Тема 1. Назначение, состав и структура системы УТАС

- 1.1 Система УТАС предназначена для обеспечения комплексной безопасности шахт посредством:
 - непрерывного контроля параметров машин, технологических комплексов и рудничной атмосферы горных выработок шахт;
 - автоматизированного управления горными машинами и технологическими комплексами на основе использования постоянно обрабатываемых и накапливаемых данных о состоянии ГШО и атмосферы выработок, передаваемых на диспетчерский пункт шахты по телекоммуникационной связи.

1.2 Система производит:

- сбор и хранение данных о состоянии ГШО, рудничной атмосферы в выработках шахт, а также информации о предаварийных и аварийных ситуациях;
- обработку полученной информации по заданному алгоритму и выдачу команд сигнализации и аварийного отключения;
- передачу данных диспетчеру на поверхность;
- обработку, визуализацию и хранение собранной информации по заранее разработанному алгоритму;
- передачу команд управления от диспетчера к подземным объектам.
- 1.3 Сигналы о состоянии горных машин, механизмов, оборудования и о параметрах рудничной атмосферы поступают на программируемые контроллеры Системы от датчиков, установленных как в шахте, так и на поверхности. Программируемые контроллеры принимают и анализируют сигналы датчиков. При превышении показаний датчиков значений заданных уставок контроллера подаются команды на включение сигнализации, отключение ГШО и электроэнергии, также передается текущая информация о состоянии ГШО и о параметрах рудничной атмосферы по цифровому каналу связи в диспетчерскую. В зависимости от ситуации, диспетчер может выдавать дополнительные управляющие команды, которые передаются на контроллеры ГШО, установленного как под землей, так и на поверхности для выполнения функций управления.
- 1.4 Система УТАС при ее использовании на угольных шахтах осуществляет контроль технологических параметров, показателей безопасности и управление, которые реализуются следующими подсистемами:
 - «Рудничная атмосфера»;
 - «Добычные участки»;
 - «Проходческие участки»;
 - «Вентиляторы местного проветривания»;
 - «Участковый и магистральный конвейерный транспорт»;
 - «Водоотливные установки»;
 - «Высоковольтные распределительные устройства»;
 - «Вентиляторы главного проветривания»;
 - «Подъемные установки»;
 - «Компрессорные установки»;
 - «Котельные установки»;
 - «Вакуум-насосные станции и дегазационные трубопроводы»;
 - «Калориферные установки»;
 - «Поверхностные технологические комплексы»;
 - «Противопожарные насосные станции».

Примечание: Количество и наименование подсистем определяется конкретным проектом системы УТАС для каждой шахты.

- 1.5 Система УТАС обеспечивает выполнение следующих функций:
 - местную и централизованную индикацию текущих значений параметров контролируемых объектов;
 - местную и централизованную звуковую и визуальную предупредительную сигнализацию о достижении предаварийного состояния контролируемых объектов;
 - местную и централизованную звуковую и визуальную аварийную сигнализацию о достижении предельно-допустимых уровней контролируемых параметров или о аварийном состоянии контролируемых объектов;
 - местную сигнализацию о предельных положениях и позициях передвижных установок, деталей машин и механизмов;
 - включение объектов по команде диспетчера, в т. ч. по установленным алгоритмам и их технологический останов;
 - защитные отключения оборудования или блокировки цепей управления при достижении контролируемыми параметрами предельно-допустимых уровней;

- выдачу централизованных управляющих воздействий (защитных отключений, блокировок) с целью предупреждения развития аварийных ситуаций;
- передачу, прием, отображение, регистрацию и накопление поступающей информации от составных частей Системы;
- отбор, первичную обработку и передачу в ПВК шахты технологической информации и информации о показателях безопасности контролируемых объектов;
- предоставление диспетчеру информации о состоянии любого контролируемого объекта с использованием трех типов сигналов (нормальная работа, предаварийное состояние, аварийное состояние).

1.6 В состав системы УТАС (см. рис. 1.1) входят:

- поверхностный вычислительный комплекс (ПВК).
- автоматизированные подсистемы контроля и управления (АСКУ);

1.7 Типовая структура системы УТАС.

