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Abstract
Recent work on complex adaptive systems for modelling financial markets is
surveyed. Financial markets are viewed as evolutionary systems between
different, competing trading strategies. Agents are boundedly rational in the
sense that they tend to follow strategies that have performed well, according
to realized profits or accumulated wealth, in the recent past. Simple technical
trading rules may survive evolutionary competition in a heterogeneous world
where prices and beliefs coevolve over time. The evolutionary model
explains stylized facts, such as fat tails, volatility clustering and long memory,
of real financial series. Although our adaptive belief systems are very simple,
they can match the autocorrelation patterns of returns, squared returns and
absolute returns of 40 years of S&P 500 data. Some recent laboratory work
on expectation formation in an asset pricing framework is also discussed.

1. Introduction
The key difference between economics and the natural sciences
is perhaps the fact that decisions of economic agents today
depend upon their expectations or beliefs about the future.
For example, after a couple of weeks of bad weather in the
Netherlands and Western Europe in July 2000, the dreams and
hopes of the Dutch about nice weather for summer holidays
will not affect the weather in August. In contrast, the dreams
and hopes of Dutch investors for excessive high returns on their
investments in tulip bulbs in the seventeenth century may have
contributed to or even caused what is nowadays known as the
Dutch ‘tulip mania’, when the price of tulip bulbs exploded by
a factor of more than 20 in the beginning of 1636 but ‘crashed’
back to its original level by the end of the year. Nowadays, in
financial markets an over-optimistic estimate of future growth
of ICT industries may contribute to an excessively rapid growth
of stock prices and indices and might lead to over valuation of
stock markets worldwide. Any dynamic economic system is in
fact an expectations feedback system. A theory of expectation

1 Web address: http://www.fee.uva.nl/cendef

formation is therefore a crucial part of any economic model or
theory.

Since its introduction in the sixties by Muth (1961)
and its popularization in macroeconomics by Lucas (1971),
the rational expectations hypothesis (REH) has become the
dominating expectation formation paradigm in economic
theory. According to the REH all agents are rational and
take as their subjective expectation of future variables the
objective prediction by economic theory. In a rational
expectations model agents have perfect knowledge about the
(linear) market equilibrium equations and use these to derive
their expectations. Although many economists nowadays
view rational expectations as something unrealistic, it is still
viewed as an important benchmark. Despite a rapidly growing
literature on bounded rationality, where agents use learning
models for their expectations, it seems fair to say that at this
point no generally accepted alternative theory of expectations
is available.

In finance, the REH is intimately related to the efficient
market hypothesis (EMH). There are weak and strong forms
of the EMH, but when economists speak of financial markets
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as being efficient, they usually mean that they view asset
prices and returns as the outcome of a competitive market
consisting of rational traders, who are trying to maximize
their expected returns. The main reason why financial markets
must be efficient is based upon an arbitrage argument (e.g.
Fama (1970)). If markets were not efficient, then there would
be unexploited profit opportunities, that could and would be
exploited by rational traders. For example, rational traders
would buy (sell) an underpriced (overpriced) asset, thus driving
its price back to the correct, fundamental value. In an
efficient market, there can be no forecastable structure in
asset returns, since any such structure would be exploited by
rational traders and therefore would be doomed to disappear.
Rational agents thus process information quickly and this is
reflected immediately in asset prices. The value of a risky
asset is completely determined by its fundamental price, equal
to the present discounted value of the expected stream of future
dividends. In an efficient market, all traders are rational and
changes in asset prices are completely random, solely driven by
unexpected ‘news’ about changes in economic fundamentals.

In contrast, Keynes (1936) already questioned a
completely rational valuation of assets, arguing that investors
sentiment and mass psychology (‘animal spirits’) play a
significant role in financial markets. Keynes used his famous
beauty contest as a parable about financial markets. In order
to predict the winner of a beauty contest, objective beauty is
not all that important, but knowledge or prediction of others’
perceptions of beauty is much more relevant. Keynes argued
that the same may be true for the fundamental price of an
asset: ‘Investment based on genuine long-term expectation is
so difficult as to be scarcely practicable. He who attempts it
must surely lead much more laborious days and run greater
risks than he who tries to guess better than the crowd how the
crowd will behave; and, given equal intelligence, he may make
more disastrous mistakes’ (Keynes (1936) p 157). In Keynes
view, stock prices are thus not governed by an objective view of
‘fundamentals’, but by ‘what average opinion expects average
opinion to be’.

New classical economists have viewed ‘market psychol-
ogy’ and ‘investors sentiment’ as being irrational however,
and therefore inconsistent with the REH. For example, Fried-
man (1953) argued that irrational speculative traders would be
driven out of the market by rational traders, who would trade
against them by taking long opposite positions, thus driving
prices back to fundamentals. In an efficient market, ‘irrational’
speculators would simply lose money and therefore fail to sur-
vive evolutionary competition.

Financial markets as nonlinear evolutionary
adaptive systems

In a perfectly rational EMH world all traders are rational and
it is common knowledge that all traders are rational. In real
financial markets however, traders are different, especially with
respect to their expectations about future prices and dividends.
A quick glance at the financial pages of newspapers is sufficient
to observe that difference of opinions among financial analysts
is the rule rather than the exception. In the last decade, a

rapidly increasing number of structural heterogeneous agent
models have been introduced in the finance literature, see
for example Arthur et al (1997), Brock (1993, 1997), Brock
and Hommes (1997a, b, 1998), Brock and LeBaron (1996),
Chiarella (1992), Chiarella and He (2000), Dacorogna et al
(1995), DeGrauwe et al (1993), De Long et al (1990), Farmer
(1998), Farmer and Joshi (2000), Frankel and Froot (1988),
Gaunersdorfer (2000), Gaunersdorfer and Hommes (2000),
Kirman (1991), Kirman and Teyssière (2000), Kurz (1997),
LeBaron (2000), LeBaron et al (1999), Lux (1995), Lux and
Marchesi (1999a, b), Wang (1994) and Zeeman (1974), as
well as many more references in these papers. Some authors
even talk about a heterogeneous market hypothesis, as a new
alternative to the efficient market hypothesis. In all these
heterogeneous agent models different groups of traders, having
different beliefs or expectations, coexist. Two typical trader
types can be distinguished. The first are rational, ‘smart
money’ traders or fundamentalists, believing that the price of
an asset is determined completely by economic fundamentals.
The second typical trader type are ‘noise traders’, sometimes
called chartists or technical analysts, believing that asset prices
are not determined by fundamentals, but that they can be
predicted by simple technical trading rules based upon patterns
in past prices, such as trends or cycles.

In a series of papers, Brock and Hommes (1997a, b,
1998, 1999), henceforth BH, propose to model economic
and financial markets as adaptive belief systems (ABS). The
present paper reviews the main features of ABS and discusses
a recent extension by Gaunersdorfer and Hommes (2000) as
well as some recent experimental testing, jointly with my
colleagues Joep Sonnemans, Jan Tuinstra and Henk van de
Velden (Hommes et al 2000b) at CeNDEF. An ABS is an
evolutionary competition between trading strategies. Different
groups of traders have different expectations about future
prices and future dividends. For example, one group might
be fundamentalists, believing that asset prices return to their
fundamental equilibrium price, whereas another group might
be chartists, extrapolating patterns in past prices. Traders
choose their trading strategy according to an evolutionary
‘fitness measure’, such as accumulated past profits. Agents
are boundedly rational, in the sense that most traders
choose strategies with higher fitness. BH introduce the
notion of adaptive rational equilibrium dynamics (ARED), an
endogenous coupling between market equilibrium dynamics
and evolutionary updating of beliefs. Current beliefs determine
new equilibrium prices, generating adapted beliefs which in
turn lead to new equilibrium prices again, etc. In an ARED,
equilibrium prices and beliefs coevolve over time.

Most of the heterogeneous agent literature is computation-
ally oriented. An ABS may be seen as a tractable theoretical
framework for the computationally oriented ‘artificial stock
market’ literature, such as the Santa Fe artificial stock market
of Arthur et al (1997) and LeBaron et al (1999). A convenient
feature of an ABS is that the model can be formulated in terms
of deviations from a benchmark fundamental. In fact, the per-
fectly rational EMH benchmark is nested within an ABS as
a special case. An ABS may thus be used for experimental
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and empirical testing whether deviations from a suitable RE
benchmark are significant.

The heterogeneity of expectations among traders
introduces an important nonlinearity into the market. In
an ABS there are also two important sources of noise:
model approximation error and intrinsic uncertainty about
economic fundamentals. Asset price fluctuations in an
ABS are characterized by an irregular switching between
phases of close-to-the-fundamental-price fluctuations, phases
of optimism where most agents follow an upward price trend,
and phases of pessimism with small or large market crashes.
Temporary speculative bubbles (rational animal spirits) can
occur, triggered by noise and amplified by evolutionary forces.
An ABS is able to generate some of the important stylized facts
in many financial series, such as unpredictable returns, fat tails
and volatility clustering.

In our discussion of ABS we will focus on the following
questions central to the SFI workshop:

Q1 Can technical analysts or habitual rule-of-thumb trading
strategies survive evolutionary competition against
rational or fundamental traders?

