell has a single training vector, the cell's output in response
to that vector will be one, regardless of the value of selectivity.

Fig. 12. By varyingri,, we can produce a family of S-cell output loci,
giving a range of feasible:s¢ , values. This figure shows how three
different choices ofr;¢ give three different nonzero S-cell outputs for the
input vectorul,,_,. It is unclear which choice is best.

3)

weightsa; = ¢, ut,_,, and when we compute this
ﬁzeil\ll:xiit(xi‘:f;)'lr?Spé);j;“éon 'E;Ot)raslﬂg\‘lss\{;:f:h\g%ge cltﬁ,'e glggllly similar training vectors cause SOFT to produce a highly
activation means’, — oo (for 0 < ugy,,;, <1). If it
were possible to implement such a valuergf, the S-
cell would respond only when the inputs to the cell were
identical to the cell's weight vector, effectively removing
any capacity for that S-cell to generalize.

The experimenter’s choice of training features indirectly
determines S-cell selectivity. A set of highly similar
training vectors will produce an S-cell with a very

. : L still a problem.
narrow acceptance region. Certainly, all training vectors _ )
will elicit a nonzero response from that S-cell, but, In the next section we determine whether these problems

unless the actual distribution tfpical features is tightly &€ @ major handicap in applying SOFT to the neocognitron.

clumped within the acceptance region, the cell will be ) i
far too selective (Fig. 14). C. Experiments with SOFT

On the other hand, a training vector substantially As experiments with OCFT demonstrated [16], the effect of
dissimilar to other training vectors will cause an Sany changes to a complex system like the neocognitron must

cell's acceptance region to balloon out to encompass
it (Fig. 15). An S-cell with such a low selectivity will

be responsive to almost any feature and, therefore,
probably not be of much use within the neocognitron.
To use Hildebrandt's terms, finding the appropriate
balance between generalization and discrimination is
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Handwritten character recognition systems ofteim data
before attempting classification. Row 5 of Table | shows
a, thinning gives a slight improvement in performance. To
further enhance recognition, a new set of training patterns
(based on features present in CEDAR database training digits)
was created and a new network structure was implemented.
(Full details of this new architecture—referred to as “DL-
1992"—and also its training data are given in [17, Appendixes
B and C].) The performance obtained is shown in rows 6
and 7 of Table I. The degree of improvement makes it seem
unlikely that SOFT could produce a neocognitron able to
correctly classify around 90% of real-world digits, with near
100% reliability—levels of performance obtained by other
digit recognition systems [21], [22].
SOFT represents a significant improvement upon OCFT
Fig. 15. One unusual training feature will radically alter the acceptancgy salvages some of the ideas put forward by Hildebrandt.
region produced by SOFT. L , .. .
However, it is the authors’ conviction that the geometric
assumptions upon which OCFT and SOFT are based, should
be assessed empirically. Table | shows the performance of b put aside.
neocognitron for a variety of architectures, training algorithms
and test data. D. Selectivity Hunting to Optimize Performance

Initially, we did _n(_)t have ?Ccess toa qatabase 0 f test dlglltsIf OCFT and SOFT are not the best selectivity adjustment
so a set of 400 digits was “constructed” by the first aufhor, . . . . o
. S . techniques, what issues should be considered in designing an
Under the assumption that test set performance is binomia . . )
o S . : . effective method? The experiments described above, as well
distributed, this size of test set provides estimates wittid6o

g . . results of som itional I ncl h
of the network’s true recognition rate with 95% confldence.as esults of some additional tests, led us to conclude that a

: . . . Isuitable algorithm has the following characteristics.
Our first experiment (results of which were independently . )
verified [18]) evaluated the performance of the neocognitronl) It needs tq mcorporat_e extensive amounts of real-
described by Fukushiman 1988 [3]. (We refer to this version world data into the adjustment process. Even though
of the neocognitron as “KF-1988".) We then assessed this the neocogmtron make§ use of hand—crafteq exemp_lars
KF-1988's performance after OCFT and it became clear that  [© detérmine S-cell weights, actual handwritten digits