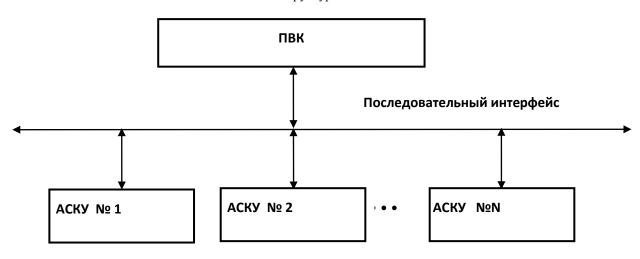


Рисунок 1.1. Типовая структура системы УТАС

Автоматизированные подсистемы контроля и управления образуют подсистемы управления нижнего уровня. Поверхностный вычислительный комплекс является подсистемой управления верхнего уровня. Подсистемы управления нижнего уровня связаны с подсистемой управления верхнего уровня по последовательному интерфейсу RS-485.

Система УТАС является открытой системой, т.е. в процессе эксплуатации может быть расширен состав подсистем нижнего и верхнего уровня. Состав подсистем расширяется за счет введения датчиков и устройств как системы УТАС, так и датчиков и устройств других типов, согласующихся по техническим параметрам с устройствами Системы. В состав системы УТАС может входить различное число автоматизированных подсистем управления нижнего уровня.

Типовая структура подсистемы управления нижнего уровня приведена на рис. 1.2.

Подсистемы управления нижнего уровня, также как и система УТАС в целом, являются распределенными сетевыми системами. Структура подсистем нижнего уровня определяется перечнем выполняемых функций по обеспечению комплексной безопасности шахт.

Подсистемы управления нижнего уровня выполняют:

- Прием и преобразование показаний от датчиков контролируемых параметров;
- Контроль исправности цепей датчиков контролируемых параметров;
- Прием показаний от дискретных сигнализаторов состояния;
- Контроль исправности цепей дискретных сигнализаторов;
- Управление ГШО;
- Включение местной предупредительной световой и звуковой сигнализации при достижении величины контролируемых параметров предельных значений;
- Выключение местной предупредительной сигнализации при исчезновении предаварийной или аварийной ситуации.
- Включение местной аварийной световой и звуковой сигнализации при выходе величины контролируемых параметров за границы предельных значений.
- Автоматическое защитное отключение электрической энергии при возникновении аварийной ситуации.
- Представление информации на индикаторах подсистемы:

- 1) показаний датчиков контролируемых параметров;
- 2) показаний дискретных сигнализаторов;
- 3) диагностической информации о неисправностях цепей датчиков и дискретных сигнализаторов.
 - Передачу по последовательному интерфейсу на сервер ПВК:
- 1) показаний датчиков контролируемых параметров;
- 2) сообщений о состоянии дискретных сигнализаторов;
- 3) сообщений о предаварийных и аварийных ситуациях;
 - Прием по последовательному интерфейсу через сервер от APM поверхностного вычислительного комплекса команд управления ГШО.

Типовая структура подсистемы управления верхнего уровня приведена на рис. 1.3.

ПВК, кроме APM диспетчерской, может включать в свой состав удаленные APM руководителей служб шахты (например: компьютеры главного инженера, главного механика, главного энергетика и т. д.), которые связаны с сервером по локальной сети Ethernet или по линиям модемной связи, а также оборудование для беспроводной передачи данных между удаленными объектами на поверхности.

Поверхностный вычислительный комплекс выполняет:

- Прием по последовательному интерфейсу от подсистем нижнего уровня на сервер информации о значении контролируемых параметров и состояниях контролируемых объектов;
- Представление информации на мониторах АРМ в виде:
- 1) мнемосхем подсистем;
- 2) числовых и графических значений контролируемых параметров;
- 3) текстовой, цветовой графической и звуковой предупредительной и аварийной сигнализации.
 - Ведение базы данных контролируемых параметров и событий*;
 - Санкционированный доступ к базам данных на сервере;
 - Контроль несанкционированного изменения конфигурации программного обеспечения;
 - Предоставление на АРМ графического интерфейса:
- 1) для санкционированного управления оборудованием;
- 2) для санкционированного просмотра таблиц и графиков;
- 3) для распечатки бланков технологической отчетности.
 - Технический учет электроэнергии.

