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A Model of Search Intermediaries and Paid Referrals

Abstract

In this paper we pursue three main objectives: (1) to develop a model of an intermedi-

ated search market in which matching between consumers and firms takes place primarily

via paid referrals; (2) to address the question of designing a suitable mechanism for selling

referrals to firms; and (3) to characterize and analyze the firms’ bidding strategies given

consumers’ equilibrium search behavior. To achieve these objectives we develop a two-

stage model of search intermediaries in a vertically differentiated product market. In the

first stage an intermediary chooses a search engine design that specifies to which extent

a firm’s search rank is determined by its bid and to which extent it is determined by the

product offering’s performance. In the second stage, based on the search engine design,

competing firms place their open bids to be paid for each referral by the search engine.

We find that the revenue-maximizing search engine design bases rankings on a weighted

average of product performance and bid amount. Nonzero pure-strategy equilibria of the

underlying discontinuous bidding game generally exist but are not robust with respect to

noisy clicks in the system. We determine a unique nondegenerate mixed-strategy Nash

equilibrium that is robust to noisy clicks. In this equilibrium firms of low product perfor-

mance fully dissipate their rents, which are appropriated by the search intermediary and

the firm with the better product. The firms’ expected bid amounts are generally non-

monotonic in product performance and depend on the search engine design parameter.

The intermediary’s profit-maximizing design choice, by attributing a positive weight to

the firms’ bids, tends to obfuscate search results and reduce overall consumer surplus com-

pared to the socially optimal design of fully transparent results ranked purely on product

performance.

Keywords: Markets and Auctions, Paid Referrals, Search Intermediary.



Truly, to tell lies is not honorable;

But when the truth entails tremendous ruin,

To speak dishonorably is pardonable.

– Sophocles (495 BC – 406 BC), Creusa

1 Introduction

Even in a time when electronic commerce and Internet presence of many firms seem to increase

transparency in product markets, residual and – as we argue – partially intended imperfections

may lead to significant price dispersion, especially when goods are differentiated along one or

more dimensions (Clemons et al. 2002; Smith and Brynjolfsson 2001; Clay et al. 2001). The

difficulties consumers have in finding and comparing goods have led to the flourishing of search

intermediaries. The intermediaries’ information aggregation capacity enables marketing to a

captive advertising audience (Bhargava and Choudhary 2004). Direct benefits from exercising

control over the order in which search results appear can be derived from the firms’ willingness

to pay for referrals to their websites. Thus, the ranking of firms produced by a search engine as a

response to a consumer’s search request is likely to be influenced by payments from the industry.

Google, for example, currently places “sponsor results” above “web site matches” for common

generic search terms such as “books.” This suggests that there exists a burgeoning market

for paid referrals (Edelman et al. 2007), even in an environment that per se is characterized

by relatively low cost of information aggregation and dissemination. Naturally, the result

may be a partial “obfuscation” of information leading to decreased transparency (Ellison and

Ellison 2004). The search intermediary itself may act as a profit-maximizing agent selling, or

more precisely auctioning off, the order in which information is made accessible.1 The rationale

is that consumers with a high opportunity cost of time will tend to limit their search in the

form of comparison shopping to the first few hits from a “trusted” search intermediary.2

In this paper we pursue three main objectives: (1) to develop a model of an intermediated

search market in which matching between consumers and firms takes place primarily via paid

1There is an oligopolistic market of differentiated search engines (Bradlow and Schmittlein 2000; Gandal
2001), a fact that we bypass in our considerations of a world with a single (monopolistic) search intermediary.

2There is some evidence that explicit comparison shopping (beyond the inspection of a search intermediary’s
ranking) on the Internet is relatively limited (less than 1.5 clicks on average according to Johnson et al. 2004).
This effect has been shown to persist in controlled experiments: even when search cost is relatively low, subjects
tend not to search enough (Zwick et al. 2003).
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referrals; (2) to address the important managerial question (for a search intermediary) of finding

a suitable mechanism for selling referrals to firms; and (3) to characterize the firms’ equilibrium

bidding strategies as well as consumers’ equilibrium search behavior.