Hildebrandt's scheme had some shortcomings (see rows 1 and can still be used in the selectivity adjustment procedure.
2 of Table I). 2) It must utilize a meaningful performance measure during

training, i.e., one directly related to the network’s ability
to generalize, not just its capacity to associate the correct
output with each training pattern.
3) It should not be based on unnecessarily restrictive as-
sumptions about the distribution of patterns or features

The next step was to apply SOFT to KF-1988—this pre-
sented two difficulties. First, a number of S-planes (including
all first layer S-planes) within Fukushima’s network had single
training patterns; we decided not to adjust the selectivities of
these planes. Given that one of the final layer S-planes had >~
a single training pattern, we also decided to sgt= 1.0 in input space; both OCFT and SOFT have demonstrated

to ensure that all S-planes in the final layer had equal sized e dangers of making assertions in this regard.
acceptance regions. 4) It must not introduce new parameters that have to be
Second, we had to choose guaranteed minimum S-cell carefully chosen to obtain satisfactory behavior from
response parameters for layers 2 and 3 of the network. In the network.
the absence of any firm guidelines, we sgb_. = 0.5 and  Taking these points into consideration, we propose a simple
usz . = 0.75. method of selectivity adjustment called SHOP—selectivity
As shown in row 3 of Table I, SOFT boosted the classifPunting to optimize performance. The concept behind this
cation rate of Fukushima’s network by over 20%. HoweveRew algorithm is to take a number of identically structured
when this system was evaluated on real world data from tRgocognitrons, with different selectivity parameters, train them
CEDAR databage[19]. it was clear that the “constructed”(using the same set of exemplars), then see which one is best
testing data was considerably easier to classify than actghlclassifying a validation set of handwritten digits; the ideal

handwritten digits (compare rows 3, 4, and 5 of Table I). Selectivities are taken to be those of the network with the
highest classification performance on the validation set.

Obviously, such a rige method for determining selectivities

min

6Lovell's test digits are public domain and are currently available via e-mail

(contactdri@eng.cam.ac.uk ). must be subject to certain constraints and assumptions for it
7We gratefully acknowledge Prof. Fukushima’s kind assistance in providit@ be feasible. Instead of attempting to individually adjust the
us with his training data. selectivity of each S-plane, SHOP maximizes the classification

8Test data was drawn from thEEST/BINDIGIS/BS directory of the performance of the network with the constraint that all S-
CD-ROM. Full details of the exact digits used and the preprocessing that was
applied to them are given in [17, Appendix B] 9Data was thinned using the Safe Point Thinning Algorithm [20].
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planes within a given layer have the same selectivity value.  Fukushima [4] cites values @f = 780s,tp = 3.3s for
Also, because S-cell selectivity is a continuous variable, SHOP  a simulation of the neocognitron, written in FORTRAN

relies uponsampling the range of possible selectivities to and running on a SUN Sparcstation. If we specified ten
obtain a finite number of performance estimates for a specific  possible selectivity values for each layer of a four-layer
neocognitron. network and used a validation set with 400 patterns,
SHORP is described in Algorithm 3, whetg, is the set of SHOP would take about eight months to come up with
all ¢th layer selectivities to be considered when testing the a good set of selectivities on Professor Fukushima’'s
performance of the neocognitron. computer. In a commercial/industrial situation, a SHOP
In the pseudocode (shown in Algorithm 3 at the bottom trained neocognitron would have to be implemented with
of the page) the procedure known &siin_neocognitron() dedicated hardware (e.g., [23]).
refers to Fukushima’s original training algorithm (Algorithm 2) The success of SHOP relies upon the stability of the
1). neocognitron’s performance with respect to changes in
The purpose of theest_neocognitron() procedure is to selectivity. If small changes in the selectivity of any

evaluate the performance of the network using a validation set layer cause the performance of the neocognitron to
of real-world data. It is up to the experimenter to decide exactly  fluctuate wildly, then sampling the net's performance
how the network’'s performance is to be measured. Correct for a variety of selectivities will be of little use to us.
classification rate and reliability are examples of statistics that

could both be used to measure the network’s performance as

shown in Algorithm 3. F. Experiments with SHOP

When the algorithm terminates,..; contains the selectiv-  As indicated in the previous section, execution time was a

ities that elicited the highest performance from the networlyajor concern in our experiments with SHOP. The duration of
These selectivities can then be used in practical implemengch experiment was reduced by two orders of magnitude by

tions of the system. restricting the first- and fourth-layer selectivity values tested.
Since the relation between the input pattern and the outputs
E. Implementation Issues with SHOP of the first-layer S-planes was readily observable, a suitable

