DonNTU   Masters' portal

Abstract on the master's work theme

Content

Introduction

The antenna technology is one of the fastest growing areas of radio engineering. It determines the development of radar, radio astronomy, communications equipment, and many other areas of science. The surrounding area is full of signals of different frequencies, so there is a need for adaptive antenna systems. Accordingly we can formulate the claims to antenna systems:
- low side lobe;
- broadband;
- maximum efficiency coefficient;
- high speed of the directivity pattern ;
- minimize the weight and size parameters.

Number of problems solved antenna systems has increased significantly. This has led to a significant increase in class types and kinds of antennas. Besides the antenna became more complicated and changed.

1. The purpose and objectives of the research

The purpose of research is the possibility of constructing an antenna system with a radiation pattern that is controlled by changing the antenna parameters. The research is conducted for cylindrical and conical spiral antennas.

To achieve this purpose it is necessary to solve the following problems:
1) to study the properties of spiral antennas;
2) calculate the parameters of the antenna system;
3) conduct computer simulations, using the results of calculations;
4) analyze the results.

2. Theme urgency

At the present stage of a big problem in the design of antenna systems is to reduce the geometric dimensions. The possibility of non-mechanical directivity pattern control will not only reduce the geometrical dimensions of the system, but also significantly reduce the number of elements in the antenna system.

3. Antennas with directivity pattern control

The main objectives of the development of antenna systems with directivity pattern control:
- the directivity pattern formation of the constituent parts of the system;
- to study movement regularities of the radiation maximum;
- calculation errors that occur when directivity pattern is moving;
- transmitted and received signals processing.

Moving the antenna directivity pattern in space can be accomplished in several ways: mechanical, electromechanical and electric. [1, 394]

Mechanical scan of the surrounding space is carried out by turning the whole structure of the antenna system. In most cases, due to the large geometric size of antennas this method has a low scanning speed, and high energy costs.

Electromechanical scan performed by moving one or more elements of the antenna system using electric motors (electromagnets). The movable element has less weight compared with the previous scanning method. This allows increasing the scanning speed.

The next type of scanning the surrounding space is electric. Directivity pattern control is carried out through the use of electronically controlled devices. Using the methods of electrical space scan, we can achieve a significant increase in the speed of the antenna systems work. In this case, the scan speed is limited only by the inertia of the electrical circuits.

4. Helical antennas

The use of helical antennas provides broadbandness of antenna systems. The directivity pattern of helical antenna is close to circular, which allows using it in satellite communication systems. Axial radiation of such antennas is formed by active region. This region is bounded by the turns, which length is close to the wavelength.

At the present stage of development of antenna technology helical antennas can be divided into space antennas (spatial) and planar antennas (in integrated form). In its turn the spatial antenna can be divided into cylindrical (fig. 1a) and conical (fig. 1b). Planar antenna may be formed as a spiral of Archimedes (fig. 2a) or logarithmic spiral (fig. 2b).

Spatial antenna http://dic.academic.ru/dic.nsf/bse/135110/%D0%A1%D0%BF%D0%B8%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F

Figure 1 – Spatial helical antennas

Planar antenna http://dic.academic.ru/dic.nsf/bse/135110/%D0%A1%D0%BF%D0%B8%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F

Figure 2 – Planar helical antennas

Spiral antennas are used in the decimeter and centimeter wavelength range. They are used as elements of the antenna system and as a reflector antenna feed elements. [9, 75]

4.1. Cylindrical helical antennas

The cylindrical helical antenna is a wire spiral with a constant pitch of winding formed by a cylindrical surface. Cylindrical spiral antennas are defined by the geometrical parameters: l - length of the spiral axis; A = D / 2 - spiral radius; s - the distance between the windings (spiral pitch); N - number of turns; L - the length of one turn; a - helix angle. The directional properties of the helical antenna are primarily dependent on its transverse dimensions.

Cylindrical helical antenna works in several modes:
1. Omnidirectional radiation mode;
2. Axial radiation mode;
3. Conical radiation mode.

4.2. Conical helical antennas

Application of the conical helical antenna allows increasing the operating range of frequencies in comparison with the use of cylindrical helical antenna. Conical helical antennas are considered as cylindrical helical antennas with a continuously changing diameter.

Directivity pattern of the conical helical antenna is formed by group of three turns, which is called the active region. When the operating frequency of the antenna is changing, the active region moves along the axis of the helix.