In our model we assume that there are two rival firms offering products of possibly many

different attributes in the same market. Consumers, who are initially uninformed, can either

directly inspect the different products at local retailers or – often at a smaller cost – follow

referrals (or links) provided by a search intermediary. In order to maximize their revenues in

this search market, firms therefore have an incentive to compete actively for referrals which are

followed by a larger number of consumers. In contesting the higher-ranking referrals firms thus

engage in rent seeking (Tullock 1980), i.e., behavior destined to appropriate potential excess

returns in the market. As a consequence, the value of top referrals has to be equal to the extra

rents that firms can obtain by being referred to more consumers. We find that in a market

with firms of different product performances it is, perhaps surprisingly, the low-performance

firms that tend to expend most of their expected surplus from being ranked high; in other

words, they are likely to squander their expected supranormal rents completely in their quest

for advantage (in accordance with Posner’s (1975) “rent dissipation postulate”). Contrary to

what is common practice at leading search intermediaries such as Yahoo! and Nextag, we find

that for the sale of paid referrals it is generally not optimal to base the ranking of firms purely

on bid amounts.3 Taking the consumers’ search behavior into account, it is often beneficial

to rank a firm according to a weighted average of its product performance (e.g., reputation as

evaluated by consumer feedback or based on other metrics, cf. footnote 3) and its bid, which

can increase the intermediary’s revenue noticeably. There is another important interpretation

of our results. Given the difficulty, or near impossibility, of an intermediary being able to

commit to a mechanism that is not transparent, in the sense that the produced allocations are

not verifiable by the participating agents (e.g., the mechanism employed by Google for ranking

sponsored search results), our results shed light on the equilibrium information disclosure that

can be expected in such situations.

In our auction setting (further detailed below) it turns out that, quite independent of the

3Since May 2007, in part due to this research (personal communication), Yahoo! Search Marketing also
considers quality in its ranking formula (“[y]our bid and ad quality affect your ad rank in search results (...)
Ad quality is determined by an ad’s expected performance (based on various relevance factors considered by
Yahoo!’s ranking algorithms) and historical performance (click-through rate relative to the ad’s position on the
page).” [http://searchmarketing.yahoo.com/srch/pricing.php; June 25, 2007]).
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weight placed by the intermediary’s ranking mechanism on product performance versus bid

amount, the underlying open bidding game for search terms implies discontinuous best-response

functions for each vertically differentiated firm and is without pure-strategy Nash equilibria

that are robust with respect to even the smallest amount of “noisy clicks” in the system.

Exceptions are those special cases of large interfirm performance differences that may provoke

zero-bid “shutdown” solutions where no firm bids a positive amount. More specifically, we

show that there exists an equilibrium of the bidding game consisting of either non-robust pure

strategies or mixed bidding strategies with positive expected bid amounts by both parties.

Clearly it is in the intermediary’s best interest to avoid zero-bid equilibria, which implies a

degree of obfuscation in the search results, i.e., the weight the intermediary can place on firm

performance without inducing a zero-bid equilibrium is bounded from above. In Appendix B

we discuss some empirical support for the results of our model, in particular for firms using

mixed bidding strategies.

1.1 Literature Review

As a consequence of imperfections in product markets, in particular consumer search costs,

matching between buyers and sellers is often difficult. Advertising and more recently inter-

mediation can reduce buyers’ search costs and thus facilitate the matching process. Indeed,

advertising in a search market has been recognized by Stigler (1961) as “the obvious modern

method to identify buyers and sellers” (p. 216). He continues to point out that “[t]he identifi-

cation of buyers and sellers reduces drastically the cost of search” (ibid.), which has given rise

to a rich literature on how much firms should spend on advertising (Butters 1977, Stegeman

1991) and how informative advertising should be (Shapiro 1982, Grossman and Shapiro 1984).

Stiglitz (1989) provides an excellent overview of the classical literature on search in product

markets with imperfect information. One important characteristic of search markets is that,

due to consumer heterogeneities, it is natural for price dispersion to arise in equilibrium (Pratt

et al. 1979, Varian 1980, Rob 1985, Stahl 1989). Such price dispersion has been empirically

found to be persistent, even in markets with relatively low search costs, such as online books

(Clay et al. 2001), online travel (Clemons et al. 2002), or Internet car retailing (Morton et

al. 2001). The presence of search intermediaries such as shopbots has not been found to alter
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significantly consumers’ reliance on brand to make purchase decisions and thus to effectively

reduce their search costs (Smith and Brynjolfsson 2001).

The potential role of intermediaries as welfare-improving agents in markets with asymmet-

rically distributed information is clear since Akerlof (1970) showed that gains from trade may

not be realized as a result of an excess in private product information on the part of the seller.