Although SHOP has the potential to make good use &f value could be determined by trial and error. Hence, the
real-world data and employs a more realistic measure %t Of first-layer selectivities to be tested contained only one
network performance than any of the algorithms discusséalue: By = {1.7}.

previously, the exhaustive search approach to finding a good/Vith respect to final layer selectivity it is important to
set of selectivities has a number of drawbacks. remember that, while; determines thevalue of the outputs

1) Execution time cannot be ignored in our assessment g€ NEWOIK, it has no effect on which of the outputs is the
SHOP's feasibility. Ift; is the time taken to train the largest. Since input patterns are classified on a winner-take-

neocognitront  is the time taken to propagate activitya” basis,r, tends not to affect the classification performance
through the network andVy- is the number of examples of the ’?e‘WO”‘ (providing _it is n(_)t so high as to make _US4
in the validation set, then the time taken to execuféens reject a large proportion of input patterns). The arbitrary

SHOP is restriction of 4, = {1.0} did not appear to cause any problems
in the tests on SHOP. As well as saving time, restriction of
tshop = |R1| X |Ra| X -+ X |Rp| X (t7 + Ny tp). first- and fourth-layer selectivities allowed the classification

Algorithm 3: (The Selectivity Hunting to Optimize Performance Algorithm)

procedure SHOR) {

forall »; € Ry { Using every possible combination

of selectivities,

in all layers of the neocognitron,

train the network

and then test it.

If the current network has

the best performance (so far),

update the best performance value
and store the  L-tuple of selectivities
used by the present network.

forall r;, € Ry, {
train_neocognitron();
test_neocognitron();

if per formance > best_so_far {
best_so_far = per formance;
Rbest = (7)17 T2, ", TL);

HHEHFHEHFEHFHEHEH H
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Fig. 16. The performance surface obtained with the KF-1988 network usifiy. 18. The performance surface obtained with the DL-1992 network using
a validation set of 400 unthinned CEDAR digits. Peak correct classificati@nvalidation set of 400 unthinned CEDAR digits. A peak correct classification
was 49.00% (54.60% reliability) for. = 2.563,r3 = 0.7805. was 79.00% (79.42% reliability) for, = 1.602,r3 = 1.000.
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Fig. 17. The performance surface obtained with the KF-1988 1988 netwdrky. 19. The performance surface obtained with the DL-1992 network using
using a validation set of 400 thinned CEDAR digits. Peak correct classificatianvalidation set of 400 thinned CEDAR digits. A peak correct classification
was 46.75% (49.34% reliability) foro = 2.022,r3 = 1.602. was 78.75% (79.15% reliability) for, = 2.022,r3 = 0.5990.

performance of the network to be readily visualized as ta provide an accurate prediction of good selectivity values.
performance surface-a functiort® of 7, andrs. The peak performance obtained with the test digits is shown
Figs. 16 and 17 show that peak recognition performancesrow 8 of Table I.
obtained using SHOP on Fukushima’s 1988 network are fairly Since SHOP allows us to systematically evaluate the
poor. We reasoned that this may have been due to the stylize@cognitron’s behavior, it can be used to investigate the effect
digit fragments used to train this system so, to test thif parameters other than selectivity. We know how to choose
hypothesis, we applied SHOP to the DL-1992 network (whicjood values of selectivityr,) and that the learning ratg,)
used more “realistic” digit fragments during training). Figs. 18hould be high, but we do not know how to choose rtiesk
and 19 show this gave around 30% improvement in pearameters~,, §, andé, [(6) and (7)] or even (as Hildebrandt
performance. Furthermore, the network’s peak classificatignggested [15, Section Il-B]) whether such parameters are
rate on the validation set afnthinneddigits was slightlyin  necessary. To explore this issue, we set all mask parameters
excessof that achieved with the validation set dfinned of the DL-1988 network to 1.0—effectively removing their
digits—a finding contrary to Fukushima's comments thaafluence on the network—and used SHOP with 400 thinned
implied the the first layer of the neocognitron would havEEDAR digits to evaluate the network’s performance surface.
to be redesigned to cope with unthinned input patterns [#he surface obtained differed from the one shown in Fig. 19
Section V]. but thepeak classification performanagas not significantly
Performance surfaces are only useful if they can be usgfiferent (a peak correct classification rate of 78.00%, with
to predictgood selectivity values. To see if this was the casgg.20% reliability, occurred for, = 1.000,73 = 1.269).
we compared the performance surface of Fig. 19 to that givRfask parameterslo notseem to have a significant effect on
by a test set of 400 thinned CEDAR digits. Not only was thghe peak performance attainable.
correlation between these two surfaces high=f 0.9961),
the maxima of both surfaces was achieved with the same Vi