Q2 Is an evolutionary adaptive financial market with
competing heterogeneous agents efficient?

Q3 Does heterogeneity in beliefs lead to excess volatility?

The paper is organized as follows. In section 2 we discuss
the modelling philosophy emphasizing recent developments
in nonlinear dynamics and their relevance to economics and
finance. Section 3 presents ABS in a general mean-variance
framework. In section 4 we present simple, but typical
examples. Although the ABS are very simple, subsection
4.4 presents an example where the autocorrelations of returns,
squared returns and absolute returns closely resemble those of
40 years of S&P 500 data. Section 5 briefly discusses some
first experimental testing of ABS. Finally, section 6 sketches a
future perspective of the research program proposed here.

2. Philosophy of nonlinear dynamics
The past 25 years have witnessed an explosion of interest
in nonlinear dynamical systems, in mathematics as well
as in applied sciences. In particular, the fact that simple
deterministic nonlinear systems exhibit bifurcation routes to
chaos and strange attractors, with ‘random looking’ dynamical
behaviour, has received much attention. This section discusses
some important features of nonlinear systems, emphasizing
their relevance to economics and finance. Let us start by stating
the main goal of our research program, namely to explain the
most important ‘stylized facts’ in financial series, such as:

S1 Asset prices are persistent and have, or are close to having,
a unit root.

S2 Asset returns are fairly unpredictable, and typically have
little or no autocorrelations.

S3 Asset returns have fat tails and exhibit volatility clustering
and long memory. Autocorrelations of squared returns and
absolute returns are significantly positive, even at high
order lags, and decay slowly possibly following a scaling
law.

S4 Trading volume is persistent and there is positive cross
correlation between volatility and volume.

In this paper we will be mainly concerned with stylized
facts S2 and S32. The adaptive belief system introduced in the
next section will be a nonlinear stochastic system of the form

Xt+1 = F(Xt ; n1t , . . . , nHt ; λ; δt ; εt ), (1)

where F is a nonlinear mapping, Xt is a vector of prices (or
lagged prices), njt is the fraction or weight of investors of
type h, 1 � h � H , λ is a vector of parameters and δt and
εt are noise terms. In an ABS there are two types of noise
terms which are relevant for financial markets. The noise
term εt is the model approximation error representing the fact
that a model can only be an approximation of the real world.
Approximation errors will also be present in a physical model,
although the corresponding noise terms might be of smaller
magnitude than in economics. In contrast to physical models
however, in economic and financial models one almost always
has to deal with intrinsic uncertainty represented here by the
noise term δt . In finance, for example, one typically deals
with investors’ uncertainty about economic fundamentals. In
the ABS there will be uncertainty about future dividends and
the noise term δt represents unexpected random news about
dividends. An important goal of our research program is
to match the nonlinear stochastic model (1) to the statistical
properties of the data, as closely as possible, and in particular
to first match the most important stylized facts in the data3.

A special case of the nonlinear stochastic system (1) arises
when all noise terms are set to zero. We will refer to this system
as the (deterministic) skeleton denoted by4

Xt+1 = F(Xt ; n1t , . . . , nHt ; λ). (2)

In order to understand the properties of the general stochastic
model (1) it is important to understand the properties of
the deterministic skeleton. In particular, one would like to
impose as little structure on the noise process as possible, and
relate the stylized facts of the general stochastic model (1)
directly to generic properties of the underlying deterministic
skeleton. There are three important, generic features of
nonlinear deterministic systems which may play an important
role in generating some of the stylized facts in finance and may
in particular cause volatility clustering:

F1 Chaos and strange attractors due to homoclinic
bifurcations.

F2 Simultaneous coexistence of different attractors.
F3 Local bifurcations of steady states.

2 We will mainly focus on stationary systems here, but the example in
subsection 4.4 will be close to having a unit root and matching the stylized fact
S1. In future work, we also plan to investigate the relation between trading
volume and volatility in stylized fact S4.
3 Other approaches to modelling the stylized facts, especially volatility
clustering and fat tails, in finance include the (G)ARCH models initiated
by Engle (1982), and more recently the multifractal modelling approach of
Mandelbrot (1997, 1999) and the ‘scaling-law approach’ in econophysics as
surveyed in Mantegna and Stanley (2000). These approaches are statistically
or time-series oriented however and, although important and useful, lack
structural economic modelling.
4 This terminology is used e.g. by Tong (1990)
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Figure 1. Strange attractor (a) of the adaptive belief system of subsection 4.3 and enlargement of its fractal structure (b).

Figure 1 illustrates feature F1 and shows an example of a
strange attractor in the ABS discussed in subsection 4.3.

The motion on the strange attractor is highly unpre-
dictable, with asset prices jumping irregularly over the com-
plicated fractal set. Although research in nonlinear dynam-
ics has been stimulated much by computer simulations in the
past 25 years, the ‘roots of chaos’ date back to the mathe-
matician Henri Poincaré at the end of the previous century5.
Poincaré introduced the notion of homoclinic orbits, in his
investigations of the three-body problem. Nowadays it is a
mathematical fact that homoclinic orbits are a key feature of
chaotic systems, and so-called homoclinic bifurcations lead-
ing to strange attractors seem to be the rule rather than the
exception. Brock and Hommes (1997a, 1998) have shown
that evolutionary adaptive systems with heterogeneous agents
using competing trading strategies is a natural nonlinear world
full of homoclinic bifurcations and strange attractors.

Nonlinear dynamic models can generate a wide variety
of irregular patterns. In particular, nonlinear dynamic models
can generate any given autocorrelation pattern6. A nonlinear,
chaotic model, buffeted with dynamic noise, with almost no
autocorrelations in returns but at the same time persistence in
squared returns, with slowly decaying autocorrelations, may
thus provide a structural explanation of the unpredictability of

5 Gleick (1987) presents a nice overview of the history of nonlinear dynamics.
A good introduction to the mathematics of ‘chaos’ for non-specialists is
Ruelle (1991). A mathematical treatment with recent advances in homoclinic
bifurcation theory is e.g. Palis and Takens (1993).
6 To see that a higher-dimensional chaotic map can generate any desired
autocorrelation structure, consider the nonlinear difference equation (xt , yt ) =
(a1xt−1 + . . . + aLxt−L + yt−1, 1 − 2y2

t−1). As is well known, the
second coordinate yt follows a chaotic process with zero mean and zero
autocorrelations at all lags. Since yt is generated independently of past values
of xt , the series xt and yt are uncorrelated. The first coordinate xt thus follows
a linear AR(L) process driven by a chaotic series with zero autocorrelations
at all lags, and thus has the desired autocorrelation structure.

asset returns and volatility clustering in financial assets. In fact,
the phenomenon of intermittency, as introduced by Pomeau
and Manneville (1980), is well suited as a description of the
phenomenon of volatility clustering. Intermittency means
chaotic asset price fluctuations characterized by phases of
almost periodic fluctuations irregularly interrupted by sudden
bursts of erratic fluctuations. In an ABS intermittency occurs
characterized by close to the RE fundamental steady state
fluctuations suddenly interrupted by price deviations from the
fundamental triggered by technical trading.

The second generic feature F2, coexistence of attractors,
is also naturally suited to describe volatility clustering. In
particular, the ABS exhibits coexistence of a stable steady state
and a stable limit cycle. When buffeted with dynamic noise,
irregular switching occurs between close to the fundamental
steady state fluctuations, when the market is dominated by
fundamentalists, and periodic fluctuations when the market
is dominated by chartists. It is important to note that
both intermittency and coexistence of attractors are persistent
phenomena, which are by no means special for our ABS, but
occur naturally in nonlinear dynamic models, and moreover
are robust with respect to and sometimes even reinforced by
dynamic noise.

The third generic feature F3, a local bifurcation of a steady
state, that is, a change in the stability of the steady state, is
related to feature F2. A local bifurcation occurs when the
linearized system is at the border of stability, having at least one
unit root. Close to the bifurcation point there can be regions in
the parameter space where the nonlinear system has coexisting
attractors. It turns out that an ABS with parameters close to
a local bifurcation point of the steady state can generate some
of the stylized facts in finance such as volatility clustering.

In the last decade several attempts have been made to
test for chaos in economic and financial data. Most empirical
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studies have rejected the hypothesis that economic or financial
data are generated by low-dimensional, purely deterministic
chaos but strong evidence for nonlinearity is found (see e.g. the
survey in Brock et al (1991)). It should be stressed though that
the methods for detecting chaos are very sensitive to noise, and
that nonlinear models with noise, such as our proposed ABS,
may be consistent with the data. A noisy nonlinear model may
explain a significant part of observed fluctuations and stylized
facts in economic and financial markets.