Тема 2. Технические характеристики системы УТАС

2.1 Функциональные возможности Системы

Система является гибкой, многофункциональной пространственно-распределенной системой. В зависимости от поставленной задачи она может выполнять заданные этой задачей функции. При этом объем и конфигурация Системы определяется совокупностью контролируемых и управляемых параметров, назначением, количеством и расположением средств сбора информации, устройств сигнализации и исполнительных устройств, алгоритмами обработки и представления информации на каждой конкретной шахте (предприятии).

В основном, развернутом, исполнении Система обеспечивает выполнение следующих функций контроля и управления.

- 2.1.1 Система обеспечивает функции контроля показателей безопасности:
 - содержания газов (CH₄, CO, O₂, H₂ и др.) в рудничной атмосфере горных выработок, в дегазационных трубопроводах и в помещениях;
 - температуры воздуха в горных выработках и на поверхности;
 - скорости воздуха в горных выработках и в вентиляционных трубопроводах;
 - температуры поверхности ГШО, узлов машин и механизмов, жидкостей и газов;
 - давления жидкостей и газов;
 - уровня материалов в накопительных емкостях, на конвейерах, на пересыпах;
 - вибрации ГШО или его узлов;
 - скорости движения или скорости вращения ГШО;
 - проскальзывания конвейерной ленты;
 - положения передвижных и перемещающихся объектов, защитных ограждений технологического оборудования и электроустановок, отклонения деталей и частей ГШО;
 - положения элементов вентиляционных сооружений.
- 2.1.2 Система обеспечивает контроль технологических параметров:
 - состояния технологического оборудования (включено/отключено);
 - режимов работы ГШО (под нагрузкой/холостой ход);
 - исправности технических средств системы УТАС;
 - достоверности информации, принимаемой по последовательному интерфейсу;
 - количества рабочих циклов ГШО;

- производительности вентиляторов главного проветривания;
- технический учет электроэнергии.
- 2.1.3 Система обеспечивает функции управления и защиты:
 - автоматизированное, через графический пользовательский интерфейс ПВК Системы;
 - автоматический пуск и останов ГШО в соответствии с заданными алгоритмами;
 - автоматический останов ГШО при выходе его технологических параметров за границы предельно допустимых норм;
 - автоматическое отключение электроэнергии и останов ГШО при достижении нормированных концентраций газов (CH_4 , CO, O_2 , H_2 и др.) в рудничной атмосфере горных выработок, в дегазационных трубопроводах и помещениях.
- 2.1.4 Система обеспечивает выполнение следующих информационных функций:
 - формирование технологических, предупредительных и аварийных световых и звуковых сигналов;
 - предоставление значений контролируемых параметров и событий обслуживающему персоналу, при необходимости, в виде таблиц и графиков;
 - сигнализация и оперативное отображение средствами визуализации событий, связанных с достижением предаварийных и аварийных уставок параметров;
 - формирование и хранение информации о состояниях контролируемых параметров и событий.
 - 2.2 Основные технические характеристики и параметры Системы и ее составных частей

Таблица 2.1 - Основные технические характеристики и параметры Системы

	Единица измерения	Значение, кол-во	Примечание
1 Характеристика параметров электрическ	ого питания сис	темы УТАС и ее состав	вных частей
1.1 Первичное электрич	ческое питание	е системы УТАС	
Напряжение питания диспетчерского пульта управления от электрической сети переменного тока при частоте (50 \square 1) Γ ц	В	220	
Номинальное значение напряжение питания взрывобезопасных источников питания типов БП12, БП12A, БП13,5A и т.д. от электрической сети переменного тока при частоте (50□1) Гц	В	127/220/380/ 500/660	Значение питающих напряжений сети переменного тока определяется
Номинальное значение напряжения питания источников питания общего назначения типа C12 и т. д.	В	127/220/380/ 500/660	применением конкретных типов блоков питания
Напряжение питания терминала компьютерного подземного ПМ-08 и т.д. от электрической сети переменного тока при частоте ($50 \square 1$) Γ ц	В	36/127	
1.2 Вторичное электрическое пи	тание составни	ых частей системы УТ	AC
Выходное напряжение постоянного тока блоков питания	В	от 11,5 до 13,5	
Выходной ток блоков питания серии БП, не более	A	1,5	