L . FURTHER IMPROVEMENTS TO THENEOCOGNITRON
(r2,73) combinationry = 2.022, 73 = 0.5990. SHOP appears

05 . , We have investigated all parameters that affect cell function
It is convenient to plot performance across regular increments of

re/(re + 1)since this corresponds to a uniform sample of acceptance regidﬁ% the neoco'gnitron. We know that by usmg a high |eaming
(see Section IV). rate (¢ =~ 10°), appropriate mask parameter valueg, §; ~
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T om - T sm:==nnjl Fig. 21. The end portion of th&lCMLP architecture. Final layer C-cells
. 0w . m m == mmsmf] " aneocognitron are replaced by a two layer, fully connected MLP. The
4 = m == = gl - . L MLP receives input from the US4 cell planes and propagates activity through
. [ | = = .-unlll alayer of hidden units to the ten output units that indicate NGMLP s
L n | ® mm =u.ml (assification of the input image.

Fig. 20. Each row in the two large columns represents the outputs of the ten
final layer C-cells in the DL-1992 network after training with SHOP using

Lol CEDA 0t (5o i 48, The s of ot gt = bacated Buitilayer perceptron (MLP) has been popular afsrbition
that evoked these outputs were correctly classified. However, in many cafi@e classifier [24]. Perhaps coupling the neocognitron and
the margin between the largest and second largest output is small, makingMheP would create a system that could perform distortion
classification vulnerable to error. tolerant feature extractioand robust classification? We refer
to this hybrid system as the NCMLP (neocognitron plus MLP).
3 Put simply, the NCMLP takes a neocognitron that has been
0.71.0; 6, ~ 1.04.0) and selectivities determined by SHOP, arained using SHOP and replaces the final layer C-cells with a
correct classification rate of around 76%, with 76% reliabilitywo layer MLP (Fig. 21). The MLP portion of the network is
is feasible. If further improvement is to be achieved it seentisen trained to associate the outputs of the final layer S-cells
we must alter the neocognitron to attain it. with a single output that represents the class of the input image.
Researchers often decompose the problem of handwritten
character recognition into two stagd<eature extractiorob-
tains some numerical (or logical) measure of the characteristtss NCMLP Implementation Issues
of the input image, then the image undergolessificatiorand ~ On top of the variables attendant to the neocognitron, the
is labeled (or rejected) on the basis of the features extracteflcMLP requires the experimenter to specify learning rate
Our attention has been focussed mainly on the neocognitro(y§, momentum(«), number of hidden units, initial random
feature extracting abilities and we have tended to ignore thight variance, etc. One consolation is that the sheer volume
1% of cells in the network (i.e., those in the final layer) thajf research involving MLP systems provides some empirical
tell us what class has been assigned to an input pattern. gaidelines for selecting these parameters. But regarding the
reasons explained in the previous section, SHOP does not attember of hidden units needed for the task at hand, the
the selectivities of these cells; examination of the network&nly practical answer seems to be to evaluate a variety of
outputs during operation gives an indication of the problenmgtwork architectures and choose the one that offers the best
that occur as a result. generalization performance (much in the same way that SHOP
Fig. 20 shows typical levels of output activity for 50 corsettles upon good selectivity values).
rectly classified input digits. Clearly, the neocognitron is not
discriminating effectivelybetween different classes of input.
The outputs, as with all other cells in the network, simplf- Experiments with the NCMLP
indicate the degree to which certain features are present irNCMLP training involves two phases: the first uses SHOP
the input image. Should some of the features detected by aneletermine effective selectivities for the neocognitron portion
cell also be detected by others, a number of cells can shofvthe network; the second uses validation techniques in
high levels of activity at the same time. Consequently, th®njunction with backpropagation to determine the structure
neocognitron is apt to confuse certain digits (such as 2's aadd weights for the MLP section.
3’s) because of the number of features they have in commonWe used SHOP and a validation set of 400 unthinned
We need final layer cells to exploit the idiosyncratic aspec®EDAR digits to find selectivities for the DL-1992 network
of each kind of digit to obtain more robust classification. Th@Ry,.s: = {1.700,1.602,1.000, 1.000}). Determining an ap-
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propriate architecture for the MLP portion of the network was TABLE I
more involved. SUMMARY OF DIGIT RECOGNITION RESULTS OBTAINED
. - . BY CoHEN et al. {26] UsING THE CEDAR DATABASE
To ensure inputs would not be classified on the basis of low
or ambiguous outputs, we applied two thresholdg, = 0.9 Method of | Test