Biglaiser (1993) demonstrates that middlemen can be welfare-improving in a relatively general

bargaining model with adverse selection. Chen et al. (2002) examine the role of such middlemen

as an instrument for price discrimination between offline and online product offerings (the lat-

ter, as they find, typically at a lower price), and thus indirectly confirm the welfare-improving

role that intermediaries can play in facilitating bi- or multilateral trade. Most of the extant lit-

erature on intermediaries has not particularly stressed the consequences of their self-interested

behavior as profit-maximizing agents, which can be expected to counterbalance some of the

welfare created for the trading parties. A notable exception is Lizzeri (1999), who examines

a situation where one seller uses an intermediary to communicate private information to two

buyers by an endogenous “certification” procedure. He finds that it is revenue maximizing

for the intermediary to disclose the achievement of minimum quality standards to the buyers.

Generally, including the intermediary’s interests into the analysis implies that monetary trans-

fers between trading partners and intermediary are per se welfare-neutral. Instead of being

interpreted as a sink for firms engaging in rent-seeking behavior dissipating their monopoly

(or oligopoly) rents (Baumol et al. 1982), the intermediary appropriates and at least partially

conserves these rents. Fudenberg and Tirole (1987) stress that a careful use of game theory

can reverse some of the consequences of Posner’s (1975) “dissipation” and “wastefulness” pos-

tulates, which predict that monopoly rents are completely wasted by firms trying to attain and

conserve monopoly power.

In this paper, we focus on a search intermediary that collects payments from firms in re-

turn for consumer referrals. In our setting the intermediary, by reducing consumer search

costs, enables trade by matching supply and demand for a heterogeneous good. Bhargava

and Feng (2004), similar to Baye and Morgan (2001), examine a situation in which such a

profit-maximizing search intermediary derives rents from displaying firms’ paid advertisements

instead of an unbiased set of search results that users value. The intermediary then needs to

trade off an increase in revenues from fixed-fee paid placements against a loss of user-based
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subscription revenues due to a bias in the search results. Our setting is quite different in that

we focus on paid referrals, the priority of which is auctioned off by a search intermediary to

competing firms. In this auction, firms bid an amount to be paid for each referral (in the form of

a “click-through”) generated by the search intermediary. The auction is “all-pay” in the sense

that the bid amounts need to be paid for any referrals, independent of the achieved search

rank. All-pay auctions arise sometimes in nonmarket situations where decisions about effort or

investment are made before the winner of a contest is announced, such as in lobbying activities

(Baye et al. 1993). The intermediary can base the ranking of the firms partly on their bids

and partly on product quality (and/or firm reputation). Multi-component scoring rules which

incorporate other dimensions of an agreement in addition to monetary bids are sometimes used

in procurement auctions and unit price contracts (Ewerhart and Fieseler 2003). Anticipating

the firms’ equilibrium bidding behavior, the intermediary determines a revenue-maximizing

search engine design in the form of an optimal weight in the ranking function (cf. also Liu and

Chen (2006)). If the firms have an incentive to bid positive amounts for being ranked first,

we show that the bidding equilibrium is generally in mixed strategies, which makes it difficult

for consumers to take the open bids as signals for the firms’ respective product performance.

In our setting it is the low type that fully dissipates expected profits on bidding for referrals,

until a balance is reached between the expected conversion rate and payments for (possibly

unsuccessful) referrals, in contrast to the standard signaling models.4 Our paper is the first

to address strategic interdependencies between bidders, which arise naturally in the context of

paid referrals as firms are trying to sell their products to the same heterogeneous consumer

base.

1.2 Outline

In Section 2 we develop our basic analytical model and describe the main underlying assump-

tions. In Section 3 we derive the firms’ equilibrium bidding strategies and the consumers’

equilibrium search behavior, given a certain search engine design. We show that for any search

engine design that yields nonzero intermediary revenues, there is a unique Nash bidding equi-

librium in mixed strategies, for which we determine the firms’ expected second-period profit.

4 In Spence’s (1973) classical signaling results, given a separating equilibrium it is the low type that does not
find it beneficial to send the costly signal, whereas the high type does and thus engages in rent-seeking behavior.
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In Section 4 we derive the intermediary’s optimal search engine design, that – in contrast to

a welfare-maximizing design – will always put a positive weight on the firms’ bids to avoid a

zero-bid equilibrium. We also compute the optimal design explicitly for a concrete example.