3. Adaptive belief systems
This section reviews the notion of an adaptive belief system
(ABS), as introduced in Brock (1997) and Brock and
Hommes (1997a, b, 1998). An ABS is in fact a standard
discounted value asset pricing model derived from mean-
variance maximization, extended to the case of heterogeneous
beliefs. Agents can either invest in a risk free asset or in a risky
asset. The risk free asset is perfectly elastically supplied and
pays a fixed rate of return r; the risky asset, for example a large
stock or a market index, pays an uncertain dividend. Let pt be
the price per share (ex-dividend) of the risky asset at time t ,
and let yt be the stochastic dividend process of the risky asset.
Wealth dynamics is given by

Wt+1 = (1 + r)Wt + (pt+1 + yt+1 − (1 + r)pt )zt , (3)

where bold face variables denote random variables at date
t + 1 and zt denotes the number of shares of the risky asset
purchased at date t . Let Et and Vt denote the conditional
expectation and conditional variance based on a publically
available information set such as past prices and past dividends.
Let Eht and Vht denote the ‘beliefs’ or forecasts of trader
type h about conditional expectation and conditional variance.
Agents are assumed to be myopic mean-variance maximizers
so that the demand zht of type h for the risky asset solves

Maxzt
{
Eht [Wt+1] − a

2
Vht [Wt+1]

}
, (4)

where a is the risk aversion parameter. The demand zht for
risky assets by trader type h is then

zht = Eht [pt+1 + yt+1 − (1 + r)pt ]

aVht [pt+1 + yt+1 − (1 + r)pt ]

= Eht [pt+1 + yt+1 − (1 + r)pt ]

aσ 2
, (5)

where the conditional variance Vht = σ 2 is assumed to be
equal and constant for all types7. Let zs denote the supply of
outside risky shares per investor, assumed to be constant, and
let nht denote the fraction of type h at date t . Equilibrium of
demand and supply yields

H∑
h=1

nht
Eht [pt+1 + yt+1 − (1 + r)pt ]

aσ 2
= zs, (6)

7 Gaunersdorfer (2000) investigates the case with time varying beliefs about
variances and shows that the results are quite similar to those for constant
variance.

where H is the number of different trader types. BH focus on
the special case of zero supply of outside shares, i.e. zs = 0, for
which the market equilibrium equation can be rewritten as8,9

(1 + r)pt =
H∑
h=1

nhtEht [pt+1 + yt+1]. (7)

3.1. The EMH benchmark with rational agents

Let us first discuss the EMH benchmark with rational
expectations. In a world where all traders are identical
and expectations are homogeneous the arbitrage market
equilibrium equation (7) reduces to

(1 + r)pt = Et [pt+1 + yt+1], (8)

where Et denotes the common conditional expectation of all
traders at the beginning of period t , based on a publically
available information set It such as past prices and dividends,
i.e. It = {pt−1, pt−2, . . . ; yt−1, yt−2, . . .}. This arbitrage
market equilibrium equation (8) states that today’s price of
the risky asset must be equal to the sum of tomorrow’s
expected price and expected dividend, discounted by the risk-
free interest rate. It is well known that, using the arbitrage
equation (8) repeatedly and assuming that the transversality
condition

lim
k→∞

Et [pt+k]
(1 + r)k

= 0 (9)

holds, the price of the risky asset is uniquely determined by

p∗
t =

∞∑
k=1

Et [yt+k]
(1 + r)k

. (10)

The price p∗
t in (10) is called the EMH fundamental rational

expectations (RE) price, or the fundamental price for short.
The fundamental price is completely determined by economic
fundamentals and given by the discounted sum of expected
future dividends. In general, the properties of the fundamental
price p∗

t depend upon the stochastic dividend process yt . We
will mainly focus on the case of an IID dividend process yt ,
with constant mean E[yt ] = ȳ. We note however that any
other random dividend process yt may be substituted in what
follows10. For an IID dividend process yt with constant mean,
the fundamental price is constant and given by

p∗ =
∞∑
k=1

ȳ

(1 + r)k
= ȳ

r
. (11)

8 Brock (1997) motivates this special case by introducing a risk adjusted
dividend y#

t+1 = yt+1 − aσ 2zs to obtain the market equilibrium equation
(7). In general however, the equilibrium equation (7) ignores a risk premium
aσ 2zs for investors holding the risky asset. Since dividends and a risk premium
affect realized profits and wealth, in general they will affect the fractions nht of
trader type h. The question how exactly the risk premium affects evolutionary
competition will be investigated in future work, by taking zs as a bifurcation
parameter.
9 In the examples of ABS in section 4, we will add a noise term εt to the
right-hand side of the market equilibrium equation (7), representing a model
approximation error.
10 Brock and Hommes (1997b) for example discuss a non-stationary example,
where the dividend process is a geometric random walk.
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There are two crucial assumptions underlying the derivation
of the RE fundamental price. The first is that expectations
are homogeneous, all traders are rational and it is common
knowledge that all traders are rational. In such an ideal,
perfectly rational world the fundamental price can be derived
from economic fundamentals. Conditions under which a
RE price can be derived can be relaxed, to include for
example noise traders or limited heterogeneity of information.
In general however, in a world with heterogeneous traders
having different beliefs or expectations about future prices
and dividends, derivation of a RE fundamental price requires
perfect knowledge about the beliefs of all other traders11. In
a real market, understanding the beliefs and strategies of all
other, competing traders is virtually impossible, and therefore
in a heterogeneous world derivation of the RE-fundamental
price becomes impossible. The second crucial assumption
underlying the derivation of the fundamental price is the
transversality condition (9), requiring that the long-run growth
rate of prices (and risk adjusted dividends) is smaller than the
risk free growth rate r . In fact, in addition to the fundamental
solution (10) so-called speculative bubble solutions of the form

pt = p∗
t + (1 + r)t (p0 − p∗

0) (12)

also satisfy the arbitrage equation (8). It is important to note
that along the speculative bubble solution (12), traders have
rational expectations. Solutions of the form (12) are therefore
called rational bubbles. These rational bubble solutions are
explosive and do not satisfy the transversality condition. In
a perfectly rational world, traders realize that speculative
bubbles cannot last forever and therefore they will never
get started and the finite fundamental price p∗

t is uniquely
determined. In a perfectly rational world, all traders thus
believe that the value of a risky asset equals its fundamental
price forever. Changes in asset prices are solely driven by
unexpected changes in dividends and random ‘news’ about
economic fundamentals. In a heterogeneous evolutionary
world however, the situation will be quite different, and we will
see that evolutionary forces may lead to endogenous switching
between the fundamental price and the rational self fulfilling
bubble solutions.

3.2. Heterogeneous beliefs

In the asset pricing model with heterogeneous beliefs, market
equilibrium in (7) states that the price pt of the risky asset
equals the discounted value of tomorrow’s expected price plus
tomorrow’s expected dividend, averaged over all different
trader types. In such a heterogeneous world temporary
upward or downward bubbles with prices deviating from the
fundamental may arise, when the fraction of traders believing
in those bubbles is large enough. Once a (temporary) bubble
has started, evolutionary forces may reinforce deviations from
the benchmark fundamental. We shall now be more precise
about traders’ expectations (forecasts) about future prices and
dividends. It will be convenient to work with

xt = pt − p∗
t , (13)

11 See e.g. Arthur (1995) for a lucid account of this point.

the deviation from the fundamental price. We make the
following assumptions about the beliefs of trader type h:

B1 Vht [pt+1 + yt+1 − (1 + r)pt ] = Vt [pt+1 + yt+1 − (1 +
r)pt ] = σ 2, for all h, t .

B2 Eht [yt+1] = Et [yt+1], for all h, t .
B3 All beliefs Eht [pt+1] are of the form

Eht [pt+1] = Et [p∗
t+1] + fh(xt−1, . . . , xt−L), for all h, t.

(14)

According to assumption B1, beliefs about conditional
variance are equal and constant for all types, as discussed
above already. Assumption B2 states that expectations about
future dividends yt+1 are the same for all trader types and equal
to the conditional expectation. All traders are thus able to
derive the fundamental price p∗

t in (10) that would prevail in a
perfectly rational world. According to assumption B3, traders
nevertheless believe that in a heterogeneous world prices may
deviate from their fundamental value p∗

t by some function
fh depending upon past deviations from the fundamental.
Each forecasting rule fh represents the model of the market
according to which type h believes that prices will deviate
from the commonly shared fundamental price. For example, a
forecasting strategy fh may correspond to a technical trading
rule, based upon short run or long run moving averages, of the
type used in real markets.

Strictly speaking (14) is not a technical trading rule,
because it uses the fundamental price in its forecast. Including
price forecasting rules depending upon past prices only, not
using any information about fundamentals, yields similar
results. However, as will be seen below, a convenient feature
of our formulation is that the complete heterogeneous agent
asset pricing model can be reformulated in terms of deviations
from the benchmark fundamental. We will use the short-hand
notation

fht = fh(xt−1, . . . , xt−L) (15)

for the forecasting strategy employed by trader type h.
Brock and Hommes (1998) have investigated evolutionary
competition between the simplest linear trading rules with only
one lag, i.e.

fht = ghxt−1 + bh. (16)

Simple forecasting rules are more likely to be relevant in real
markets, because for a complicated forecasting rule it seems
unlikely that enough traders will coordinate on that particular
rule so that it affects market equilibrium prices. Although the
linear forecasting rule (16) is extremely simple, it does in fact
represent a number of important cases. For example, when
both the trend parameter and the bias parameter gh = bh = 0
the rule reduces to the forecast of fundamentalists, i.e.

fht ≡ 0, (17)

believing that the market price will be equal to the fundamental
price p∗, or equivalently that the deviation x from the
fundamental will be 0. Other important cases covered by the
linear forecasting rule (16) are the pure trend followers

fht = ghxt−1, gh > 0, (18)
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and the pure biased belief

fht = bh. (19)

Notice that the simple pure bias (19) rule represents any
positively or negatively biased price forecast that traders might
have. Instead of these extremely simple habitual rule of thumb
forecasting rules, some economists might prefer the rational,
perfect foresight forecasting rule

fht = xt+1. (20)

We emphasize however, that the perfect foresight
forecasting rule (20) assumes perfect knowledge of the
heterogeneous market equilibrium equation (7), and in
particular perfect knowledge about the beliefs of all other
traders. Although the case with perfect foresight certainly
has theoretical appeal, its practical relevance in a complex
heterogeneous world should not be overstated since this
underlying assumption seems highly unrealistic12.

