УДК 681.3.058

Ю.М. Калниболотский, д-р техн. наук, Е.В. Короткий

Креативные методы нечеткого моделирования

Приведен аналитический обзор методов нечеткого моделирования. Получены передаточные функции для систем Мамдани и Такаги-Сугено. Определены параметры нечетких систем, влияющие на гладкость передаточной функции.

Analytical survey of fuzzy modeling methods is presented. The transient functions for Mamdani and Takagi-Sugeno systems are obtained. The parameters of fuzzy systems, have an influencehad on smoothness of transient function, are defined.

Введение

Одним из наиболее важных свойств человеческого интеллекта является способность принимать правильные решения в обстановке неполной или нечеткой информации [1-5]. Построение моделей приближенных рассуждений человека и использование их для создания новых технологий обработки информации и управления представляет сегодня одну из наиболее актуальных задач современной науки.

Значительное продвижение в этом направлении было сделано профессором Калифорнийского университета Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy sets" [6], появившаяся в 1965 году, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Применение нечетких множеств позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы.

Предпосылкой для применения нечетких моделей является наличие неопределенности обусловленной отсутствием информации либо сложностью системы и наличие информации качественного характера о системе [4].

К преимуществам нечетких систем следует отнести их универсальность. Согласно [7] любая непрерывная функция может быть представлена нечеткой моделью с любой заданной точностью. Особые качества систем с нечеткой логикой позволяют синтезировать модель объекта на основании эвристической информации, полученной от эксперта или в результате эксперимента. Вместе с тем, нечетким системам присущи такие недостатки, как отсутствие алгоритмов синтеза устойчивых моделей и низкая ско-

рость работы последних при большом числе управляющих правил [1, 4, 8].

В отличие от классических методов, при построении нечетких систем, приходится в ходе решения задачи вводить дополнительные аксиомы, часто несущие субъективный характер. Таким образом, процесс создания нечеткой модели содержит элемент творчества.

На сегодняшний день методы нечеткого вывода используются для аппроксимации функций [7], распознавания и классификации образов [5, 9], моделирования и управления нелинейными объектами [1,2,3,4,8], принятия решений в условиях неопределенности [2, 9].

Целью работы является аналитический обзор методов нечеткого моделирования, основанных на идеях Мамдани и Такаги-Сугено. Также рассмотрены особенности алгоритмов нечеткого вывода, влияющие на характер связи между входами и выходами нечеткой системы.

1. Системы нечеткого вывода

Нечеткий вывод занимает центральное место в системах нечеткого моделирования. Процесс нечеткого вывода представляет собой определенную процедуру или алгоритм получения нечетких заключений на основании нечетких предпосылок с использованием основных операций нечеткой логики.

Основные этапы нечеткого вывода [1,3,10,11]:

- 1. Определение структуры системы нечеткого вывода;
- 2. Формирование базы правил системы нечеткого вывода;
 - 3. Фаззификация входных переменных;
- 4. Вычисление значений степеней принадлежности подусловий правил нечетких продукций;
- 5. Агрегирование подусловий правил нечетких продукций;
- 6. Активизация подзаключений правил нечетких продукций;
- 7. Аккумулирование заключений правил нечетких продукций;
 - 8. Дефаззификация выходных переменных;

Методика формирования базы правил нечеткой системы предложена в [1,11]. Необходимо учитывать, что с увеличением числа входов нечеткой модели, количество правил возраста-

ет экспоненциально [1]. Продукционное правило для нечеткой системы имеет вид:

Если u_1 есть A_1 И...И u_n есть A_n Тогда y есть Q_j ,(1) где $u_1 \dots u_n$ — нечеткие переменные для n входов нечеткой системы; A_1, \dots, A_n — нечеткие множества, относящиеся к нечетким переменным $u_1 \dots u_n$; y — нечеткая выходная переменная; Q_j — нечеткое множество, относящееся к нечеткой переменной y .

Фаззификацией входных переменных называется процесс преобразования четких значений входных переменных в соответствующие нечеткие множества. В зависимости от функций принадлежности используемых при фаззификации, можно реализовать процесс "одноэлементной фаззификации", процесс "треугольной фаззификации", процесс "гауссовой фаззификации", и т.д. [1, 11].