and t..ns = 0.1, to the outputs of the NCMLP%,,; denotes
the threshold of validityand ¢...s the threshold of confusian
For a given test digit, if no final layer unit's output was above Boundary 2418 86.6% 87.38%
tya1 OF more than one unit’'s output was aboig,, the digit Stroke 540 85.0% 90.42%
was rejected. Otherwise, the digit was classed according to
the unit with the highest output.
As well as thresholds to ensure rejection of illegible or

ambiguous digits, the NCMLP wasained to reject images
of ill-formed digits. Bromley and Denker [25] advocate th

analysis | set size | % Correct | % Reliability

Contour 2418 79.7% 80.89%

3 Since submission of this manuscript, it has been brought
. o S e . 0 our attention that Fukushimat al. have independently
training of MLP type classifiers with "rubbish” subimage cieveloped a selectivity hunting method like SHOP [27], [28].

(i.e., ambiguous digits, multiple or partial digits, and noisq\f ) . ) .
to enhance rejection performance. The set of digits used 59 this algo.rl_thm with an expanded ngtwork, bend Qetec-
tion cells, modified S-cell response functions, and a mixture

train the MLP portion of the network contained 440 exampleosf supervised and unsupervised leaming, Fukushial,

of each digit! and 440 “rubbish” images. i - 0 .
Ten different MLP structures were evaluated; each had 2 9h'e¥§ aE$2r1e§ :egognmonbzgtﬁ gfb97iﬁﬁ) Ec:n ?O?O :'g'tsl
inputs (23 US4 planes, each with-33 cells) and ten outputs, roE)n te J' a aAasg (ptu IS et y .b? tec rokec n]!cg
and the number of hidden units varied between each netwégrgmcg:rios rgn O?Ft)ﬁg)i\l Cic\lﬂallrlg’s: pI:rfr:) ?mz?lizl 0?1 gErSi; deilgi?sir
from five, ten, 15; - -, up to 50 units. Backpropagation training "> N .
WV up un propagat n th a system tested on ETL-1 data, but it is interesting to note

\;Vari Oargglrllttal?n;[oo?lIor;et\{lv_cr)lrekspgrsfl(;\rgmgnlg:rr;ng E;;t]e ac;::rili.tg C?J at Fukushima has found a SHOP-like approach to selectivity
e justment worthwhile.

) - . . lidati ¢ a4 : \ .
during training was monitored using a validation set o od While looking for ways to raise the NCMLP’s performance

inite 12
dIgLIJtr?der the assumption that validation set performance cdyrther still, it became clear that the neocognitron section of the
related highly with generalization abilify,the most effective network was nc_)t extracting all th_e features necessary _fpr the
MLP was the one that achieved the highest classification r é‘.P. to distinguish between certain classes qfdlg't' A.ddl.tlonal
on the validation set. This turned out to be a network with2' "9 of thq MLP would not remedy this sﬁuaﬂ_on, the
45 hidden units, after 280 epochs of training. The test*se eat%”.e extraction process vyould have tq b? altered either 1.) by
retaining the NCMLP paradigm and designing a more effective

performance of this NCMLP is shown in row 9 of Table I. . S
There is an inherent difficulty in comparing the NCMLP’s\]ceature extraction network or 2) by rejecting the NCMLP