Section 5 concludes the paper with directions for further research.

2 The Model

Consider two firms, 1 and 2, that offer differentiated substitute goods in a common market.

These goods may have a number of different attributes including price and quality. The exact

nature of these attributes matters for our model only insofar as each bundle of attributes can

be expected to generate a certain utility u for a given consumer (Lancaster 1966). Ex ante,

when selecting these attributes, both firms are confronted with uncertainty about the market

and about the other firm’s technological possibilities. In this regard both firms find themselves

in an identical decision situation. We assume that at a certain pre-play stage (which remains

unmodelled here) there exists an equilibrium (e.g., a perfect Bayesian equilibrium) in which

firms choose product offerings, the resulting performance of which will need to be evaluated

by consumers and is thus subject to a significant uncertainty from the firms’ point of view.

Consumers, on the other hand, are unable to simulate the firms’ decision processes and form

beliefs about the net utility (surplus) of a product offering obtained from one of the firms

at random. This utility is realized when purchasing the product (i.e., accepting the product

offering with all its attributes including price), so that consumers inspecting both firms’ product

offerings can be rationally expected to select the utility-maximizing one. It is the consumers’

beliefs about the net utilities that we take as primitives of our model.5 In what follows we will

refer to the net utility of a product also as product performance. Accordingly, by inspecting a

firm’s offering a consumer evaluates its product performance.

Consumers can search for suitable products in two ways: with or without the help of an

intermediary. The non-intermediated search cost incurred by consumers visiting local retailers

directly (corresponding to the “shopping cost” in Chen et al. (2002, p. 428)) is assumed to

5Explicitly incorporating the firms’ strategic behavior in choosing product attributes, such as price and/or
quality, leads to a significantly more complex model formulation, which proves analytically intractable. The
main difficulty lies in the fact that for the firms’ attribute choice to remain “interior” (e.g., price to remain
finite), it must be the case that consumers are able to simulate the firms’ decisions and adjust their expectations
accordingly (e.g., high price eventually leads to zero demand or equivalently no search).
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be substantial. Not only does it contain expenses for transportation but also – and maybe

more importantly – the opportunity cost of not getting the most favorable deal. For example,

regarding the latter portion of the shopping cost, Chen et al. (2002) indicate that in the market

for automobiles the average price obtained through an online intermediary is about two percent

less than that paid at a local retailer. Without loss of generality, we set any consumer’s ex-ante

expected utility ū0 from using the outside option of visiting a retailer directly or using another

channel (and not using the search intermediary) to zero.

We assume that there is a search intermediary capable of reducing consumers’ shopping cost

significantly, at least in expectation (Diehl et al. 2003). Furthermore, inspecting (or “sampling”)

each search result is costly as it involves following the provided referrals and evaluating product

performance to reach a purchase decision. The sampling cost for transactions such as visiting

and inspecting a firm’s site has empirically been found to be considerable. As an example, for a

name-your-own-price retailer Hann and Terwiesch (2003) find a “frictional” cost of about $5 per

e-business transaction. This is consistent with observed search behavior of consumers who tend

to inspect very few sites prior to a purchase (cf. footnote 2). In our model we allow consumers

to be heterogeneous with respect to their sampling cost c, which is assumed to be distributed

on a compact support C ⊂ R+. The corresponding cumulative distribution function (cdf) F

is taken to be increasing and continuously differentiable, but otherwise is completely arbitrary.

We further suppose, at least initially, that every consumer inspects the results in the order

they are obtained from the search intermediary. Thus, depending on the prospects of having

found the best product offering, a portion αk of the total number of consumers C = |C| > 0

(per unit time interval) evaluate the first k hits (k ∈ {0, 1, 2}) by the search intermediary. We

argue later (in our remarks before Lemma 3) that this assumption of seemingly nonstrategic

consumer behavior is in fact superfluous. As a natural consequence of the model, we obtain

that in equilibrium consumers never have an incentive to reverse their search order. Without

any loss of generality we can normalize the total number of consumers to one, i.e., C = 1. The

main notation in our model is summarized in Table 1.