An important and convenient consequence of the
assumptions B1–B3 concerning traders’ beliefs is that the
heterogeneous agent market equilibrium equation (7) can be
reformulated in deviations from the benchmark fundamental.
In particular, substituting the price forecast (14) in the
market equilibrium equation (7) and using the facts that the
fundamental price p∗

t satisfies (1 + r)p∗
t = Et [p∗

t+1 + yt+1]
and the price pt = xt + p∗

t yields the equilibrium equation in
deviations from the fundamental:

(1 + r)xt =
H∑
h=1

nhtEht [xt+1] ≡
H∑
h=1

nhtfht , (21)

with fht = fh(xt−1, . . . , xt−L). An important reason for our
model formulation in terms of deviations from a benchmark
fundamental is that in this general setup, the benchmark
rational expectations asset pricing model is nested as a special
case, with all forecasting strategies fh ≡ 0. In this way,
the adaptive belief systems can be used in empirical and
experimental testing whether asset prices deviate significantly
from anyone’s favourite benchmark fundamental.

3.3. Evolutionary dynamics

The evolutionary part of the model describes how beliefs are
updated over time, that is, how the fractions nht of trader
types in the market equilibrium equation (21) evolve over time.
Fractions are updated according to an evolutionary fitness or
performance measure. The fitness measures of all trading
strategies are publically available, but subject to noise. Fitness
is derived from a random utility model and given by

Ũht = Uht + εht , (22)

where Uht is the deterministic part of the fitness measure and
εht represents noise. Assuming that the noise εht is IID across
h = 1, . . . , H drawn from a double exponential distribution, in

12 See also subsection 4.1 for a brief discussion of rational versus
fundamentalist traders.

the limit as the number of agents goes to infinity, the probability
that an agent chooses strategy h is given by the well known
discrete choice model or ‘Gibbs’ probabilities13

nht = exp(βUh,t−1)

Zt−1
, Zt−1 =

H∑
h=1

exp(βUh,t−1), (23)

where Zt−1 is a normalization factor in order for the fractions
nht to add up to 1. The crucial feature of (23) is that the higher
the fitness of trading strategy h, the more traders will select
strategy h. The parameter β in (23) is called the intensity
of choice, measuring how sensitive the mass of traders is to
selecting the optimal prediction strategy. The intensity of
choice β is inversely related to the variance of the noise terms
εht . The extreme case β = 0 corresponds to the case of
infinite variance noise, so that differences in fitness cannot
be observed and all fractions (23) will be fixed over time and
equal to 1/H . The other extreme case β = ∞ corresponds
to the case without noise, so that the deterministic part of the
fitness can be observed perfectly and in each period, all traders
choose the optimal forecast. An increase in the intensity of
choice β represents an increase in the degree of rationality
with respect to evolutionary selection of trading strategies.
The timing of the coupling between the market equilibrium
equation (7) or (21) and the evolutionary selection of strategies
(23) is crucial. The market equilibrium price pt in (7) depends
upon the fractionsnht . The notation in (23) stresses the fact that
these fractions nht depend upon past fitnessesUh,t−1, which in
turn depend upon past pricespt−1 and dividends yt−1 in periods
t − 1 and further in the past as will be seen below. After the
equilibrium price pt has been revealed by the market, it will
be used in evolutionary updating of beliefs and determining
the new fractions nh,t+1. These new fractions nh,t+1 will then
determine a new equilibrium price pt+1, etc. In the ABS,
market equilibrium prices and fractions of different trading
strategies thus coevolve over time.

A natural candidate for evolutionary fitness is accumulated
realized profits, as given by

Uht = (pt+yt−Rpt−1)
Eh,t−1[pt + yt − Rpt−1]

aσ 2
−Ch+wUh,t−1

(24)
where R = 1 + r is the gross risk free rate of return, Ch
represents an average per period cost of obtaining forecasting
strategy h and 0 � w � 1 is a memory parameter measuring
how fast past realized fitness is discounted for strategy
selection. The cost Ch for obtaining forecasting strategy h
will be zero for simple, habitual rule-of-thumb forecasting
rules, but may be positive for more sophisticated forecasting
strategies. For example, costs for forecasting strategies based
upon economic fundamentals may be positive representing
investors’ effort for information gathering, whereas costs for
technical trading rules may be (close to) zero. The first term in
(24) represents last period’s realized profit of type h given by
the realized excess return of the risky asset over the risk free

13 See Manski and McFadden (1981) and Anderson, de Palma and Thisse
(1993) for extensive discussion of discrete choice models and their applications
in economics.
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asset times the demand for the risky asset by traders of type
h. In the extreme case with no memory, i.e. w = 0, fitness
Uht equals net realized profit in the previous period, whereas
in the other extreme case with infinite memory, i.e. w = 1,
fitnessUht equals total wealth as given by accumulated realized
profits over the entire past. In the intermediate case, the weight
given to past realized profits decreases exponentially with time.
It will be useful to compute the realized excess return Rt in
deviations from the fundamental to obtain

Rt = pt + yt − Rpt−1 = xt + p∗
t + yt − Rxt−1 − Rp∗

t−1

= xt − Rxt−1 + p∗
t + yt − Et−1[p∗

t + yt ]

+ Et−1[p∗
t + yt ] − Rp∗

t−1

≡ xt − Rxt−1 + δt , (25)

where we used that Et−1[p∗
t + yt ] − Rp∗

t−1 = 0 since the
fundamental p∗

t satisfies the market equilibrium equation (8),
and δt ≡ p∗

t + yt − Et−1[p∗
t + yt ] is a martingale difference

sequence (MDS). The random term δt enters because the
dividend process is stochastic, and thus represents intrinsic
uncertainty about economic fundamentals14. According to the
decomposition (25) excess return consists of a conventional
EMH term δt and an additional speculative term xt −Rxt−1 of
the ABS theory. Our ABS theory thus allows for the possibility
of excess volatility. The extra term is zero if either xt ≡ 0,
that is prices equal their fundamental value, or if xt = Rxt−1,
that is when prices follow a RE bubble solution. The ABS
theory predicts excess volatility in periods when asset prices
grow faster or slower than the risk free rate of return, or when
prices switch between a temporary bubble solution and the
fundamental.

Fitness can now be rewritten in deviations from the
fundamental as

Uht = (xt − Rxt−1 + δt )

(
fh,t−1 − Rxt−1

aσ 2

)
− Ch + wUh,t−1.

(26)

Risk adjusted profits as fitness measure

Although realized net profits are a natural candidate for
evolutionary fitness, this fitness measure does not take into
account the risk taken at the moment of the investment decision.
In fact, given that investors are risk averse mean-variance
maximizers maximizing their expected utility from wealth (4),
another natural candidate for fitness is the risk adjusted profit.
Using the notation Rt = pt + yt − Rpt−1 for realized excess
return, the realized risk adjusted profit for strategy h in period
t is given by

πht = Rtzh,t−1 − a

2
σ 2z2

h,t−1, (27)

where zh,t−1 = Eh,t−1[Rt ]/(aσ 2) is the demand by trader type
h as in (5). Notice that maximizing expected utility from
wealth in (4) is equivalent to maximizing expected utility from
profits in (27). A risk adjusted fitness measure based on (27)

14 In the special case of an IID dividend process yt = ȳ + εt we simply have
δt = εt .

is thus consistent with the investors’ demand function derived
from mean-variance maximization of expected wealth. The
fitness measure (24) based upon realized profits does not take
into account the variance term in (27) capturing the investors’
risk taken before obtaining that profit. On the other hand, in
real markets realized net profits or accumulated wealth may
be what investors care about most, and the non-risk adjusted
fitness measure (24) may thus be practically important.