performance to other digit recognition systems. As Seén model and trying to develop a system with a greater ability

al. point out in their survey ... recognition systems cannotto learn to exploit distinguishing features of digits. The time

be compared simply by their reported performances sin gd effort needed to redesign and retest the NCMLP renders

most systems are still tested on data bases with very differi} e first option impractical. The second alternative has already

characteristics.” [22, p. 1176]. For practical reasons, we can SN explored by Le Cuat al. [29], [30] who have applied

ot .. : T .
evaluate the NCMLP’s performance on each of the data Sg{gdlent descent techniques and second derivative pruning

mentioned by Sueret al, however, their survey does Citemethods to a hierarchical network very similar in structure
results obtained by Coheat al. on the 2711 test digits of to;?tih?eocci)r?tn\lltvronb. lieve we hav n far ibl
the CEDAR database [26]. The 95.54% correct recognition 'S point We DEIEVE We have gone as far as possibie
rate (with 97.97% reliability) was achieved by Cohenal in our investigation of the neocognitron and networks that
. . . are recognizably derived from it (yet distinct from exist-

via a combination of four recognition algorithms, so it isn systems). Our experiments have pointed us away from
unfair to compare the NCMLP with this result. Unfortunatel)) g sy ' P P y

Cohenet al. only report the results of three of their individualr__ukusmr’n""'S method of supervised training with digit frag-

recognizers and, to further complicate the issue, different siZ8 ntr?1 tovviard nrmdrie n(iffdectlver,]t per;‘or?a}gic;]e-drgep I(ievarrr:ltnr?
of test set were used in measuring results. We present Tabl8q1eMes (ie., gradie escent style training). But, give N

to give an impressionof how the NCMLP fares against theéucnciis’alOf 'tthseeeltlnc;'vll%(ZI art]gatth'f lfy::?ma’gesg:gsdt tgf ;e
systems used in [26]. u 5l ikely ukushi p

hierarchy of shared-weight feature extractors will be used in
the classification of images by artificial neural networks for

11 i - .
Taken from theTRAIN/BINDIGIS/BR section of the CEDAR CD some time to come.

ROM.

12pgain taken from theTRAIN/BINDIGIS/BR  section of the CEDAR
CD-ROM. VII. CONCLUSIONS

13An assumption justified by the correlation between validation and test setI hi h iticall . d the f lati
performances—-> 0.95 for the ten different MLP's. n this paper we have critically reviewed the formulation

LpAn unbalanced test set of 2711 digits was taken from th@nd capabilities of Fukushima’s neocognitron. To the best of
TEST/BINDIGIS/BS  section of the CEDAR CD-ROM. the authors’ knowledge, this is the first time an empirical
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assessment of the neocognitron with a substantial set ¢
publicly available test data has been published. n

The neocognitron’s performance has been shown to be
highly dependent upon the selectivity of the feature extractin%

S-cells and we have presented and evaluated two metho 3

to set these parameters. The first technique, SOFT, avoids
the shortcomings of Hildebrandt's OCFT algorithm by setting6l
selectivity such that S-cells produce a guaranteed minimum
response to their training patterns. Experiments with SOFJ]
led to the proposal of SHOP, a selectivity adjustment algo-

rithm that relies upon a validation set of real-world digits torg
determine effective selectivities.

Analysis of final layer S-cell outputs after training with g
SHOP showed that classification implemented in the final Iayér
of the network did not fully utilize the distinguishing featureg10]
extracted in preceding stages. We addressed this problem v&tﬁ
an extension to the neocognitron which uses an MLP as the
final layer classifier. We showed how this NCMLP architecturé?]
could be trained using SHOP and backpropagation, as well as
a validation set of digits to determine an appropriate numbpgg]
of hidden units for the MLP portion of the network.

Clearly, the peak test performance of the NCMLP (84.73%y
correct with 96.43% reliability) was a significant improvement
upon Fukushima’s original network. One factor which appeal¥!
to limit the NCMLP’s recognition rate was the failure of
the neocognitron section of the network to fully exploit thél6]
features which distinguish different classes of input. This is
not necessarily a failure of the neocognitron mogdet se [17]
While most of this paper has focussed on methods to adjust
the neocognitron’s parameters to maximize performance, we
have not addressed the issue of how to select a training setfief
digit fragments that will give optimal recognition. This issud!®l
is one of the reasons why we are unable to give an exact
statement of the neocognitron’s performance on real-worfeb]
digits. (Other reasons include the infinite variety of feasible
network architectures and the multitude of data sets that coygd,
be used to test the system.)

