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Abstract - In this paper, an adaptive multiuser detector based
on interacting multiple model (IMM) is introduced to estimate
the transmitted sequence corrupted by MAI (multiple access
interference), multipath fading and noise. The proposed al-
gorithm presents a novel multipath combining scheme based
on a multiple model concepts and used in frequency selec-
tive Raleigh fading channels. The performance of the IMM
multiuser detector is studied and compared with the adaptive
Per-survivor detector of [1]
Keywords - CDMA, Interacting multiple models, Multipath
diversity.

I. INTRODUCTION

In a CDMA (code division multiple access) system, several
users share a common channel by modulating antipodally a
set of signature waveforms. The received signal consists of
a superposition of signals from all users plus additive noise.
The optimum multiuser detector was obtained in [2] where
the near-far problem was eliminated by a more complex re-
ceiver. This receiver is impossible to implement except in
simple cases. The complexity of this receiver, which is ex-
ponential in the number of users, has motivated the develop-
ment of number of detectors. The decorrelating detector [3] is
a simple receiver which easily outperforms the conventional
receiver and does not require the estimation of user powers.
But the inversion performed by the detector enhances the sys-
tem noise, deteriorating the system performance. Another lin-
ear receiver is the minimum mean square error equalizer [4]
which retains some MAI (multiple access interference) in ex-
change for more noise reduction.

There are many nonlinear techniques for multiuser detec-
tion. In decision-feedback (DF) detectors [5], all symbols ex-
cept the symbol of interest would have been estimated and
the effect of the future symbols are eliminated by triangular
matrix factorization. [6], [7], [8] use neural networks for mul-
tiuser detection in CDMA systems.

In many CDMA communications systems, such as cellular
mobile radio systems, indoor wireless communication sys-
tems and aeronautical radio channels, channels exhibit se-
vere multipath fading, which limits the system performance.
Many recent papers on multiuser detection have addressed the
multiple-access fading channels. The conventional strategy to

fading channel problems is to design an adaptive equalizer by
using the recursive least-squares (RLS) algorithm [9]. An-
other approach is that the adaptation of the algorithm is per-
formed indirectly via a channel estimator [1], [10]. A joint
multiuser detection/channel is presented in papers [1], [11].
In [1], the MAI is eliminated by a decorrelating detector and
a Kalman filter is used to estimate the channel. The fading
channels are directly estimated in [11] and thus eliminating
the full rank condition in the decorrelating based receivers.
Our proposed method is also based on a decorrelating de-
tector followed by a whitening filter to obtain a white noise
model as in [5]. The proposed method is related to the adap-
tive Per-survivor of [1] but does not need Viterbi algorithm
to estimate the transmitted symbol sequence. We are using a
multiple model approach based on IMM (Interacting Multi-
ple Model) which unlike the Viterbi algorithm does not incur
a decision delay and computationally quite simpler.

The paper is organized as follows: In Section 2 we define
our signal model and formulate the problem. In Section 3, our
IMM based adaptive multiuser detector is presented. Simula-
tion studies are presented in Section 4 and some conclusions
are drawn in Section 5.

II. PROBLEM FORMULATION

Consider a DS/CDMA mobile radio network with
�

users,
employing normalized spreading waveforms � ��� � ��������� �
	
and transmitting sequences of binary symbols through their
respective multipath channels. Each signature waveform is
restricted to a symbol duration � with normalized energy��� � � ���������������

and input symbols of each user takes on in-
dependent antipodal binary values ( � � ��� �"!$#&%('�)*� ��+ ��, )
with equal probability. The received signal in a frequency se-
lective Raleigh fading channel can be modeled as [1],

- �����.� 	/�10 �325476�8�9 �;:=<
�/> 0 � � � ��� �@?/ A 0 �CB �

A �����
� � ��� + � � +ED + �F �G)IHJ�����

(1)

where
HJ�����

is a zero mean white Gaussian noise power spec-
tral density K �ML�N ; O is the number of data bits transmitted
and 9 � and 2 476�8 are respectively the amplitude and carrier
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phase of the � -th user’s signal. The number of resolvable
paths are � � ��� F , where ��� is the channel multipath
spread and B �

A �����
is the channel gain for the D th path for the

user � ; F is the spread-spectrum bandwidth.
It is assumed that the symbol interval � is smaller than the

channel coherence time, such that the fading attenuation can
be assumed to be constant for the duration of at least one of
symbol interval. It is also assumed that