Емкость аккумуляторных батарей взрывобезопасного блока питания с	А·ч	10	
аккумуляторными батареями, не менее			
Продолжительность питания от источника бесперебойного питания диспетчерского пункта управления и сигнализации, не менее	мин	15	
Напряжение питания датчиков	В	от 6,5 до 15,4	В зависимости от
Ток потребления датчиков	мА	от 5,0 до 100	типа датчика
Напряжение питания контроллера	В	от 8 до 14,4	
Ток потребления контроллера при напряжении питания 12В, не более	мА	125	
Параметры значений напряжений преобразователей питания «вход/выход»:			
- для ПМ-03			
- для ПМ-10	В	12,0/19,0	
		12,0/24,0	
2 Характеристика	структуры сист	емы УТАС	
Число контроллеров, подключаемых к одному сегменту линии связи, не более	шт.	32	
Число каналов контроля (датчиков), подключаемых к контроллеру,не более:	ШТ.		
- аналоговых		8	
- дискретных		16	
Расстояние от датчика до контроллера, не менее:			
- датчики с цифровым закрытым протоколом передачи и большим током потребления			Расстояние указано
- датчики с цифровым закрытым протоколом передачи и малым током потребления- аналоговые датчики	КМ	2	для кабеля сечением 1,5мм ² и может быти дополнительно увеличено
- дискретные датчики			y - 11111 11111
- при использовании преобразователя в цепи		3	
питания латчика			
Расстояние от взрывобезопасного блока питания до контроллера, не более	M	500	
Расстояние от контроллера до репитера ПМ-02 и между репитерами, не более	KM	1,2	
Расстояние от пускателя до взрывобезопасного блока питания, при отсутствии автоматического размыкателя питания, не более	М	10	

Число контроллеров, подключаемых к одному блоку питания	шт	от 1 до 10	Кол-во зависит от общего потребляемого ток	
3 Характеристика бы	<u> </u>	системы УТАС		
Реакция контроллера на превышение порогового значения сигнала, не более	мс	200		
Время срабатывания системы*(контроллеров) с инерционной аппаратурой контроля метана, не более	c	15		
Время срабатывания системы (контроллеров) с быстродействующей аппаратурой контроля метана по объёмной доле метана, не более	С	0,8	Параметры вводятся при использовании Системы с применением аппаратуры быстродействуют его отключения электроэнергии подгруппы МС2 ДСТУ ГОСТ 24032-80	
Время срабатывания системы (контроллеров) с быстродействующей аппаратурой контроля метана по скорости нарастания объёмной доли метана, не более	С	2		
Время опроса контроллеров системы	c	от 1 до 10		
Скорость передачи информации по проводным каналам связи, не менее	кБит/с	9,6		
Скорость передачи информации по радиоканалам, не менее	кБит/с	9,6		
4 Характеристики входных сигнало	 рв, обрабатыва	аемых модулями контрол	лера	
Аналоговый входной сигнал – ток, маркировка модулей- «4-20мА» и «0-10мА» соответственно	мА	от 4 до 20; от 0 до 10	Модуль ана- логовый (ток)	
Аналоговый входной сигнал – напряжение, маркировка модулей - «0,4-2В»	В	от 0,4 до 2	Модуль аналоговый (напряжение)	
Входной цифровой сигнал, уровни маркировка модулей - «AIMDIG RX»	В	0; +5,0 (закрытый протокол передачи)	Модуль цифровог ввода AIMDIG_RX	
Входной частотный аналоговый сигнал напряжением 100 мВ, маркировка модулей - «TS FREQ»	кГц	14; 20; 26	Модуль аналоговый (TS FREQ)	
Сигнал состояния контакта без контроля состояния линии, маркировка модулей - «Цифровой»	_	замкнут/	Модуль цифровой	