Timing. The model consists of two periods: in the first period, the search intermediary

chooses a “search engine design” parameter θ ∈ [0, 1] = Θ, which specifies the weight that

the intermediary’s ranking function r assigns to the firms’ respective bids versus their true

7



Symbol Explanation

α = α1/(α1 + α2) (Maximum) Value of a Rank-One Referral

αk Number of Consumers that Search k Times (k ∈ {0, 1, 2})

f : C → R+ Density of Consumers’ Search Costs on C ⊂ R+

g : U → R+ Density of Consumer Surplus on U ⊂ R
2
+

θ ∈ Θ Intermediary’s Design Parameter in the Type Space Θ = [0, 1]

bH , bL Respective Bid of High- and Low-type Firm

δu = uH − uL Difference Between the Firms’ Product Performances uH and uL

∆ = θ
1−θ

δu Intermediated Utility Difference

h : Θ → Θ Design Homotopy (Probability of High-Type Firm Being Ranked First)

µ
(k)
u Expected Surplus After k Searches (k ∈ {1, 2})

µ̂
(1)
u (θ) Expected Surplus After One Search Given θ (µ̂

(1)
u (0) = µ

(1)
u )

πF , πI Firm F ’s (F ∈ {L, H}) and Intermediary I’s Payoff

Table 1: Summary of Notation.

performance level (θ = 0: no weight on product performance/full weight on bids; θ = 1: full

weight on product performance/none on bids). We assume that the intermediary can gain

knowledge about the firms’ true performance level either by consulting third-party information

(such as consumer reports) or through its own due diligence (e.g., expert directory ranking

produced by Yahoo!).6 For simplicity we assume that after the design parameter θ has been

chosen, the intermediary does credibly communicate this parameter to firms and consumers.

Alternately, one may suppose that based on prior experience, both firms and consumers have

gained common knowledge about θ on which their further decisions can be based. In some

situations the intermediary may be unable to either credibly communicate or commit to a

particular value of its design parameter θ. This is the case, for example, when the allocation

produced by the intermediary’s mechanism cannot be immediately verified by the participating

firms.7 Under such circumstances firms would rationally assume that the intermediary’s θ

corresponds to the one maximizing its profits, an interpretation which exactly corresponds to

the equilibrium outcome we find. We therefore, for the purposes of our discussion, adhere

6Our analysis indicates that the intermediary wants to spend as much on reliably evaluating the firms’
performance level as it can gain by putting additional weight on product performance in the ranking mechanism.

7For example, even though an intermediary may have chosen to communicate, say, θ = 0 (i.e., no weight on
product performance) to firms, our results indicate that the intermediary may have an incentive to actually use
a different θ 6= 0 for ranking purposes, and in the absence of a credible commitment this would be rationally
anticipated by the firms when submitting their bids and by consumers when performing their searches.
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Figure 1: Timing of Events.

to the first interpretation of θ as a deliberately chosen design parameter which is credibly

communicated to all other players.

After observing θ firms and consumers decide – at the end of period one – whether to use the

search engine or not (in the latter case they obtain the outside option’s payoff of zero). In the

second period, the firms’ product performances realize publicly and they enter their respective

open bids for each referral by the search intermediary. Naturally these bids may be shaded

by strategic considerations, and we will show in the next section that the only equilibrium

with nonzero bids is actually in mixed strategies, as is often the case in rent-seeking games,

e.g., in the war of attrition (Maynard Smith 1974, Tirole 1988 pp. 311–312), or in complete-

information all-pay auctions (Baye et al. 1996). Based on the firms’ bids, their respective

product performance and the ranking function, the intermediary then provides ranked search

results to consumers, who then decide about their purchases. Figure 1 provides an overview

of the timeline in our model. Next we discuss the strategic decision problems of the different

parties in our model: consumers, search intermediary, and firms.

Consumers. It is common knowledge among all consumers that there are two competing

companies in the market that offer products of different net utilities u1 and u2. In order to bound
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consumers’ expected surplus (as a function of their searches) from below, let us first consider the

case where the search intermediary (such as Yahoo!) puts full weight on the firms’ bids (θ = 0),

which ex ante are unknown to the consumers.8 Note that the joint surplus distribution allows

for correlation in the consumers’ beliefs about the two firms; its symmetry expresses the fact

that the firms are ex ante indistinguishable. The consumers’ common prior beliefs about the

net utilities of the available product offerings are jointly distributed over the convex compact

support U ⊂ R
2
+ with symmetric measurable probability density g (where g(u1, u2) = g(u2, u1)

for almost all (u1, u2) ∈ U). The resulting net expected utility ū(k; c) for any consumer of

type c ∈ C after k ∈ K = {0, 1, 2} searches is given by

ū(k; c) =







µ
(k)
u − kc, if k ∈ {1, 2},

0, if k = 0,
(1)

where µ
(k)
u is the expected highest surplus after inspecting k products,9

µ(1)
u =

∫

U

u1g(u1, u2)d(u1, u2), µ(2)
u =

∫

U

max{u1, u2}g(u1, u2)d(u1, u2). (2)