The expression for risk adjusted profit fitness can be
simplified and turns out to be equivalent, up to a constant
factor, to minus squared prediction errors. In order to see
this, we will subtract off the realized risk adjusted profit πRt
obtained by rational (perfect foresight) traders from (27). The
risk adjusted profit πRt by rational agents is given by

πRt = Rt Rt
aσ 2

− a

2
σ 2 R

2
t

a2σ 4
= R2

t

2aσ 2
. (28)

Since πRt is independent of h, subtracting this term from (27)
will not affect the maximization of expected utility by trader
type h. Notice also that subtracting this term from (27) will not
affect the fractionsnht of trader typeh, since the discrete choice
probabilities (23) are independent of the level of the fitness.
Using zh,t−1 = Eh,t−1[Rt ]/(aσ 2) a simple computation shows
that

πht − πRt = − 1

2aσ 2
(Rt − Eh,t−1[Rt ])

2

= − 1

2aσ 2
(pt − Eh,t−1[pt ] + δy,t )

2

= − 1

2aσ 2
(xt − Eh,t−1[xt ] + δt )

2, (29)

where δy,t = yt − Et−1[yt ] and δt = p∗
t + yt − Et−1[p∗

t + yt ]
are both MDS sequences15. The fitness measure risk adjusted
profit is thus, up to a constant factor and an MDS sequence,
equivalent to minus squared forecasting errors. The risk
adjusted fitness measure is now formally defined as

Vht = − 1

2aσ 2
(pt −Eh,t−1[pt ] + δy,t )

2 −Ch +wVh,t−1, (30)

or in deviations from the fundamental

Vht = − 1

2aσ 2
(xt − Eh,t−1[xt ] + δt )

2 − Ch + wVh,t−1. (31)

The random term δt or δy,t enters because the dividend process
is stochastic, and thus again represents intrinsic uncertainty
about economic fundamentals.

4. Some simple examples
This section presents four simple, but typical examples of ABS.
The first three subsections discuss the most important features
of Brock and Hommes (1997b, 1998, 1999), with realized
profits as the fitness measure. The fourth subsection discusses
a modified ABS by Gaunersdorfer and Hommes (2000), with

15 In the special case of an IID dividend process yt = ȳ+εt and corresponding
constant fundamental price p∗ = ȳ/r , we have δy,t = δt = εt .
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evolutionary fitness given by risk adjusted profits conditioned
upon deviations from the fundamental. Time series properties
of the latter example will be compared to 40 years of S&P 500
data.

BH present a number of simple, but typical, examples of
the evolutionary dynamics in adaptive belief systems with two,
three or four competing linear forecasting rules (16), where
the parameter gh represents a perceived trend in prices and the
parameter bh represents a perceived upward or downward bias.
The ABS then becomes (in deviations from the fundamental):

(1 + r)xt =
H∑
h=1

nht (ghxt−1 + bh) + εt (32)

nh,t = exp(βUh,t−1)∑H
h=1 exp(βUh,t−1)

(33)

Uh,t−1 = (xt−1 − Rxt−2 + δt−1)

(
ghxt−3 + bh − Rxt−2

aσ 2

)

+ wUh,t−2 − Ch, (34)

where the noise term εt represents the model approximation
error and δt−1 represents uncertainty about economic
fundamentals as before. In order to keep the analysis of the
dynamical behaviour tractable, BH have mainly focused on the
case where the memory parameterw = 0, so that evolutionary
fitness is given by last period’s realized profit. In subsection
4.3 we will discuss the role of the memory parameter w. We
briefly discuss three important cases. A common feature of all
examples is that, as the intensity of choice to switch prediction
or trading strategies increases, the fundamental steady state
becomes locally unstable and non-fundamental steady states,
cycles or even chaos arise.

4.1. Fundamentalists with positive information costs
versus trend followers

The simplest example of an ABS only has two trader types,
with forecasting rules

f1t = 0 fundamentalists (35)

f2t = gxt−1, g > 0, trend followers (36)

that is, the first type are fundamentalists predicting that the
price will equal its fundamental value (or equivalently that
the deviation will be zero) and the second type are pure trend
followers predicting that prices will rise (or fall) by a constant
rate. In this example, the fundamentalists have to pay a fixed
per period positive cost C1 for information gathering; in all
other examples discussed below information costs will be set
to zero for all trader types.

For small values of the trend parameter, 0 � g < 1 + r ,
the fundamental steady state is always stable. Only for
sufficiently high trend parameters, g > 1 + r , can trend
followers destabilize the system. For trend parameter, 1 + r <
g < (1+r)2 the dynamic behaviour of the evolutionary system
depends upon the intensity of choice to switch between the

two trading strategies16. For low values of the intensity of
choice, the fundamental steady state will be stable. As the
intensity of choice increases, the fundamental steady state
becomes unstable due to a pitchfork bifurcation in which two
additional non-fundamental steady states −x∗ < 0 < x∗ are
created. The evolutionary ABS may converge to the positive
non-fundamental steady state, to the negative non-fundamental
steady state, or, in the presence of noise, switch back and
forth between the high and the low steady state. As the
intensity of choice increases further, the two non-fundamental
steady states also become unstable, and limit cycles or even
strange attractors can arise around each of the (unstable) non-
fundamental steady states. The evolutionary ABS may cycle
around the positive non-fundamental steady state, cycle around
the negative non-fundamental steady state or, driven by the
noise, switch back and forth between cycles around the high
and the low steady state.

This example shows that, in the presence of information
costs and with zero memory, when the intensity of choice in
evolutionary switching is high fundamentalists can not drive
out pure trend followers and persistent deviations from the
fundamental price may occur. Brock and Hommes (1999)
show that this result also holds when the memory in the fitness
measure increases. In fact, an increase in the memory of the
evolutionary fitness leads to bifurcation routes very similar to
bifurcation routes due to an increase in the intensity of choice.

It is sometimes argued that fundamentalists are not rational
since they do not take into account the presence of other
trader types. Let us therefore briefly discuss the case of
perfect foresight versus trend followers, that is, the case
when the fundamentalists forecasting rule (35) is replaced
by a perfect foresight rule f1t = xt+1. Brock and Hommes
(1998, p 1247, lemma 1) show that in this case the first
bifurcation is the same, that is, as the intensity of choice
increases two non-fundamental steady states are created due
to a pitchfork bifurcation. Although examples with perfect
foresight certainly have theoretical appeal, there are two
fundamental reasons arguing against perfect foresight in a
heterogeneous world. The first is a methodological reason,
since with one type having perfect foresight a temporary
equilibrium model with heterogeneous beliefs as in (32), (33)
and (34) becomes an implicitly defined dynamical system with
xt on the left-hand side and xt+1 and e.g. xt−1 on the right-hand
side. Typically such implicitly defined evolutionary systems
cannot be solved explicitly and often they are not even well
defined17. The second and perhaps more important reason is
that rational expectations or perfect foresight assumes perfect
knowledge of the beliefs of all other trader types, which seems
at odds with reality. It seems more reasonable and closer to
financial practice to focus on examples with fundamentalist
traders.
16 For g > (1 + r)2 the system may become globally unstable and prices may
diverge to infinity. Imposing a stabilizing force, for example by assuming that
trend followers condition their rule upon deviations from the fundamental as
in subsection 4.4, leads to a bounded system again, possibly with cycles or
even chaotic fluctuations.
17 Brock and Hommes (1997a) consider an evolutionary cobweb model with
rational expectations at positive information costs versus freely available naive
expectations. This example can be solved explicitly and exhibits bifurcation
routes to cycles and chaos similar to the ABS presented here.
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4.2. Fundamentalists versus opposite biases

The second example of an ABS is an example with three trader
types, with forecasting rules

f1t = 0 fundamentalists (37)

f2t = b b > 0, positive bias (optimists) (38)

f3t = −b − b < 0, negative bias (pessimists). (39)

The first type are fundamentalists again, but this time there
will be no information costs. The second and third types have
a purely biased belief, expecting a constant price above or
respectively below the fundamental price.

For low values of the intensity of choice, the fundamental
steady state is stable. As the intensity of choice increases
the fundamental steady state becomes unstable due to a Hopf
bifurcation and the dynamics of the ABS is characterized by
cycles around the unstable steady state. This example shows
that when memory is zero, even when there are no information
costs for fundamentalists, they cannot drive out other trader
types with opposite biased beliefs. In the evolutionary
ABS with high intensity of choice, fundamentalists and
biased traders coexist with fractions varying over time and
prices cycling around the unstable fundamental steady state.
Moreover, Brock and Hommes (1998, p 1259, lemma 9)
show that as the intensity of choice tends to infinity the ABS
converges to a (globally) stable cycle of period 4. Average
profits along this 4-cycle are equal for all three trader types.
Hence, if the initial wealth is equal for all three types, then in
this evolutionary system in the long run accumulated wealth
will be equal for all three types. This example suggests that
the Friedman argument that smart-fundamental traders will
automatically drive out simple habitual rule of speculative
traders should be considered with care.

In this example with three trader types, cycles can occur
but chaos does not arise18. Therefore, even in the presence
of (small) noise, price fluctuations will be fairly regular and
therefore returns will be predictable. This predictability will
disappear however when we combine trend following with
biased beliefs.

4.3. Fundamentalists versus trend and bias

The third example of an ABS is an example with four trader
types, with linear forecasting rules (16) with parameters g1 =
0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9, b3 = −0.2
and g4 = 1 + r = 1.01, b4 = 0. The first type are
fundamentalists again, without information costs, and the other
three types follow a simple linear forecasting rule with one
lag. For low values of the intensity of choice, the fundamental
steady state is stable. As the intensity of choice increases, as
in the previous three type example, the fundamental steady
state becomes unstable due to a Hopf bifurcation and a stable
invariant circle around the unstable fundamental steady state
arises, with periodic or quasi-periodic fluctuations. As the
intensity of choice further increases, the invariant circle breaks
into a strange attractor with chaotic fluctuations.