Сигнал состояния переключающегося контакта с контролем состояния линии, маркировка модулей - «DFS-2»	-	замкнут / разомкнут / обрыв / к.з. линии	Модуль дискретный помехоустойчивый DFS-2
Частотный сигнал амплитудой не более 8,7 В, частота, не более маркировка модулей - «Цифровой»	Гц	10000	Модуль цифровой
Интерфейс связи RS485 - цифровой сигнал, уровни			-
	В	-5,0; +5,0	
5 Характеристи	ка коммутации с	игналов	
5.1 Характеристика	контактов реле	контроллера	
Для исполнительных реле контроллера - максимальные значения тока, напряжения на	В	200	
контактах при условии коммутации не более 3 Вт постоянного тока в цепи.	A	0,25	
Для модуля реле контроллера - максимальные значения тока, напряжения на контактах при	В	250	
условии коммутации не более 3 Вт постоянного тока в цепи.	A	2,0	
5.2 Характеристика релейных вы	І Іходов составні	ых частей системы УТ	AC
Коммутируемое напряжение для блока реле ПМ- 01, не более	В	18	постоянного тока
Коммутируемый ток блока реле ПМ-01, не более	A	0,1	
Коммутируемое напряжение для остальных составных частей, не более	В	60	
Коммутируемый ток для остальных составных частей, в диапазоне	A	От 0,25 до 5,0	В зависимости от типа датчика, устройства
Коммутируемая мощность, не более	Вт	3,0	
6 Характеристика	систем передач	и данных	
Передача данных между диспетчерским пунктом управления и контроллерами	E	интерфейс, ithernet	
Передача данных между диспетчерским пунктом управления и удаленными терминалами		интерфейс, Ethernet	
Передача данных между датчиками и контроллерами	_	ый протокол STIC, SAP, SAPRLY,	
Протокол передачи данных		TCP/IP	

- 3.1 Система УТАС является многофункциональной пространственно распределенной системой с вынесением датчиков в рабочие зоны контроля параметров и размещением остальных элементов Системы в технически обоснованных точках объектов шахты с целью обеспечения ее функционирования.
 - 3.2 При построении системы УТАС используются технические средства, которые классифицируются:
- а) по пространственному распределению:
 - подземные средства;
 - поверхностные средства.
- b) по выполняемым функциям:
 - датчики;
 - дискретные сигнализаторы;
 - блоки питания, в том числе с аккумуляторной поддержкой;
 - программируемые логические контроллеры;
 - устройства аудиовизуальной сигнализации;
 - средства передачи данных;
 - устройства ПВК;
 - местные средства отображения информации.
- с) по типу используемых сигналов:
 - аналоговые;
 - цифровые;
 - дискретные;
 - частотные.

Типовой состав технических средств системы УТАС приведен в табл. 3.1.

Таблица 3.1 – Типовой состав технических средств системы УТАС.

	Габлица 3.1 – Типовой состав тех	нических средств сі	истемы УТАС		
№ п/п	Наименование Тип взрыво- защиты		взрыво-	Виды взрыво- защиты	Степень защиты от внешних воздействий
		Датчики аэрогазово	ого контроля		
	Выходное напряж	ение 0,4 ÷ 2 В / циф	ровой закры	тый протокол (Ц)	1
1	Датчик оксида углерода	ТХ3241/ ТХ3241Ц	РО	Иа С	IP54
2	Датчик водорода	ТХ3241.041/ ТХ3241.041Ц	РО	Иа С	IP54
3	Датчик сероводорода TX3241.0		РО	Иа С	IP54
4	Датчик оксида азота	ТХ3241.07/ ТХ3241.07Ц	РО	Иа С	IP54
2	Датчик метана	ТХ3261/ ТХ3261Ц	РО	Иа С	IP54
3	Датчик кислорода	ТХ3264/ ТХ3264Ц	РО	Иа С	IP54
4	Датчик метана высоких концентраций	TX3263	РО	Иа С	IP54
6	Датчик потока воздуха	ТХ1322/ ТХ1322Ц	РО	Иа	IP65
9	Датчик температуры воздуха	ПМ2068Ц	PO	Иа	IP65
10	Датчик температуры воздуха	TX2068/ TX2068Ц	РО	Иа	IP65
11	Датчик этилена инфракрасный	TX6363.01.11. 243 PD846	РО	Иа	IP65, для чувствитель-ного эл-та IP52
12	Датчик ацетилена инфракрасный	TX6363.01.11. 242 PD832	РО	Иа	IP65, для чувствительного эл-та IP52