Например, если реализуется процесс "одноэлементной фаззификации" четкого числа u_i для i-го входа системы, то в результате создается нечеткое множество $\stackrel{\wedge}{A_i}$ с функцией принадлежности типа "синглтон" [1, 11]:

$$\mu_{\stackrel{\wedge}{A_i}}(x) = \begin{cases} 1, & x = u_i \\ 0, & \text{иначе} \end{cases}$$
 (2)

При решении большинства прикладных задач используется одноэлементная фаззификация.

Вычисление значений степеней принадлеж-

ности подусловий правил нечетких продукций осуществляется посредством пересечений нечетких множеств $\stackrel{\wedge}{A_i}$ полученных в результате фаззификации входных переменных u_i и нечетких множеств A_i из соответствующих правил нечетких продукций. Для пересечения нечетких множеств используется Т-норма, частным случаем которой является операция взятия минимума:

$$\tilde{A}_{i}\left(u_{i}\right) = \hat{A}_{i}\left(u_{i}\right) \wedge A_{i}\left(u_{i}\right),\tag{3}$$

где A_i — нечеткое множество определенное для i -го подусловия некоторого продукционного правила (1); $\stackrel{\frown}{A_i}$ — нечеткое множество полученное в результате фаззификации четкого значения для i -го входа; $\stackrel{\frown}{A_i}$ — нечеткое множество для i -го подусловия некоторого продукционного правила.

Агрегирование подусловий, активизация и аккумулирование подзаключений правил нечетких продукций, а также операция дефаззифика-

ции зависят от используемого алгоритма нечеткого вывода [1,10]. Необходимо помнить, что не существует строго определенного алгоритма построения нечетких систем и разработчик вправе опускать некоторые этапы нечеткого вывода, либо использовать свои способы реализации нечетких операций [1,10].

Согласно [3,10] наиболее распространены следующие типы нечеткого вывода: Мамдани (Mamdani), Такаги-Сугено (Takagi-Sugeno), Ларсена (Larsen) и Цукамото (Tsukamoto). При разработке нечетких систем наиболее широко используются алгоритмы Мамдани и Такаги-Сугено, поэтому рассмотрим их более подробно.

2. Алгоритм нечеткого вывода Мамдани

Формально алгоритм Мамдани может быть определен следующим образом [1, 3, 10, 11, 12, 13]:

- 1. Определение правил нечетких продукций в виде (1);
- 2. Фаззификация входных переменных по формуле (2);
- 3. Вычисление значений степеней принадлежности подусловий в правилах нечетких продукций по формуле (3).
- 4. Агрегирование подусловий в правилах нечетких продукций. Вычисляются значения степеней принадлежности предпосылок каждого правила. Для пересечения нечетких множеств используется Т-норма, частным случаем которой является операция взятия минимума:

$$\alpha_j = \tilde{A}_1(u_1) \wedge \tilde{A}_2(u_2) \wedge ... \wedge \tilde{A}_n(u_n),$$

где α_j – значение степени принадлежности предпосылки для j -го правила;

$$\tilde{A}_{1}(u_{1}),\;...,\tilde{A}_{n}(u_{n})$$
 — нечеткие множества для n подусловий j -го правила;

Те правила, значения степеней принадлежности предпосылок которых отличны от нуля считаются активными и используются для дальнейших расчетов.

5. Активизация заключений в правилах нечетких продукций. Осуществляется с использованием операции минимума. Находятся "усеченные" функции принадлежности выходной переменной. При этом для сокращения времени вывода учитываются только активные правила нечетких продукций.

$$\overline{Q_{j}(y)} = \alpha_{j} \wedge Q_{j}(y),$$

где α_j – значение степени принадлежности предпосылки j -го правила; $Q_j\left(y\right)$ – нечеткое

множество заключения j -го правила; $\mathbf{Q}_{j}(y)$ – усеченное нечеткое множество заключения j -го правила.

6. Аккумуляция заключений правил нечетких продукций. Производится объединение найденных усеченных функций принадлежности и получение итогового нечеткого множества для выходной переменной. Для объединения нечетких множеств используется S-норма, частным случаем которой является операция взятия максимума:

$$\overset{-}{\mathsf{Q}}(y) = \overset{-}{\mathsf{Q}_1}(y) \vee \overset{-}{\mathsf{Q}_2}(y) \vee ... \vee \overset{-}{\mathsf{Q}_j}(y),$$

где $\overset{-}{Q}(y)$ — нечеткое множество соответствующее выходу y нечеткой системы; $\overset{-}{Q}_1(y), \overset{-}{Q}_2(y) \dots \overset{-}{Q}_j(y),$ — усеченные нечеткие множества заключений активных правил.