18 This may be seen from the plot of the largest Lyapunov exponent in Brock
and Hommes (1998, p 1261, figure 9(b)), which is always non-positive.

This example shows that when memory is zero, even
when there are no information costs for fundamentalists, they
cannot drive out other simple trader types and fail to stabilize
price fluctuations towards the fundamental value. As in the
three type case, the opposite biases create cyclic behaviour
but apparently the additional trend parameters turn these
cycles into chaotic fluctuations. In the evolutionary ABS
fundamentalists and chartists coexist with fractions varying
over time and prices moving chaotically around the unstable
fundamental steady state. The corresponding strange attractor,
with the parameter values given by r = 0.01, β = 90.5,w = 0
and Ch = 0 for all 1 � h � 4, was already shown in figure 1.
Figure 2 shows a chaotic as well as a noisy chaotic time series.

The (noisy) chaotic price fluctuations are characterized by
an irregular switching between phases of close-to-the-EMH-
fundamental-price fluctuations, phases of ‘optimism’ with
prices following an upward trend, and phases of ‘pessimism’,
with (small) sudden market crashes. Recall from subsection
3.1 that the asset pricing model with homogeneous beliefs,
in addition to the benchmark fundamental price, has rational
bubble solutions as in (12). One might say that the ABS prices
are characterized by an evolutionary switching between the
fundamental value and these temporary speculative bubbles.

Brock and Hommes (1997a, 1998) show that for a high
intensity of choice, the ABS system is close to having a
homoclinic orbit, Poincaré’s classical notion and key feature of
chaotic systems. In the purely deterministic chaotic case, the
timing and the direction of the temporary bubbles seem hard to
predict (see figure 2(a)). However, once a bubble has started,
in the deterministic case, the length of the bubble seems to be
predictable in most of the cases. In the presence of noise, as
in figure 2(b), the timing, the direction and the length of the
bubble all seem hard to predict. In order to investigate this
(un)predictability issue further, we employ a so called nearest
neighbour forecasting method to predict the returns, at lags 1
to 20 for the purely chaotic as well as for several noisy chaotic
time series, as illustrated in figure 319.

Nearest neighbour forecasting looks for past patterns
close to the most recent pattern, and then yields as the
prediction the average value following all nearby past patterns.
It follows essentially from Takens’ embedding theorem
that this method yields good forecasts for deterministic
chaotic systems20. Figure 3 shows that as the noise level
increases, the forecasting performance of the nearest neighbour
method quickly deteriorates. Hence, in our simple nonlinear
evolutionary ABS with noise it is hard to make good forecasts
of future returns. Our simple nonlinear ABS with small noise
thus captures some of the intrinsic unpredictability of asset
returns also present in real markets.

Finally, let us briefly discuss the issue of memory in
the fitness measure. Figure 4 shows bifurcation diagrams
of the deterministic ABS as well as the noisy ABS, with
respect to the memory parameter w, 0 � w � 1. The
parameters are as before, except for the intensity of choice
which has been chosen smaller, β = 40, so that in the

19 I would like to thank Sebastiano Manzan for providing this figure.
20 See Takens (1981) and Packard et al (1980). A recent treatment of nonlinear
time series analysis and forecasting techniques is Kantz and Schreiber (1997).
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Figure 2. Chaotic (a) and noisy chaotic (b) time series of asset prices in an adaptive belief system with four trader types. Belief parameters
are: g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9, b3 = −0.2 and g4 = 1 + r = 1.01, b4 = 0; other parameters are r = 0.01, β = 90.5,
w = 0 and Ch = 0 for all 1 � h � 4.
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Figure 3. Forecasting errors for the nearest neighbour method
applied to chaotic returns series as well as noisy chaotic returns
series, for different noise levels, in ABS with four trader types. All
returns series have close to zero autocorrelations at all lags. The
benchmark case of prediction by the mean 0 is represented by the
horizontal line at the normalized prediction error 1. Nearest
neighbour forecasting applied to the purely deterministic chaotic
series leads to much smaller forecasting errors (lowest graph). A
noise level of say 10% means that the ratio of the variance of the
noise term εt and the variance of the deterministic price series is
1/10. As the noise level slowly increases, the graphs are shifted
upwards. Small dynamic noise thus quickly deteriorates forecasting
performance.

case with zero memory (w = 0) the fundamental steady
state is stable. As the memory parameter increases, the
fundamental steady becomes unstable for w ≈ 0.3, due to a
Hopf bifurcation, and as memory approaches 1 (the case where
fitness is given by accumulated wealth) the dynamics becomes
more complicated, even chaotic. The (long) time series in
figure 4 shows that with memory close to 1 speculative bubbles
still occur, although they are less frequent than for smaller
memory. In fact, increasing memory yields a bifurcation route
to instability, cycles and chaos similar to the bifurcation routes
with respect to an increase in the intensity of choice. The
intuition behind this result is as follows. Even when the

intensity of choice to switch strategies is low, when memory in
fitness is large, differences in accumulated profits can become
sufficiently large to cause the majority of traders to switch to a
trend following strategy and leading to a (temporary) bubble.
More memory thus in general does not stabilize an evolutionary
system, but may in fact be destabilizing21.

4.4. An example with volatility clustering

From a qualitative viewpoint, the price fluctuations in the
simple examples of the nonlinear noisy ABS are similar
to observed fluctuations in real markets. But do these
(chaotic) fluctuations explain a significant part of stock price
fluctuations? Brock and Hommes (1997b) calibrated the ABS
of the previous subsection to ten years of monthly IBM prices
and returns and found that the autocorrelations of both the
(noisy) chaotic returns and squared returns had no significant
autocorrelations, similarly for the monthly IBM returns and
squared returns. In this section we discuss a modified ABS
of Gaunersdorfer and Hommes (2000) exhibiting volatility
clustering and fat tails. There are three modifications compared
with the BH-models discussed before: (i) the evolutionary
fitness measure is given by risk adjusted realized profits, as
opposed to (non-risk adjusted) realized profits; (ii) technical
traders condition their rules upon market fundamentals, which
is reflected in the second stage of the updating scheme for
fractions as discussed below; (iii) we allow for one extra time
lag in the trend following forecasting rules, leading to a 4D (as
opposed to 3D) system in the simplest zero memory case.

Let there be two types of traders, with forecasting rules

pe1,t+1 = f1t = p∗ + v(pt−1 − p∗), 0 � v � 1,

fundamentalists (40)

pe2,t+1 = f2t = pt−1 + g(pt−1 − pt−2), g � 0,

trend extrapolators. (41)

21 Theoretically, it remains an open question whether in the infinite memory
case w = 1, so that fitness equals accumulated wealth, fundamentalists will
be able to stabilize the price towards its fundamental value. The time series
in figure 4(c) shows that for w ≈ 0.99 say, in the presence of small noise
the system is unstable and fundamentalists cannot drive out all other types.
Hence, even when traders discount past realized profits only weakly, trend
following trading strategies may survive evolutionary competition.
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Figure 4. Bifurcation diagrams with respect to the memory parameter w, without noise (a) and with small noise (b); other parameters are as
in figure 2. Time series for memory parameter w = 0.99 in ABS with small noise (c).

Trader type 1 are fundamentalists, believing that tomorrow’s
price will move in the direction of the fundamental price p∗ by
a factor v. We will concentrate here on the special case v = 1,
so that

f1t = pt−1, EMH believer (42)

and we will refer to this type as an EMH believer because
the naive forecast is consistent with a random walk for prices.
Trader type 2 are simple trend extrapolators, extrapolating the
latest observed price change, so that the forecasting rule now
includes two time lags. Market equilibrium (7) in a world with
fundamentalists and chartists as in (40)–(41), with common
expectations on IID dividends Et [yt+1] = ȳ, becomes

(1 + r)pt = n1t (p
∗ + v(pt−1 − p∗))

+ n2t (pt−1 + g(pt−1 − pt−2)) + ȳ + εt , (43)

where n1t and n2t represent the fractions of fundamentalists
and chartists respectively and εt is an IID random variable
representing model approximation errors.

Beliefs will be updated by conditionally evolutionary
forces. The basic idea is that fractions are updated
according to past fitness, conditioned upon the deviation of
actual prices from the fundamental price. The evolutionary
competitive part of the updating scheme follows the BH-
framework with risk adjusted profits as the fitness measure; the
additional conditioning upon deviations from the fundamental
is motivated by the approach taken in the Santa Fe artificial
stock market in Arthur et al (1997) and LeBaron et al (1999).
Using (30) with zero costs and zero memory, the evolutionary
part of the updating of fractions yields the discrete choice
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probabilities

ñht = exp

[
− β

2aσ 2
(pt−1 − fh,t−2 + δt )

2

]
/Zt−1,

h = 1, 2

(44)

where Zt−1 is again the normalization factor such that the
fractions add up to one. In the second step of updating of
fractions, the conditioning on deviations from the fundamental
by the technical traders is modelled as

n2t = ñ2t exp[−(pt−1 − p∗)2/α], α > 0 (45)

n1t = 1 − n2t . (46)

The conditioning upon fundamentals part of the updating
scheme may be seen as a stabilizing transversality condition
in a heterogeneous world. Recall that in the perfectly rational
world of subsection 3.1 the transversality condition excludes
the rational expectations explosive bubble solutions (12).
According to (45) the fraction of technical traders decreases
more, the further prices deviate from their fundamental
value p∗. As long as prices are close to the fundamental,
updating of fractions will be almost completely determined by
evolutionary fitness (44), but when prices move far away from
the fundamental, the correction term exp[−(pt−1 − p∗)2/α]
in (45) becomes small. The majority of technical analysts
thus believes that temporary speculative bubbles may arise but
that these bubbles cannot last forever and that at some point
a price correction towards the fundamental price will occur.
The condition (45) may thus be seen as a weakening of the
transversality condition in a perfectly rational world, allowing
for temporary speculative bubbles.