Conical spiral antennas are more broadband. But they have a lower coefficient of efficiency.

Conclusion

Today helical antennas are used in different radio devices. Planar spiral antennas (Archimedean spiral, logarithmic spiral) are widely used.

References

  1. Сазонов Д.М. Антенны и устройства СВЧ: Учеб. для радиотехнич. спец. вузов – М.: Высш. шк., 1988. – 432 с.
  2. Вендик О.Г. Антенны с немеханическим движением луча (введение в теорию) – М.: Сов. радио, 1965. – 360 с.
  3. Вендик О.Г. Антенны с электрическим сканированием / Вендик О.Г., Парнес М.Д.; под. ред. Л.Д. Бахраха [Электронный ресурс]. – Режим доступа: http://bookre.org....
  4. Проблемы антенной техники / под. ред. Л.Д. Бахраха, Д.И. Воскресенского – М.: Радио и связь, 1989. – 368 с.
  5. Гостюхин В.Л. Активные фазированные антенные решетки / Гостюхин В.Л., Трусов В.Н., Гостюхин А.В. – М.: Радиотехника, 2011. – 304 с.
  6. Бекетов В.И. Антенны сверхвысоких частот. – М.: Воен. издат., 1957. – 119с.
  7. Хмель В.Ф. Антенны и устройства СВЧ. / Хмель В.Ф., Чаплин А.Ф., Шумлянский И.И. – Киев: Вища школа, 1990. – 232с.
  8. Чернышев В.П. Антенно-фидерные устройства радиосвязи и радиовещания. – М.: Связь, 1978. – 288с.
  9. Гошин Г.Г. Устройства СВЧ и антенны: Учебное пособие. – Томск: Томский межвузовский центр дистанционного образования, 2003. – 130 с.
  10. Антенны и устройства СВЧ. Расчет и проектирование антенных решеток и их излучающих элементов. / Под. ред. Д.И. Воскресенского – М.: Сов. радио, 1972. – 320 с.
  11. Воскресенский Д.И. Антенны и устройства СВЧ (проектирование фазированных антенных решеток) / Д.И. Воскресенский, Р.А. Грановская, Н.С. Давыдова; под. ред. Д.И. Воскресенского – М.: Радио и связь, 1981. – 432 с.
  12. Юрцев О.А. Спиральные антенны. / Юрцев О.А., Рунов А.В., Казарин А.Н. – М.: Сов. радио, 1974. – 224 с.
  13. Табаков Д.И. Применение теории сингулярных интегральных уравнений к электродинамическому анализу кольцевых и спиральных структур: автореф. дис. на соискание ученой степени канд. физ.-мат. наук: спец. 01.04.03 Радиофизика / Д.И. Табаков – Самара, 2009 – 20 с. [Электронный ресурс]. – Режим доступа: http://www.psuti.ru....
  14. Неганов В.А. Теория и применнение устройств СВЧ: Учебн. пособие для вузов / Неганов В.А., Яровой Г.П.; под. ред. В.А. Неганова. – М.: Радио и связь, 2006. – 720 с.
  15. Неганов В.А. Физическая регуляризация некорректных задач электродинамики – М.: Сайнс-пресс, 2008. – 450 с.
  16. Никольский В.В. Электродинамика и распространение радиоволн / Никольский В.В., Никольская Т.И. – М.: Наука, 1989. – 544 с.
  17. Айзенберг Г.3. Антенны УКВ / Айзенберг Г.3., Ямпольский В.Г., Терешин О.Н. – М.: Связь, 1977. – 384 с.
  18. Вайнштейн Л.А. Электромагнитные волны – М.: Сов.радио, 1957. — 581 с.
  19. Гончаренко И.В. Антенны КВ и УКВ. Часть 1. Компьютерное моделирование. MMANA. – М.: ИП РадиоСофт, 2004. – 128 с.
  20. Марков Г.Т. Возбуждение электромагнитных волн / Марков Г.Т., Чаплин А.Ф. – М.: Энергия, 1967. – 376 с.
  21. Пименов Ю.В. Техническая электродинамика / Пименов Ю.В., Вольман В.И., Муравцов А.Д.; под. ред Ю.В. Пименова. – М.: Радио и связь, 2000. – 536 с.
  22. Masoumeh Karimi Advances in Satellite Communications / Masoumeh Karimi, Yuri Labrador. – InTech, 2011. – 194 p. [Электронный ресурс]. – Режим доступа: http://www.intechopen.com....