7. Дефаззификация. Нечеткий результат логического вывода приводится к четкому представлению с использованием метода центра тяжести.

$$y = \frac{\sum_{j=1}^{R} b_{j} \int \mu_{Q_{j}}(y) dy}{\sum_{j=1}^{R} \int \mu_{Q_{j}}(y) dy},$$
 (4)

где y — четкое значение выхода нечеткой системы; b_j — центры функций принадлежности соответствующих термов выходной нечеткой переменной y для j -го правила; R — количество правил нечетких продукций; $\int_{Q_j} \mu_{Q_j}(y) dy$ — вели-

чина площади под усеченным нечетким множеством $\overset{-}{Q_j}$ для j -го правила.

Для ускорения вычислений можно использовать дискретную форму (4):

$$y = \frac{\sum_{j=1}^{R} \alpha_j b_j}{\sum_{j=1}^{R} \alpha_j},$$
 (5)

где α_j — значение степени принадлежности предпосылки j -го правила.

3. Алгоритм нечеткого вывода Такаги-Сугено

Нечеткие системы Такаги-Сугено впервые предложены в [14]. Особенностью систем Така-

ги-Сугено является процесс формирования заключений из правил нечетких продукций. В алгоритме Такаги-Сугено заключение каждого продукционного правила представляет значение некоторой аналитической функции от входов и состояний системы [1,3,14]:

$$y_{j} = f_{j}(\cdot), \qquad (6)$$

где y_j — заключение j -го продукционного правила; $f_j(\cdot)$ — некоторая аналитическая функция произвольного аргумента для j -го продукционного правила. Чаще всего аргументами функции $f(\cdot)$ выступают значения входов и состояний нечеткой системы.

Функция $f_{j}\left(\cdot\right)$ может иметь произвольную форму и быть как линейной так и нелинейной. Чаще всего функцию $f_{j}\left(\cdot\right)$ определяют как линейную комбинацию входов системы [1]:

$$f_{i}(\mathbf{u}) = a_{i,0} + a_{i,1}u_{1} + ... + a_{i,n}u_{n}$$
,

где **u** – вектор четких значений входов u_1, u_2, \dots, u_n ; j – номер продукционного правила; $a_{j,0}, a_{j,1}, \dots, a_{j,n}$ – коэффициенты, заданные разработчиком нечеткой системы. При $a_{j,1}=a_{j,1}=\dots=a_{j,n}=0$, модель Такаги-Сугено сводится к нечеткой системе Мамдани.

Алгоритм нечеткого вывода Такаги-Сугено отличается от описанного алгоритма Мамдани способом формирования заключений (6) и формулой для получения четкого значения выхода нечеткой модели:

$$y = \frac{\sum_{j=1}^{R} \alpha_j y_j}{\sum_{j=1}^{R} \alpha_j},$$
 (7)

где y – четкое значение выхода нечеткой системы; R – количество продукционных правил в нечеткой системе; α_j –значение степени принадлежности предпосылки j –го продукционного правила; y_j – четкое заключение j –го продукционного правила.

Каждый из описанных выше алгоритмов имеет достоинства и недостатки. Для получения адекватной нечеткой модели, необходимо учитывать особенности функционирования выбранного алгоритма. В следующем разделе будет показано, как выбор структуры и типа нечеткого вывода влияет на качество моделирования.

4. Анализ алгоритмов нечеткого вывода

Важным свойством любой модели является гладкость ее передаточной функции. Покажем, что непрерывность производной передаточной функции определяется параметрами нечеткой системы.

Определим структуру нечеткой модели. Будем рассматривать систему с одним входом и одним выходом. Пусть входу системы соответствует нечеткая переменная u, а выходу нечеткая переменная y. Для термов переменной u используем симметричные треугольные функции принадлежности, для термов переменной y — функции принадлежности типа синглтон.

Примем, что для каждого значения *u* сумма функций принадлежности равна единице [1]:

$$\sum_{i=1}^{m} \mu_i(u) = 1, \tag{8}$$

где $\mu_i\left(u\right)$ – функции принадлежности; m – количество функций принадлежности нечеткой переменной u .

Согласно [1] для любого значения u активными являются обычно не больше двух продукционных правил (рис.1). Поэтому динамику работы нечеткой системы, можно описать на некотором интервале [0, b] используя два правила нечетких продукций.