The noisy conditional evolutionary ABS with fundamen-
talists versus chartists is given by (40)–(41) and (43)–(46). By
substituting all equations into (43) a fourth order nonlinear
stochastic difference equation in prices pt is obtained. It turns
out that this nonlinear evolutionary system exhibits periodic as
well as chaotic fluctuations of asset prices and returns; a de-
tailed mathematical analysis of the bifurcation routes to strange
attractors and coexisting attractors is given in Gaunersdorfer,
Hommes and Wagener (2000). Here we focus on one simple,
but typical example with EMH believers, i.e. v = 1, versus
trend followers. Figure 5 compares time series properties of
the noisy ABS with 40 years of S&P 500 data22.

The price series in the top panels are of course quite
different, since S&P 500 is non-stationary and strongly
increasing, whereas the ABS is a stationary model23. Prices
in the ABS system are highly persistent however, and are in

22 These results were obtained mainly by ‘trial and error’ numerical
simulations. Strong volatility clustering was obtained especially for v = 1
or v very close to 1, and seems to be fairly robust with respect to the other
parameter values. For smaller values of v the volatility clustering becomes
weaker. This may be due to the fact that for smaller values of v prices return
fairly quickly back to the constant fundamental, and volatility dies out quickly.
23 By replacing our IID dividend process by a non-stationary dividend process,
e.g. by a geometric random walk, prices in the ABS will also rapidly increase,
similar to the S&P 500 series. We intend to study such non-stationary ABS in
future work.

fact close to having a unit root. In the S&P 500 returns series
the October 1987 crash and the two days thereafter have been
excluded24. The ABS returns series ranges from −0.27 to
+0.29, which is larger than for the S&P 500, especially when
the crash is excluded. The ABS returns series exhibits fat tails,
with kurtosis coefficient k = 5.37 versus k = 8.51 for the S&P
500 returns, and strong volatility clustering. We estimated a
GARCH(1, 1) model of the form

Rt = c1 + δt , δt ∼ N(0, σ 2
t ) (47)

σ 2
t = c2 + ρ1δ

2
t−1 + ρ2σ

2
t−1 (48)

on both returns series. The estimated parameters are ρ1 =
0.068 and ρ2 = 0.929, with ρ1 + ρ2 = 0.997, for S&P 500
returns and ρ1 = 0.071 and ρ2 = 0.914, with ρ1 + ρ2 =
0.985, for the ABS returns. Figure 5(e), (f ) shows that the
autocorrelations of the returns, squared returns and the absolute
returns of the ABS-model series are very similar to those
of S&P 500, with (almost) no significant autocorrelations of
returns and slowly decaying autocorrelations of squared and
absolute returns. Although the ABS system considered here
is a nonlinear dynamic system with only four lags, it exhibits
long memory with long range autocorrelations. The bottom
panels show a scaling law of the form

ρj = k

jα
(49)

fitted to the autocorrelations of absolute returns, for lags
5 � j � 100. The estimated scaling exponents are 0.38
for S&P 500 and 0.37 for the ABS; see Mantegna and Stanley
(2000) for a survey on the role of scaling laws in financial time
series. Our simple ABS thus exhibits a number of important
stylized facts of 40 years of S&P 500 returns data.

5. Asset pricing experiments
Much computational and theoretical work on expectation
formation in heterogeneous agent systems has been done in the
past decade, but it is hard to test the heterogeneous expectations
hypothesis empirically and to infer the expectations hypothesis
from economic or financial data. Survey data research, as
for example in Shiller (1989) on stock market expectations,
yields useful insight on expectation formation but also has its
limitations, for example because of unknown and changing
underlying economic fundamentals. Controlled laboratory
experiments seem to be well suited to investigate expectation
formation and forecasting behaviour in particular situations.
As noted e.g. by Sunder (1995), it is remarkable that, despite
an explosion of interest in experimental economics, relatively
few contributions have focused on expectation formation and
learning in dynamic experimental markets with expectations
feedback. An exception is the well known ‘bubble experiment’
by Smith, Suchanek and Williams (1988) in an experimental
asset market. This study cannot be viewed however as pure

24 The returns for these days were about −0.20, +0.05 and +0.09. In particular,
the crash affects the autocorrelations of squared returns, which drop to small
values of 0.03 or less for all lags k � 10 when the crash is included.
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Figure 5. S&P 500 data (left-hand panels) compared to ABS simulated data (right-hand panels), with parameters: r = 0.01, ȳ = 3,
p∗ = 300, v = 1, g = 1, β = 5, α = 50, δt ≡ 0 and εt normally distributed with σε = 11. Prices (top panels (a), (b)), returns (second panels
(c), (d)) defined as relative price changes, ACFs of returns, squared returns and absolute returns (third panels (e), (f )) and ACFs of absolute
returns with fitted scaling laws (bottom panels (g), (h)).
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experimental testing of the expectations hypothesis, everything
else being held constant, because dynamic market equilibrium
is affected not only by expectations feedback but also by other
types of human behaviour, such as trading behaviour.

This section discusses some work in progress, jointly
with my colleagues Joep Sonnemans, Jan Tuinstra and Henk
van de Velden from CeNDEF, testing expectation formation
in the CREED experimental laboratory at the University of
Amsterdam. Before presenting some first results from the
asset pricing framework we will briefly discuss some general
conclusions from a series of three related experimental papers,
Hommes et al (1999a, 2000a) and Sonnemans et al (1999),
testing for expectation formation in a different but related
framework, the cobweb model. The cobweb or ‘hog cycle’
model is perhaps the simplest dynamic economic expectations
feedback system. The cobweb model describes a single
commodity market with a production lag, so that suppliers have
to form price expectations one period ahead. A convenient
feature of the cobweb model is that it has a unique rational
expectations equilibrium, namely the steady-state price at
which demand and supply intersect. Market equilibrium
equations were controlled and fixed during the experiment
(although they were subject to unexpected exogenous shocks
and/or noise). Subjects were asked to predict prices and their
earnings were inversely related to their quadratic forecasting
errors. Price forecasts fed into the (unknown) supply
function, and the realized market price was then determined
by equilibrium between aggregate supply and demand. The
market price realizations only depend upon subjects’ price
expectations. Demand and supply were chosen such that under
naive price expectations, the RE steady state is locally unstable
and prices diverge away from the RE steady state and converge
to a 2-cycle, with ‘systematic’ forecasting errors. An important
motivation was whether individuals in the experiment would
be able to learn from their forecasting errors and coordinate
on the RE steady state. For the cobweb experiments, the main
conclusions can be summarized as follows:

1. In most experimental treatments the sample mean of
realized market prices is close to the RE price. The null
hypothesis that the sample mean of realized market prices
equals the RE steady state price can not be rejected. In
this sense, the RE forecast is on average correct;

2. In all experimental treatments realized market prices
exhibit significant excess volatility, that is, the null
hypothesis that the sample variance of realized market
prices is smaller than or equal to the RE-variance is
strongly rejected;

3. Realized market prices are characterized by irregular
fluctuations around the mean and exhibit hardly any linear
predictability, since sample autocorrelations are typically
insignificant.

To summarize the cobweb expectations experiments in one
sentence, the (unstable) experimental cobweb economy seems
to be consistent with heterogeneous boundedly rational agents,
using a variety of boundedly rational forecasting rules creating
excess price volatility around the RE mean.

Figure 6 shows the outcome of some first asset pricing
experiments with expectations feedback, from Hommes et al
(2000b)25.

Participants were asked to predict the price p, 0 � p �
100, of a risky asset and earnings were inversely related to
forecasting accuracy, or equivalently to risk adjusted profits.
In contrast to the cobweb experiments, the experimental asset
pricing framework is complicated by the existence of multiple
RE equilibria, since the asset pricing model has RE ‘bubble
solutions’ growing at the risk free rate of return r . These bubble
solutions are perfect foresight solutions, where forecasting
errors are zero (or equal to the noise term). If participants in the
experiments are motivated by minimizing forecasting errors,
both these bubble solutions and the fundamental solution p∗

are equally attractive. To avoid the existence of an unbounded
perfect foresight bubble solution, we introduced a stabilizing
fundamental type F robot trader in the experimental setup.
In the presence of a fundamental robot trader, the (constant)
fundamental price is the only perfect foresight solution. Our
experimental setup thus represents a situation where at least
some of the traders in the market know and believe in the
fundamental price, and the number (i.e. the weight) of the
fundamentalists increases when prices move away from the
fundamental.