� � channel fading
processes

' B �
A ��� �7,

are statistically independent of each other.
The time-varying frequency selective channel for each user is
modeled as a tapped delay line with tap spacing

��L F
. As-

suming that the symbol duration is much longer than the mul-
tipath delay spread, i.e. ����� ���	�
� L F , any intersymbol
interference (ISI) due to channel dispersion can be neglected
[12]. Therefore, (1) can be reduced to a model which can be
viewed as equivalent to a synchronous mulitiuser system with� � users:

- ����� � 	/�10 � 2 476�8 9 �;:=<
�/> 0 � � � ��� �@?/ A 0 � B �

A ����� � �
A ��� + � � �G)IHJ�����

(2)

where � �
A �������� � � ��� +

A
< � ���

The received signal is passed through a matched filter bank
whose � � � + �M� � ) D�� th output component is given by,

� z ��� � ��� � < ��� ?��
A ���� � A ��� � �
� � > � ��� >  - ����� � �

A ��� + � � �����
� �E� � � � � � � � D �E� � � � � � � � � ��� � � � � � O + �

(3)

Note that for the synchronous AWGN channel, z
��� �

is a suf-
ficient statistic for detecting the

�
th bits of the

�
users.

From (2) and (3), we can write the
� � � � vector output,

z
��� �

as

z
��� � �

R � AB
��� �

c
��� � )

v
��� �

(4)

where v
��� �

is a
� � � � �M�

Gaussian noise vector with� � �!� � � � autocorrelation matrix K � R and R is the
� � �!�� � � normalized cross-correlation matrix,�R ��� ��" < ��� ?��

A "$# � � < ��� ?��
A ��% � ��"$#

A " � � �&#
A � ;

% � ��"$#
A " � � �&#

A � ��'� � � ��"
A " ����� � �

A ���������
(5)

A
��)(+*-,/.3� 9 � I ��������� 9 	 I

�
(6)

B
��� �0��)(+*-,/.3� � � ��� � I ��������� �1	 ��� � I � (7)1 ��)(+*-,/.3� 2 476/2 I �������5� 2 47643 I

�
(8)

I is the �
�5� identity matrix; c(i) is the
� � � � vector of

channel gain. We can obtain a white noise model by applying
a filter with a response

�
S
 � < � to the output of the matched

filter bank (4), where S is a lower triangular matrix obtained
by factorising R as R

�
S


S [5]. This operation completely
the eliminates the MAI from the user 1 and can remove MAI

of other users if we can detect correctly the symbols of pre-
ceding users. (For example, symbols of all users �76�8�� need
to be known to remove the MAI for the user � ).

y
��� � �

S � AB
��� � B ��� � ) n

��� �
(9)

where y
��� � �

S <  z
��� �

and n
��� �

is a white Gaussian noise
vector with the autocorrelation matrix, K � I (I is a

� �9� � �
identity matrix).
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Fig. 1. Structure of the IMM based multiuser detector

III. IMM BASED ADAPTIVE MULTIUSER DETECTOR

In this section, we will show how the model posterior prob-
ablity : '&; 4

��� �=< > > ,
can be used detect the received symbol

sequence in a fading environment. We denote the � -state vec-
tor of channel fading gain for user � as? � ��� � � � B � � ��� � ��������� B � ? ��� � �  (10)

As shown in the figure 1, the proposed algorithm operates
successively. It consists of

�
number of IMM models corre-

sponding to each user. The first IMM gives the symbol and
fading gain of the user 1. The estimated bit symbol @� � is fed
into the 2nd IMM. Thus the IMM model corresponding to
user � gets the symbol estimates of previous users ( 89� ) from
preceding IMM models. The following description applies to
the � th IMM model corresponding to user � and the index �
is suppressed for clarity. (e.g.

? ��� � � ? � ��� �
)

Assumption 1 The number of distinct symbols in the input
alphabet,

#
of a transmission does not vary and is fixed; For

binary transmission, this equals to two.
Assumption 2 The received signal model effective at time

� �
is caused by one of the symbols under Assumption 1.