Results presented in Section V-C show, without doubt, that,
skillful choice of training set enhances recognition. But this
requires a degree of human intervention that is somewhat
at variance with the original principles of self—organizatior[\23]
described in Fukushima’s seminal papers, and indeed, much
of the machine learning ethos. Whether this ispoactical [24]
significance to those conducting research into the supervisgg,
unsupervised, and selective attention versions of the neocog-

nitron will depend on the objectives of the researcher. [26]

ACKNOWLEDGMENT

The authors gratefully acknowledge the comments !
suggestions of this paper's anonymous reviewers. [28]

REFERENCES [29]

[1] K. Fukushima, “Neural-network model for a mechanism of pattern
recognition unaffected by shift in position—neocognitroftans. IECE  [30]
Japan vol. 62-A, no. 10, pp. 658-665, 1979.

[2] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural-network
model for a mechanism of visual pattern recognitid&EE Trans. Syst.,
Man, Cybern, vol. SMC-13, 1983.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

K. Fukushima, “Neocognitron: A heirarchical neural-network capable of
visual pattern recognitionRleural Networksvol. 1, pp. 119-130, 1988.

K. Fukushima and N. Wake, “Handwritten alphanumeric character
recognition by the neocognitron/EEE Trans. Neural Networksvol.

2, pp. 355-365, May 1991.

, “An improved learning algorithm for the neocognitron,” in
Artificial Neural Networks vol. 2, I. Aleksander and J. Taylor, Eds.
Amsterdam, The Netherlands: Elsevier, 1992, pp. 497-504.

, “Improved neocognitron with bend detecting cells,” in
IEEE/INNS International Joint Conference on Neural Netwprks
Baltimore, 1992, vol. 4, pp. 190-195, IEEE Press.

K. Fukushima, “Improvement of the neocognitron and the selective
attention model,” inProc. World Congr. Neural NetworksPortland,
OR, vol. 3, 1993, pp. 634-647.

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat's visual corted,”Physiology
vol. 160, pp. 105-154, 1962.

R. Hecht-Nielsen,Neurocomputing Reading, MA: Addison-Wesley,
1990.

A. I. WassermanNeural Computing: Theory and Practice New York:

Van Nostrand Reinhold, 1989.

E. Barnard and D. Casasent, “Shift invariance and the neocognitron,”
Neural Networksvol. 3, pp. 403-410, 1990.

K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position,”
Pattern Recognitionvol. 16, no. 6, pp. 455-469, 1982.

K. Johnson, C. Daniell, and J. Burman, “Feature extraction in the
neocognitron,” inProc. Int. Joint Conf. Neural Networksol. 2, 1988,

pp. 117-126.

K. Fukushima, “Analysis of the process of visual pattern recognition by
the neocognitron,Neural Networksvol. 2, pp. 413-420, 1989.

T. H. Hildebrandt, “Optimal training of thresholded linear correlation
classifiers,”IEEE Trans. Neural Networksvol. 2, pp. 577-588, Nov.
1991.

D. R. Lovell, A. C. Tsoi, and T. Downs, “Comments on ‘Optimal
training of thresholded linear correlation classifiers|EEE Trans.
Neural Networksvol. 4, pp. 367-368, 1993.

D. R. Lovell, The Neocognitron as a System for Handwritten Character
Recognition: Limitations and ImprovementsPh.D. dissertation,
Univ. Queensland, Brisbane, Australia, July 1994, available FTP:
archive.cis.ohio-state.edu directory: pub/neuroprose/Thesis

D. Simon, private communication, June 1992.

R. Fenrich and J. J. Hull, “Concerns in creation of image databases,”
in Proc. Int. Wkshp. Frontiers in Handwriting Recognitjoh993, pp.
112-121.

N. J. Naccache and R. Shinghal, “SPTA: A proposed algorithm for
thinning binary patterns,|/EEE Trans. Syst., Man, Cyberwol. 14, no.