13	Датчик углекислого газа инфракрасный	TX6363.01.11. 253	PO	Иа	IP65, для чувствительного эл-та IP52
	Į	Датчики физическ и	их параметров		
	В	выходное напряжо	ение 0,4 ÷ 2 В.		
14	Датчик температуры (совместно с температурными щупами ТХ2075, ТХ2072, ТХ2072У)	TX2061	РО	Иа	IP65
15	Температурный щуп погружения (совместно с ТХ2061)	TX2072/ TX2072У	-	-	IP65
16	Температурный щуп поверхностного контроля (совместно с TX2061)	TX2075	-	-	IP65
17	Датчик давления	TX6101	PO	Иа	IP66
18	Датчик дифференциального давления	TX6107	PO	Иа	IP66
		Выходной ток	4÷20 мА		
19	Датчик тока	ДТА1	****	Иа	IP40
20	Датчик вибрации	TX5636 TX5639	РО	Иа	IP67
21	Датчик уровня воды	TX5814	PO	Иа	IP68
22	Датчик давления жидкости	TX6114	PO	Иа	IP68
	I	Цифровой закры т	ый протокол		
23	Датчик тока	ДТА-2	****	Иа	IP40
24	Датчик влажности	ПМ-14	PO	Иа	IP54
		Дискретные сиги	нализаторы		
25	Датчик магнитный бесконтактный (совместно с ТХ 1080)	TX1004	РО	Иа	IP65
26	Магнит (совместно с ТХ 1004)	TX1080	РО	Иа	IP65
27	Датчик отклонения	TX1115	PO	Иа	IP67
28	Датчик контроля схода ленты	КСЛ-2 ****	PO	Иа	IP54
29	Индуктивный выключатель приближения	NAMUR NC	РО	Иа	IP67
30	Датчик скорости	NAMUR	РО	Иа	IP67
		Другие техническ	кие средства		
31	Программируемый контроллер	TX9042	РО	Иа	IP65
32	Блок управления ВМП	-	PO	Иа	IP65
33	Барьер искробезопасности***	MTL761	общего назначе-ния	Иа	IP20
34	Аудиовизуальная сигнализация	TX6831	РО	Иа	IP54
35	Дисплей	TX3282, TX3282.01	PO	Иа	IP54

36	Устройство размножения контакта	УРК-1	****	Иа	IP40		
37	Блок питания с искробезопасными цепями	C12*, TCL060-112 (C)	-	Иа	IP40		
38	Взрывобезопасный блок питани	БП-12	PB 3B	Иа	IP54		
	Вару побозогрази уй блак а БП-12А,		При работе от сети переменного тока				
	Взрывобезопасный блок с	D11-12A,	PB 3B	Иа	IP54		
39	аккумуляторными батареями	БП-13,5А		боте от аккумулятор			
			PO	Иа С	IP54		
40	Клеммная коробка	KK-1	РО	Иа	IP54		
41	Шкаф телефонный шахтный	ШТШ	PO	Иа	IP54		
42	Устройство распределительное шахтное	УРШ	РО	Иа	IP54		
43	Автоматизированное рабочее место	-	-	-			
44	Сервер	-	-	-			
45	Репитер	ПМ-02	РО	Иа	IP54		
46	Преобразователь интерфейса RS232/RS485	-	-	-	IP20		
49	Устройства сопряжения	УС-1, УС-2, УС-	****	Иа	IP40		
50	Преобразователь напряжения	ПМ-03	РО	Иа	IP65		
51	Коммутатор питания	ПМ-04	PO	Иа	IP65		
52	Программно-аппаратный комплекс сбора данных	ПМ-07	-	-	-		
53	Терминал компьютерный подземный	ПМ-08	РВ	2В Иа	IP54		
54	Маршрутизатор *****	ПМ-09	PO	Иа	IP40		
55	Преобразователь питания	ПМ-10	PO	Иа	IP65		
56	Ограничитель тока	ПМ-11	PO	Иа	IP65		
57	Шкафы коммутационные шахтные	ШКШ	PO	Иа	IP65		
58	Кабельные ящики	ЯРВ КЯ	PB -	2B -	IP54		

Применение технических средств при внедрении системы УТАС должно подтверждаться сертификатами безопасности.