The fundamental type F always expects the fundamental
price to prevail, i.e. EFt(pt+1) = p∗. In the asset pricing
experiments the (unknown) market equilibrium is given by

(1 + r)pt =
H∑
h=1

nhtEht (pt+1) + nFtp
∗ + ȳ + εt , (50)

where nht , 1 � h � H , are the weights (or fractions) of the
participants upon realized market equilibrium prices and nFt
is the weight (or fraction) of the fundamental robot traders in
the market. In our experimental setup H = 6 and the weights
nht , 1 � h � H , of the participants will decrease when prices
move away from the fundamental price p∗. More precisely,
these weights will be given by

nht = exp(−α|pt−1 − p∗|)
H

,

1 � h � H, α = 0.005 (51)

and the weight of the fundamentalists by

nFt = 1 −
H∑
h=1

nht . (52)

Hence, when prices move away from the fundamental p∗, the
weights nht , 1 � h � H , of the participants upon realized
market equilibrium price pt decrease and the weight nFt of
the fundamental robot trader increases. The fundamental
robot trader in our experimental setup thus stabilizes possible
bubble solutions. Notice however, that all weights nht of the
participants are equal, and close to 1/H as long as realized
market prices are close to the fundamental price. In the
experiments, mean dividend ȳ = 3 and the risk free rate of

25 I would like to thank Henk van de Velden for providing these figures.
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Figure 6. Asset pricing experiments. A stable market (a) and a market with bubbles (b). Individual expectations are included in the lower
panels (c), (d).

return r = 0.05 were common knowledge. All participants
thus had sufficient information to compute the fundamental
price p∗ = ȳ/r = 60. The noise εt was normally distributed
with standard deviation σε = 0.5, so that in a perfectly rational
world prices would fluctuate between 59 and 61 most of the
time.

In the first experiment (figure 6(a)) the market is stable and
converges to a value close to the RE fundamental. The realized
market price is however always below the RE fundamental, so
that the market is in fact undervalued. In the second experiment
(figure 6(b)) participants coordinate on a speculative bubble
solution. The first speculative bubble lasts 13 periods, but
reverses and becomes a stable oscillation due to the presence of
the fundamental robot trader. The first maximum occurs after
13 time periods; thereafter a stable oscillation arises, with local

maxima at periods 23, 29, 35 and 41. The bottom panels show
the realized market price as well as the individual forecasts by
all six participants in the experiments. In the stable case (figure
6(c)) participants quickly coordinate on a price below but fairly
close to the fundamental price p∗ = 60. In the unstable case,
all participants quickly coordinate on a speculative bubble.
However, as time goes on, the coordination becomes weaker,
and the bubble seems to stabilize.

It should be noted that the fundamental price in these
experiments is constant and thus as simple as possible. Even
in this simplest setting, (temporary) bubbles arise but they
seem to stabilize toward the end of the experiment. An
important question for future work is what will happen when
the fundamental robot trader is not present in the market. Will
the speculative bubbles stabilize in the absence of fundamental
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robot traders? In future experiments we will also focus on other
controlled fundamentals, for example a constant fundamental
with larger noise levels or, what seems to be important for real
stock markets, a time varying, growing fundamental.

6. Future perspective
Is a significant part of changes in stock prices driven by
‘Keynesian animal spirits’? For many decades, this question
has lead to heavy debates among economic academics as
well as financial practitioners. In the evolutionary adaptive
belief systems discussed here, price changes are explained
by a combination of economic fundamentals and ‘market
psychology’. Negative economic ‘news’ (e.g. on inflation
or interest rates) may act as a trigger event for a decline
in stock prices, which may become reinforced by investors
sentiment and evolutionary forces. Price movements are driven
by an interaction of fundamentalism and chartism, the two
most important trading strategies in financial practice. The
nonlinear evolutionary ABS generates a number of important
stylized facts observed in many financial series, such as
unpredictability of returns, fat tails, strong volatility clustering
and long memory.

Let us now reflect upon the questions Q1–Q3 raised at
the end of the introduction, which were central to the SFI
workshop.

Can speculators survive evolutionary competition?

Friedman (1953, p 175) has argued that speculators will not
survive evolutionary competition: ‘People who argue that
speculation is generally destabilizing seldom realize that this is
largely equivalent to saying that speculators lose money, since
speculation can be destabilizing in general only if speculators
on the average sell when the currency is low in price and
buy when it is high’ [emphasis added]. We have seen that
in the evolutionary ABS technical trading rules do survive
evolutionary competition and can in fact earn profits or attain
wealth comparable to profits or wealth of fundamentalists,
even when there are no information costs and memory in
evolutionary fitness is high. The technical analysts start buying
when prices are low, in the early stage of an upward price
trend which may have been triggered by news about economic
fundamentals, and sell as soon as their trading rule detects
that the trend has reversed when the price is still high. The
main reason why technical trading can survive evolutionary
competition seems to be the fact that in markets for risky assets
an optimistic or pessimistic mood leads to a self-fulfilling
speculative bubble when the optimism or pessimism is shared
by a large enough group of investors. The theoretical question
exactly which trading strategy generates highest profits or
wealth is a difficult problem to deal with in a complex nonlinear
heterogeneous world and the exact answer remains open. Our
simple examples and numerical simulations show however
that, in a boundedly rational heterogeneous world technical
trading rules are not necessarily inferior to strategies based
upon economic fundamentals and that a well-timed switching
strategy between trend following and fundamentalism may
outperform pure chartists as well as pure fundamentalists.

Is a financial market with heterogeneous
adaptive agents efficient?

There seems to be disagreement about exactly what efficiency
means. But there are at least two important factors
related to efficiency. One is sometimes called informational
efficiency, meaning that a market should be difficult to
forecast, since otherwise there would be obvious arbitrage
opportunities. Our simple nonlinear evolutionary ABS is,
at least to some degree, informationally efficient because
asset returns are fairly unpredictable and have e.g. close
to zero autocorrelations. Employing advanced time series
methods such as nearest neighbour forecasting does not lead
to very accurate predictions of returns due to the strong noise
amplification in nonlinear evolutionary systems. Nevertheless,
figure 3 shows that even in the worst case with the highest
noise level, the prediction error for short time lags is below
0.9 which in a real financial market might lead to large
profit opportunities. It should be emphasized though, that
these results have been obtained for an extremely simple
form of our ABS, a low-dimensional (3D) version with a
constant fundamental price. Increasing the dimension of the
ABS, e.g. by introducing more lags into the forecasting rules,
and including a more realistic, non-stationary time varying
fundamental will make forecasting of returns much more
difficult and even more sensitive to noise, moving the ABS
even closer to informational efficiency.

A second factor concerning efficiency is sometimes
referred to as allocative efficiency meaning that asset prices
reflect the ‘true’ fundamental value of the underlying asset.
In the evolutionary ABS large and persistent deviations from
the fundamental can occur, possibly triggered by noise and
reinforced by evolutionary forces. An evolutionary ABS thus
allows for the possibility of allocative inefficiency. Knowledge
about the true fundamentals is important in this respect. If
most traders agree about the ‘true’ fundamental and when it is
known with great precision, deviations from this commonly
shared fundamental seem unlikely. However, in a world
full of uncertainty, where nobody really knows what exactly
the fundamental is, good news about economic fundamentals
amplified by evolutionary forces may lead to deviations from
the fundamental and over- or under-valuation of asset prices.

Does heterogeneity create excess volatility?

The ABS theory implies a decomposition of returns into two
terms, one martingale difference sequence part according to
the conventional EMH theory, and an extra speculative term
added by the evolutionary theory. The theory of evolutionary
ABS thus can explain excess volatility. In an ABS the
phenomenon of volatility clustering occurs endogenously due
to the interaction of heterogeneous traders. In periods of low
volatility the market is dominated by fundamentalists. Phases
of high volatility may be triggered by news about fundamentals
and may be amplified by technical trading.

Our evolutionary ABS may be seen as stylized models
fitting in recent work on behavioural economics and
behavioural finance as discussed, for example, in Thaler
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(1994). Our ABS deviate from full rationality and are
consistent with recent empirical findings that technical trading
strategies may earn above average profits as, for example,
found by Brock et al (1992). Our evolutionary ABS may
also be seen as what Sargent calls an approximate rational
expectations equilibrium (see, for example, Sargent (1993)
and Hommes and Sorger (1998) for extensive discussion of
this point). Traders are boundedly rational and use relatively
simple strategies. The class of trading rules is disciplined
by evolutionary forces based upon realized profits or wealth.
A convenient feature of our theoretical setup is that the
benchmark rational expectations model is nested as a special
case. This feature gives the model flexibility with respect to
experimental and empirical testing. It is worthwhile noting that
Chavas (1999) and Baak (1999) have run empirical tests for
heterogeneity in expectations in agricultural data and indeed
find evidence for the presence of boundedly rational traders in
the hog and cattle markets. It may seem even more natural that
heterogeneity and evolutionary switching between different
trading strategies play an important role in financial markets.
Understanding the role of market psychology seems to be a
crucial part of understanding the huge changes in stock prices
observed so frequently these days. But much more insight into
‘financial psychology’ is needed, before ‘market sentiment’
based policy advice can be given. Theoretical analysis of
stylized evolutionary adaptive market systems, as discussed
here, and its empirical and experimental testing may contribute
to providing such insight
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