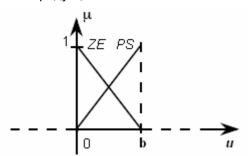


Рис. 1. Активные функции принадлежности при $u \in [0,b]$

Для интервала $u \in [0,b]$ ненулевыми будут функции принадлежности термов ZE и PS:

$$\mu_{ZE}(u) = 1 - \frac{u}{b}, \ \mu_{PS}(u) = \frac{u}{b}$$
 (9)

Найдем передаточную функцию системы Мамдани. Запишем активные правила нечетких продукций для $u \in [0,b]$:

Если u есть ZE Тогда y есть ZE; (10)

Если u есть PS Тогда y есть PS;

В данном случае предпосылками правил нечетких продукций выступают значения функций

принадлежности нечеткой переменной u. Для $u \in [0,b]$ это $\mu_{ZE}(u)$ и $\mu_{PS}(u)$.

Используя формулу (5) найдем передаточную функцию системы Мамдани на отрезке $u \in [0,b]$:

$$y(u) = \frac{\sum_{j=1}^{5} \alpha_{j} y_{j}}{\sum_{j=1}^{R} \alpha_{j}} = \frac{\mu_{ZE}(u) y_{ZE} + \mu_{PS}(u) y_{PS}}{\mu_{ZE}(u) + \mu_{PS}(u)}, (11)$$

где y(u) – передаточная функция нечеткой модели; $\mu_{ZE}(u)$, $\mu_{PS}(u)$ – функции принадлежности ZE и PS; y_{ZE} , y_{PS} – одноэлементные нечеткие множества.

Учитывая (8) и (9), формула (11) примет вид:

$$y(u) = y_{ZE} + \frac{1}{h}(y_{PS} - y_{ZE})u$$
 (12)

Из формулы (12) видно, что выход нечеткой системы Мамдани линейно зависит от входа на участке $u \in [0,b]$. Производная функции y(u) на участке $u \in [0,b]$ — постоянная величина и равняется:

$$\frac{dy(u)}{du} = \frac{1}{b} (y_{PS} - y_{ZE})$$

Поскольку в нечетких системах Мамдани чаще всего используются симметричные треугольные функции принадлежности [1], можно сделать вывод, что передаточная функция систем Мамдани является кусочно-линейной кривой. Производная такой функции испытывает скачок в центрах функций принадлежности входных нечетких переменных. Поэтому для приложений, в которых требуется гладкость передаточной функции модели, недопустимо использовать нечеткие системы Мамдани с треугольными функциями принадлежности.

Найдем передаточную функцию для систем Такаги-Сугено. Заменим в заключениях правил (10) ZE на $f_1(u)$ и PS на $f_2(u)$. Где $f_1(u)$ и $f_2(u)$ некоторые аналитические функции.

Получим правила нечетких продукций для системы Такаги-Сугено:

Если u есть ZE Тогда y есть $f_1(u)$; (13)

Если u есть PS Тогда y есть $f_2(u)$;

Из (13) видно, что по сравнению с системой Мамдани (10), изменились заключительные части продукционных правил, а предпосылки по

прежнему определяются функциями принадлежности переменной \boldsymbol{u} .

Используя формулу (7), учитывая (8) и (9), найдем в общем виде передаточную функцию модели Такаги-Сугено на отрезке $u \in [0,b]$:

$$y(u) = \left(1 - \frac{u}{b}\right) f_1(u) + \frac{u}{b} f_2(u) \tag{14}$$

Пусть функции $\mathit{f}_{1}(u)$ и $\mathit{f}_{2}(u)$ линейно зависят от u :

$$f_1(u) = c_1 + d_1u$$
, $f_2(u) = c_2 + d_2u$, (15)

где c_1, d_1, c_2, d_2 – постоянные коэффициенты, определяющие параметры нечеткой модели.