- * Выемная часть блока питания БП-12;
- ** Типы кабельно-проводниковой продукции указываются в рабочих проектах по оборудованию системой УТАС. В табл. 3.2 приведены рекомендуемые типы кабелей для сигнальных, информационных и силовых линий системы УТАС.
 - *** При использовании репитера ПМ-02 барьер искробезопасности не нужен.
- **** Встраивается во взрывонепроницаемые оболочки РВ 3В (специального назначения с выходными искробезопасными цепями уровня Иа)
 - ***** Поставляются по отдельно предоставляемым разрешительным документам.
- ****** Для эксплуатации в подземных выработках устанавливается в оболочки уровня взрывозащиты РО.

Состав Системы, а также типы входящих в нее составных частей могут изменяться в процессе модернизации и расширения функциональных возможностей Системы.

В состав Системы могут входить любые изделия, которые совместимы по входным и выходным характеристикам с устройствами системы УТАС и имеют вид и уровень взрывозащиты не ниже, чем у устройств системы УТАС.

Тема 4. Назначение, принцип действия и устройство технических средств системы УТАС

4.1 Датчики аэрогазового контроля

Датчики концентрации газов предназначены для контроля содержания различных газов в окружающей атмосфере шахтных выработок и на поверхности.

В зависимости от концентрации газа электрохимический сенсор датчика меняет свои параметры, электронная схема датчика преобразует эти изменения в электрический сигнал, который снимается с клемм клеммного отсека и содержит информацию о величине измеренной концентрации газа.

Датчик состоит из корпуса, в верхнем отсеке которого располагается головка с чувствительным сенсором и электронный блок для обработки информации. Отсек закрыт металлической задней крышкой, которая опломбирована саморазрушающимися этикетками. Спереди, в нижней части корпуса под крышкой клеммного отсека располагаются клеммы для подключения датчика В состоянии поставки отверстия для ввода кабеля загерметизированы заглушками, которые при монтаже заменяют зажимами кабельными.

При поставке и хранении головка датчика предохраняется защитным колпачком, который снимают только на момент проверки датчика и после его установки на месте эксплуатации, но перед подачей питания на датчик.

ТX1322 Ц ТX3282.**01**В диспетчерскую

К источнику питания

Тема 5. Методы и средства контроля скорости потока воздуха.

Рисунок 6.1. Одноканальный анализатор скорости потока воздуха на базе контроллера ТХ9042 и датчика потока воздухаТХ1322Ц

Для определения средней скорости воздуха в выработке определяют коэффициент поля скоростей в точке установки датчика потока воздуха. Для этого в выработке с помощью переносного прибора (анемометра) определяют скорость воздуха в соответствии с «Инструкцией по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану».

$$K_{n1} = V_1/V_k$$

где:

 V_1 - скорость воздуха в сечении выработки, где установлен датчик потока воздуха ТХ1322, измеренная анемометром;

 V_k - скорость потока воздуха по показаниям датчика потока воздуха.

Определение коэффициента поля скоростей проводят три раза. Среднее значение коэффициента поля скоростей определяют по формуле:

$$K_n = (K_{n1} + K_{n2} + K_{n3})/3,$$

где K_{n1} , K_{n2} и K_{n3} – результаты трех определений коэффициента поля скоростей.

Средняя скорость потока воздуха в выработке определяется по формуле

$$V_c = K_n \cdot V_k$$

Расход воздуха в выработке определяется по формуле

$$Q = 60 \cdot V_c \cdot S$$
, M^3/MUH

где S – площадь поперечного сечения выработки в месте установки датчика потока воздуха, м

Тема 6. Средства контроля и управления проветриванием тупиковых выработок

На базе программируемого контроллера ТХ9042 собран Блок управления ВМП. Блок управления ВМП применяется для работы в составе унифицированной телекоммуникационной системы диспетчерского контроля и автоматизированного управления горными машинами и технологическими комплексами (УТАС) в угольных шахтах совместно с датчиком скорости потока воздуха ТХ1322Ц (ТХ1322), устройствами сопряжения УС-1 и осуществляет контроль поступления воздуха к забою тупиковой выработки от вентиляторов местного проветривания (ВМП) в шахтах, опасных по газу или пыли, и автоматическое отключение электроэнергии при нарушении нормального режима проветривания выработки, а также осуществляет автоматизированное управление работой ВМП, включая и резервные ВМП.