Corresponding to number of probable models at a time, we
can get a set of models within the hybrid model:A
4
� 'CB � D � � � �FE � D � � � �FG � D � � � �FH � D � � � � HJ� D � � �7,D �(� �������5� - (11)



We can use a random walk model to model the unknown state
variation (channel fading gain) as we are considering a slowly
fading environment. Then we can get the following hybrid
model? � ��� )&�M� � ? � ��� �G) H ��� �

� � ��� �.� G � D � � � ? � ��� � )IHJ��� ����� - D �E� �������5� -
where H ��� � is a disturbance noise, �

� ��� �
is the � -vector

component of y
��� �

corresponding to user � ( �
� ��� � �

y
��� � � � < ��� ?�� ��� � ? ) and G � D � � � is the observation matrix cor-

responding to model
D

given byG � D � � � � � 1	� B
��� � ��
�� �����

(12)

where
� 1	� � 
�

is the � � � � submatrix of
� 1	�

corre-
sponding to user � .
Remark The received symbol at time

� � is given by the
symbol corresponding to the model : '&; ��� �=< > > , (effec-
tive model given by the maximum of : '&; ��� � 4

< > > , D �� �������5� - ) and the channel fading is given by the state vector� @? � ��� ��� of the IMM algorithm.
This Remark follows directly by taking the number of mod-

els within an IMM are equal to the number of symbols and
then : '&; ��� �=< > > , is the best model effecitve at time

� � .
The symbol corresponding to the best model is the received
symbol.

Above Remark can now be used to detect the symbol se-
quence by having - number of Kalman filters in parallel at a
time and the effective model obtained using the IMM algo-
rithm gives the received symbol at the time. We successfully
used this idea of modeling the input bit sequence by a set of
multiple models for joint symbol and channel equalization for
single user systems [13].

Due to the lower triangular matrix

�

at the output of the
whitening filter, the user signals are partially decorrelated. We
can observe that the first user is free from MAI but corrupted
by multipath fading from different paths. We first detect the
symbol for the first user and then successively estimate for
others. This results in the following

� � � � � estimated
symbol matrix


�
4
��� �


�
4
��� � ��(+*-,/.J� @� � ��� � I �������5� � 4 I � 0 ��������� 0

�
(13)

where 0 and I are �	�5� zero and identity matrices respec-
tively. The � 4 denotes the symbol corresponding to modelD

for the user � and chosen such that ���4
0 � ' � 4

,&% #
and� �4

0 � ' � 4
, ���

. But for user �+6 � 8 � � , the already estimated

bit symbol, @� � " is used. For other users, due to the lower tri-
angular nature of


�
, we do not need to know their bit symbols

when detecting the � th user’s bit symbol.
The IMM algorithm as used in this problem is outlined be-

low. For a detailed discussion of IMM algorithm, readers can
refer to [11]. The IMM based receiver is based on following
simplifying assumptions. At any time

� + � , the distribution of

the state vector conditioned on all past observations (
> > < � )

and the most recent model state is Gaussian with known mean
and variance denoted, respectively, by @? 4 ��� + � < � + �M�

and: 4 ��� + � < � + �M�
. The conditional probabilities of the most

recent model states are also known and denoted by � 4
��� + �M� .

We begin by using the transition probability matrices to cal-
culate the predicted state probabilities

���� 4
��� + � < � + �M� � : �$; � ��� + �M�=< ;

4
��� � � > > < � �� �

B :
�$;
4
��� �=< ; � ��� + �M� � >	� < � �� : �$; � ��� + �M�=< > > < � � (14)� �

B � � 4 � �
��� + �M��� � D*�(� � � � � -

where B is the normalizing constant and � � ��� + �M�
is the pos-

terior symbol probability at time
� + �

.
We then use these predicted model state probabilities to

combine the state estimates and covariances

@? � 4 ��� + � < � + �M� � �/
�
0 � @? � ��� + � < � + �M�

(15)� ���� 4
��� + � < � + �M����DE� � � � � � -

: � 4 ��� + � < � + �M�
(16)� �/

�
0 � ���� 4

��� + � < � + �M�7' : � ��� + � < � + �M�
) � @? � ��� + � < � + �M� + @? � 4 ��� + � < � + �M���� @? � ��� + � < � + �M� + @? � 4 ��� + � < � + �M��� 6 ,� D �(� � � � � -

where @? 4 ��� < � � and : � ��� < � � are the state estimate and covari-
ance of the state estimate at time

�
. Based only on the tran-

sition probabilities, (14)-(16) merge the state estimates and
model probabilities and generate a set of - mean/variance
pairs. The IMM algorithm makes the simplifying assump-
tion that each pair corresponds to a Gaussian density. This
assumption, along with the merging strategy, forms the foun-
dation of the IMM algorithm. Each pair is then used as a prior
statistics for - � N

Kalman filters to obtain the @? 4 ��� < � � and: 4 ��� < � � . These are the outputs of the Kalman filter and the
Kalman filter equations can be found in [14]. The likelihood
corresponding to two filters,

 
4
��� �.�"!C� � � ��� �=< ; 4

��� � � (17)@? � 4 ��� + � < � + �M� � : � 4 ��� + � < � + �M���
are also computed. For Gaussian noise this reduces to

 
4
��� �$#&%('*)G� + ��� + 2 ��� � �,.- ��� � < � 2 ��� ��� (18)

where 2 ��� � and
,.- ��� �

are respectively the � -innovation vec-
tor and innovation covariance given by the Kalman filter.