Подставив (15) в (14) вычислим передаточную функцию для линейных функций $f_1(u)$, $f_2(u)$:

$$y(u) = \frac{(d_2 - d_1)}{b}u^2 + \left(\frac{c_2 - c_1}{b} + d_1\right)u + c_1$$
 (16)

Из (16) видно, что передаточная функция нечеткой модели для $f_1(u)$, $f_2(u)$ в виде (15) на отрезке $u \in [0,b]$ описывается параболой. Вычислим производную функции (16) на отрезке $u \in [0,b]$:

$$\frac{dy(u)}{du} = \frac{2(d_2 - d_1)}{b}u + \frac{c_2 - c_1}{b} + d_1$$
 (17)

Очевидно, что передаточная функция нечеткой системы Такаги-Сугено для $f_1(u)$, $f_2(u)$ в виде (15) является гладкой кривой с линейно изменяющейся первой производной на отрезке $u \in [0,b]$. Для получения нелинейной первой производной на отрезке $u \in [0,b]$ рекомендуется использовать нелинейные функции $f_1(u)$, $f_2(u)$. Например, пусть $u \in [0,b]$ и:

$$f_1(u) = \frac{b}{2}u^2$$
, $f_2(u) = \frac{b}{6}u^2 + b^2$

Тогда из (14) вычислим y(u) и $\frac{dy(u)}{du}$:

$$y(u) = bu + \frac{b}{2}u^2 - \frac{1}{3}u^3$$
 (18)

$$\frac{dy(u)}{du} = b + bu - u^2 \tag{19}$$

Полученная передаточная функция (18) монотонно возрастает на $u \in [0,b]$. Важным свойством производной передаточной функции (19)

является ее непрерывность на области определения переменной u, поскольку

$$\frac{dy(u)}{du}\bigg|_{u=0} = \frac{dy(u)}{du}\bigg|_{u=b} = b.$$

Выводы

Проведенный аналитический обзор методов нечеткого моделирования по алгоритмам Мамдани и Такаги-Сугено показал, что:

- 1. При дискретной форме заключений правил нечетких продукций имеет место кусочнолинейная передаточная функция нечеткой системы, производная которой испытывает скачок в центрах функций принадлежности входных нечетких переменных;
- 2. При линейной зависимости заключений правил нечетких продукций от значений входов модели, передаточная функция нечеткой системы аппроксимируется параболическими кривыми. Производная такой передаточной функции имеет кусочно-линейный вид;
- 3. Для получения нелинейной производной передаточной функции нечеткой модели, необходимо использовать нелинейную зависимость заключений правил нечетких продукций от значений входов системы.

Литература

- Passino K.M., Stephen Yurkovich. Fuzzy Control. Boston (USA): Addison Wesley Longman, 1998. 522 p.
- 2. *Егупов Н.Д.* Методы робастного, нейронечеткого и адаптивного управления: Учеб. для вузов 2 изд. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 743 с.
- 3. Зайченко Ю.П. Нечеткие модели и методы в интеллектуальных системах: Учеб. для вузов. К.: «Издательский Дом «Слово», 2008. 344 с.
- Усков А.А. Принципы построения систем управления с нечеткой логикой // Приборы и системы. Управление, контроль, диагностика. – 2004. – № 6. – С. 7-13.
- 5. *Тэрано Т.*, Асаи К., Сугено М. Прикладные нечеткие системы. М.: Мир, 1993. 368 с.
- Zadeh L.A. Fuzzy sets // Information and Control. 1965. Vol.8, №8. P. 338-353.
- Wang L.X. Fuzzy systems are universal approximators // In Proc. of the 1st IEEE conf. on fuzzy systems (March 1992). San Deigo. P. 1163-1170.
- 8. *Hu B.G.*, Mann G.K.I., Gossine R.G. A systematic study of fuzzy PID controllers function-based evaluation approach // IEEE Trans.

- Fuzzy Syst. 2001. Vol. 9, №5. P. 699-711.
- 9. Sivanandam S.N., Sumathi S., Deepa S.N. Introduction to fuzzy logic using Matlab. Berlin: Springer, 2007. 430 p.
- 10. *Пеоненков А.В.* Нечеткое моделирование в среде MATLAB и fuzzyTECH. C-Пб.: БХВ Санкт-Петербург, 2005. 716 с.
- Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы / Пер. с польск. И.Д. Рудинского. М.:Горячая линия Телеком, 2006. 452 с.
- 12. *Mamdani E.H.* Application of fuzzy algorithms for control of simple dynamic plants // Proc. Inst. Elect. Eng. 1974. Vol.121, № 12. P. 1585-1588.
- 13. *Mamdani E.H.*, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller // Int. J. Man-Mach. 1975 . Vol. 7, №1. P.1–13.
- 14. *Takagi T.*, Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IEEE Trans. Syst., Man. Cybern. 1985. Vol.15, № 1. P. 116-132.