The optimal number of searches k∗(c) for a consumer of type c is such that each additional

search (including the first one) promises an expected incremental payoff that outweighs the

positive search cost c.10 While all consumers strategically perform searches conditional on past

observations (cf. footnote 10), the expected number of searches for any given consumer type c

depends only on the order statistics in (2). More specifically, let αk ∈ [0, 1] be the number of

consumers that are expected to search k ∈ K times. The following lemma clarifies how the αk’s

depend on a composition of consumers’ sampling costs and their beliefs about the net utilities.

We will refer to a segment of consumers who all search k times as “consumer search class k.”

Lemma 1 (Consumer Search Classes) The partition of the consumer base C into search

classes is given by α2 = F (µ
(2)
u − µ

(1)
u ), α1 = F (µ

(1)
u ) − α2, and α0 = 1 − F (µ

(1)
u ).

8We assume that consumers are not able to condition their otherwise strategic search behavior on an obser-
vation of the firms’ bids. For example, 95 percent of the click-throughs generated from Overture’s paid referrals
originate from affiliated sites such as Yahoo!, MSN, and Google, which do not disclose the firms’ bid amounts.
Overture shifted its practice of public bids to hidden bids in 2003.

9The expressions µ
(k)
u in (2) correspond to the k-th order statistics of the jointly distributed surplus vec-

tor (u1, u2).
10Formally, the consumer’s choice in (1) is individually rational in the sense that the first search is worth

it, ū(1; c) ≥ ū0 = 0, and incentive compatible in the sense that each additional search adds a net benefit
(conditional on past observations), k∗(c) = 1{ū(1;c)≥ū0} + 1{

∫
{u2:(u1,u2)∈U}

max{u1,u2}g(u2|u1)du2−c≥u1}, where the

density g(u2|u1) = g(u1, u2)/
∫

{û2:(u1,û2)∈U}
g(u1, û2)dû2 describes the consumer’s conditional beliefs after ob-

serving u1, and 1{·} denotes the indicator function.
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The above partitioning (α0, α1, α2) of the consumer base C (cf. Figure 3) depends on the distri-

bution of the consumer sampling costs as well as on the consumers’ prior beliefs about product

performance. In general it also depends on the design parameter θ, which had been fixed up

to now to θ = 0. For higher θ, consumers are less likely to inspect more than the first search

result, since the likelihood of finding the best firm by following the “rank-one referral” increases.

Search Intermediary. The search intermediary bases an internal rank score r, with which

it displays the search results, on the “bid” b received by a firm and on this firm’s product

performance, measured in consumer surplus u. We define the “search engine design” θ ∈

[0, 1] = Θ as the relative weight between the two,11

r(b, u; θ) = θu + (1 − θ)b. (3)

The bid amount b is thereby payable for every referral, irrespective of actual consumer purchase

(conversion). This firm’s total payment for referrals is therefore dependent on the number of

inspections by consumers, and it is clear that for a given firm this generally results in a tradeoff

between being highly ranked and having to pay for a large number of “irrelevant” hits from

consumers.

Clearly, for θ = 1 (full ranking weight on product performance) all consumers simply inspect

at most the first search result and thus α2|θ=1 must be zero. All consumers who find it incentive

compatible to search once can expect a surplus of µ
(2)
u . Since all underlying functions are smooth,

it is reasonable to expect that for a general search engine design the partition (α0, α1, α2)(θ)

of the consumer base depends smoothly on the parameter θ ∈ Θ. More specifically, we assume

that there exists a continuously differentiable function12 h : Θ → Θ such that h is nondecreasing

in θ, h(0) = 1 − h(1) = 0, and

µ̂(1)
u (θ) = (1 − h(θ)) µ(1)

u + h(θ)µ(2)
u (4)

11In Appendix C we show that all results in this paper remain qualitatively unchanged when choosing a
more general ranking function that is increasing in a firm’s bid and product performance and where the design
parameter is chosen such as to index its sensitivity with respect to product performance relative to its sensitivity
with respect to a firm’s bid.