3, pp. 409-418, May/June 1984.

S. Mori, C. Y. Suen, and K. Yamamoto, “Historical review of OCR
research and developmenEtoc. |IEEE vol. 80, no. 7, pp. 1029-1058,
1992.

C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam, “Computer
recognition of unconstrained handwritten numeraRdc. IEEE vol.

80, no. 7, pp. 1162-1180, 1992.

A. M. Chiang and M. L. Chuang, “A CCD programmable image
processor and its neural network applicationdEfEE J. Solid-State
Circuits, vol. 26, pp. 1894-1901, 1991.

S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemmaNeural Computa.vol. 4, pp. 1-58, 1992.

J. Bromley and J. S. Denker, “Improving rejection performance of
handwritten digits by training with ‘rubbish,"Neural Computa. vol.

5, pp. 367-370, 1993.

E. Cohen, J. J. Hull, and S. N. Srihari, “Understanding handwritten text
in a structured environment: determining ZIP codes from addresses,”
Int. J. Pattern Recognition and Artificial Intellvol. 5, nos. 1-2, pp.
221-264, 1991.

K. Fukushima and M. Tanigawa, “Use of different thresholds in learning
and recognition,"Neurocomputingvol. 11, no. 1, pp. 1-17, 1996.

K. Fukushima, K. Nagahara, H. Shouno, and M. Okada, “Training
neocognitron to recognize handwritten digits in the real world Piac.
World Congr. Neural NetworksSan Diego, CA, 1996, pp. 21-24.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip
code recognition,’/Neural Computa.vol. 1, pp. 541-551, 1989.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” inAdvances in Neural Information Processing
SystemsD. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann,
vol. 2, 1990, pp. 396-404.




networks to medical problems.

LOVELL et al. EVALUATION OF THE NEOCOGNITRON

David R. Lovell (S'89-M'89) received the Bach-
elor of Engineering degree in computer systems
(Hons. 1) and Ph.D. degrees from the University of
Queensland, Australia, in 1989 and 1994, respec-
tively.

From 1993 to 1994 he was a Lecturer at the
Department of Electrical and Computer Engineering
at the University of Queensland. Since 1995, he
has been employed as a Research Associate at the
University of Cambridge, U.K., investigating neural
network and other statistical methods for prediction

1105

Ah Chung Tsoi (S'70-M'72-SM’'90) was born in
Hong Kong. He received the Higher Diploma in
electronic engineering from Hong Kong Technical
College in 1969 and the M.Sc. degree in electronic
control engineering and the Ph.D. degree in control
engineering from the University of Salford in 1970
and 1972, respectively.

From 1972 to 1974 he worked as a Senior Re-
search Fellow at the Inter-University Institute of
Engineering Control, University College of North
Wales, Bangor, Wales. From 1974 to 1977, he

of risk in obstetrics. His research interests include handwritten characteorked as a Lecturer at the Paisley College of Technology, Renfrewshire,
recognition, feature selection methods, and the application of artificial neuBdotland. From 1977 to 1984, he worked as a Senior Lecturer at the University
of Auckland, New Zealand. From 1985 to 1990, he worked as a Senior

Lecturer at the University College, University of New South Wales. From
1990-1996, he was Associate Professor, and then a Professor in Electrical
Engineering at the University of Queensland. Since July 1996 he has been

Thomas Downs(M’74) received the B.Tech. and
Ph.D. degrees from the University of Bradford
U.K., in 1968 and 1972, respectively.

From 1968 to 1973 he was employed by the
Marconi Company in Chelmsford, U.K., in the
Theoretical Sciences Laboratory, where he worked
on the computer-aided design of electrical circuits
and systems. In 1973, he joined the Department of
Electrical Engineering at the University of Queens-
land, Australia, where he is now Professor. His main
research interests are in the theory and application

of artificial neural networks, mathematical statistics, and applied probability
modeling. He has published some 120 technical papers and is coauthor of the
book Logic Design with PascalNew York: Van Nostrand Reinhold, 1988).

Dean, Faculty of Informatics, University of Wollongong, Australia. His
research interests include aspects of neural networks and their application
'to practical problems, adaptive signal processing, and adaptive control.