Набор его входных модулей производится согласно приведенной в таблице 7.1 номенклатуре, а их размещение в контроллере выполняется согласно указаниям табл. 7.2

Таблица 7.1 - Тип, обозначение, назначение входных модулей

ТИП	Обозначение	Назначение
ТИПА	19390.1.00073	модуль цифрового ввода
ТИП В	19390.1.00067	модуль дискретный помехоустойчивый DFS-2
ТИП С	19390.1.00072	модуль релейный

Таблица 7.2- Набор входных модулей на каналах контроллера блока управления ВМП

Two the program may view in the manufacture of the property of the program of the								
№ канала	Канал 1	Канал 2	Канал 3	Канал 4	Канал 5	Канал 6	Канал 7	Канал 8
	ТИП А	ТИП В	ТИП В	ТИП В	не регла-	не регла-	не регла-	ТИП С
					менти-	менти-рован	менти-рован	
Тип модуля					рован			

Типы модулей установленные в каналах 5, 6 и 7 не регламентируются, но они должны быть установлены. Для контроллера, установленного в блок управления ВМП, применяется микросхема с версией программного обеспечения («прошивка контроллера») не ниже версии 7.0.

Подключение блока управления ВМП показано на рисунке 7.1

Блоком управления ВМП обеспечивается выполнение следующих функций:

- контроль состояния вентиляторов местного проветривания и группового аппарата;
- контроль скорости потока воздуха, поступающего к забою тупиковой выработки по вентиляционному трубопроводу;

- регулируемая выдержка времени на включение группового аппарата, питающего электрооборудование тупиковой выработки в пределах от 5 до 20 мин с момента выдачи датчиком скорости воздуха сигнала о нормальном проветривании выработки;
- автоматическое отключение группового аппарата с регулируемой выдержкой времени от 30 до 120с. с момента выдачи датчиком потока воздуха сигнала о нарушении нормального проветривания выработки;
- отключение группового аппарата без выдержки времени при отключении пускателя ВМП;
- автоматизированное местное и диспетчерское управление через систему УТАС рабочим и резервным ВМП (включение и выключение), групповым аппаратом (выключение);
- сохранение включенного состояния пускателя работающего ВМП и возможность местного управления рабочим и резервным ВМП при выходе из строя программируемого контроллера ТХ9042 или отключение питания программируемого контроллера;
- импульсное включение пускателя рабочего или резервного ВМП с регулируемой длительностью импульса 0,3–3с., длительностью паузы 1,5–10с. и количеством запускающих импульсов от 3 до 6, обеспечивающее плавное заполнение вентиляционного трубопровода воздухом;
- автоматическое включение резервного ВМП при отключении рабочего ВМП. При поступлении команды на запуск ВМП или при автоматическом повторном включении ВМП происходит включение рабочего ВМП, а в случае его невозможности его включения запуск резервного ВМП;
- автоматическое повторное импульсное включение пускателя рабочего или резервного ВМП при восстановлении напряжения хотя бы на одном из них в течение времени от 60 до 110с. с момента исчезновения напряжения на аппаратуре и нулевую защиту пускателей ВМП при исчезновении питающего их напряжения на время более 110с.;
- разрешение на включение группового аппарата без выдержки времени, если режим проветривания восстановился за время не более регулируемой выдержки 30–120с.;
- выдача в диспетчерский пункт шахты и оператору АГК информации о скорости потока воздуха (поступающего к забою тупиковой выработки по вентиляционному трубопроводу), состоянии (включен/выключен) рабочего или резервного ВМП и группового аппарата, о наличии напряжения в основной и резервной сети, о наличии или отсутствии запрета на включение группового аппарата;
- самоконтроль основных элементов схемы, а также контроль состояния линии связи датчик скорости потока воздуха программируемый контроллер (короткое замыкание и обрыв);