The final step is to complete the propagation of model prob-
abilities using

� 4
��� � � : �$; 4

��� �=< > > �
(19)� �

B
 
4
��� � �/
�
0 � � � 4 � �

��� + �M�
� D �E� � � � � -

where B is the normalization constant. The mode at time
�

can now be estimated as; ��� � ��,�� .�� , '
4 � 4

��� �
(20)

Thus the symbol at time
�

is the symbol corresponding to
mode

; ��� �
and the following mixture equation gives the es-

timated channel fading gain, @? � � � :

@? � � � � �/
4
0 � @? 4 � � < � � � 4

� � � (21)

Above algorithm gives symbols and channel fading gains
of all users after repeating it for � � � �������5� � . Note that at
each stage of the algorithm we obtain fading gain estimates
of all users. But only the fading gain estimate corresponding
to the current IMM filter stage is correct. For example, at the
IMM filter stage � , we can only accurately estimate the fading
gain of user � . The reason for this is clear from the figure 1,
where the � th filter is conditoned only on � � � ��� � � and past
observations.

IV. SIMULATION RESULTS

A synchronous three-user (
� ���

) system with process-
ing gain � �	� �

is employed in the simulation. All users
are assumed to have the same signal power. The number of
resolvable paths is � �
�

. The signature waveforms corre-
sponding to the second and third paths of the original signal
of a user is the signature waveform of that user shifted by one
and two chips respectively.

The Raleigh fading channel process
' B �

A ��� �7,
is simulated

by filtering two independent real iid Gaussian processes with
two identical 3rd-order Butterworth filters. The 3-dB fading
bandwidth

���
normalized to the symbol rate

��L � is used as a
measure of fading rate. The symbol rate

��L � is set at 10 Kb/s.
The fading rate

��� � � ��� � +
is considered in our simulations

corresponding to a Doppler shift of 500 Hz.
The figure 2 shows the tracking capability of the IMM

based filter. It seen that the IMM filter is capable of closely
tracking the channel variations. For comparision, we also
simulated the adaptive per-survivor detector (PSP) proposed
in [1]. Simulations for both methods are performed alterna-
tively on training and decision-directed modes. The length
of training subsequence was

�&�
and the length of the sym-

bol subsequence was also
�&�

. Spacing of the training sub-
sequence was needed to be denser in order to obtain an ac-
ceptable performance. The transmitted sequence was an iid

binary sequence with a transition probability matrix, � � 4 is aN � N matrix with all elements being
� +

. The simulation pa-
rameters of the adaptive per-survivor detector are as given in
[1] (Number of states in the trellis was 8). To obtain aver-
age values of BER, 10000 symbols were repeated 10 times
for Monte Carlo simulations. The bit-error rate (BER) per-
formance of the two methods are plotted in figure 3. As seen
from the figure, the proposed algorithm compares well with
the adaptive per-survivor receiver. But the proposed algo-
rithm requires only - filters compared to -� ( � is the memory
length of the channel) filters required for the adaptive PSP.
For our case, adaptive PSP required eight filters whereas the
proposed method requires only two irrespective of the chan-
nel length. And the proposed method does not incur decision
delays that are inherent in all Viterbi based methods and thus
storage requirements are quite minimal.
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Fig. 2. A snap-shot of one output sequence of the IMM
estimated channel gain, corresponding to one fading channel
and with the true channel fading process (SNR=15dB)

V. CONCLUSIONS

In this paper, we considered the problem of joint multiuser
detection and channel estimation in a Raleigh fading chan-
nel. We obtained our receiver by modeling the received bit
sequence as a sequence of models due to each bit symbol.
While the effective model at a time instant corresponds to the
received bit symbol and states of the hybrid model tracks the
fading channel gain. Computer simulations were carried out
to demonstrate the merits of the proposed IMM based mul-
tiuser detector. They showed similar BER performance com-
pared to the adaptive per-survivor receiver presented in [1] but
with a lower computationl cost.
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