12From a topological standpoint this corresponds to a homotopic mapping that connects all search engine
designs (Guillemin and Pollack 1974). We assume that the mapping h is smooth, i.e., continuously differentiable,
so that differential calculus can be used to obtain a first-order necessary optimality condition when maximizing
the intermediary’s revenues with respect to θ (cf. Proposition 4). The existence of a function h with these
properties in equilibrium is rigorously justified through relation (23) in Section 3.
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Figure 2: Consumers Trade Off Sampling Cost Against an Increase in Expected Utility.

Figure 3: Intermediated Consumer Search Classes.

is the consumers’ expected surplus from searching once, given a search engine of design θ. We

demonstrate below (cf. Proposition 3) that h(θ) corresponds to the equilibrium probability (and

also the consumers’ beliefs) that the firm with the higher product performance is listed first.

In expectation, a type-c consumer searches a second time, if given θ the cost c of inspecting

an additional product does not exceed the expected gain µ
(2)
u − µ̂

(1)
u of an additional search

(cf. Figure 2). As a direct consequence from Lemma 1 we obtain the following more general

“intermediated” partition of the consumer base.13

13The segmentation of the consumer base into search classes can also be formulated in terms of indifferent
consumers c1, c2 ∈ C, where type ck is indifferent between searching k times and k− 1 times: c2 = F−1(α2) and

c1 = F−1(α1 + α2), cf. Figure 3. Note that c1 = µ̂
(1)
u and c2 = µ

(2)
u − µ̂

(1)
u , so that 0 ≤ c2 ≤ c1 ≤ 1.

12



Lemma 2 (Intermediated Consumer Search Classes) For a given search engine de-

sign θ ∈ Θ and appropriate continuous mapping h in (4), the segmentation of the consumer

base C into search classes is given by α2(θ) = F (µ
(2)
u − µ̂

(1)
u (θ)), α1(θ) = F (µ̂

(1)
u (θ)) − α2(θ),

and α0(θ) = 1 − F (µ̂
(1)
u (θ)).

Lemma 2 states that consumers who are expected to search twice have a search cost c that

does not exceed the expected incremental benefit µ
(2)
u − µ

(1)
u of searching twice instead of once,

times the probability 1 − h(θ) that the firm with the lower-performing product is listed first.

Similarly, consumers who are expected to search at least once have a search cost that does not

exceed the expected value µ̂
(1)
u (θ) of searching once in equilibrium.

The search intermediary’s first-period optimal design problem is to find a design parameter θ

that maximizes expected revenues given the resulting consumer behavior and firms’ optimal bid-

ding policies. We can see (cf. Figure 3) that the total number of consumers using the search

engine, (α1+α2), increases in θ, whereas the expected total number of referrals, (α1+2α2), does

not have to be monotonic in θ.14 Naturally the number of consumers in the system influences

the “stakes” for the companies, tending to increase the bids if the magnitude of search class

one is large compared to the magnitude of search class two, i.e., if α1 ≫ α2. On the other hand,

as θ increases, the firm with the lower performance level needs to outbid the high-performance

firm by a larger amount to secure rank-one referrals despite its lack in product performance.

However, if θ is close enough to 1, the lower firm will stop bidding altogether as the bids needed

to win a rank-one referral exceed its expected value, which in turn reduces the incentives of the

high-performance firm to bid, reducing overall intermediary revenues. From this it is clear that

generally the intermediary will seek an intermediary search engine design θ∗ in the interior of Θ

to maximize revenues.

The Firms’ Bidding Problem. At the beginning of the second period the (hitherto

unknown) random net utilities, u1, u2 ∈ U , of the firms’ product offerings realize. A net

utility ui corresponds to firm i’s performance type. The firms simultaneously submit bids to

the intermediary for referrals. It turns out that a firm’s bidding strategy depends only on

whether or not its performance type is higher or lower than that of the other firm. Hence, we

14From the expressions (37)–(38) for α′
1 and α′

2 in the proof of Proposition 4 it follows directly that α′
1+α′

2 > 0,
whereas α′

1 + 2α′
2 is not necessarily sign-definite.
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say that firm i is of “high” performance type (or simply of high type), abbreviated by H, if

ui = max{u1, u2} ≡ uH . (5)

Similarly, firm j is of low type, if

uj = min{u1, u2} ≡ uL. (6)

Note that the probability that uH = uL is zero, because u1, u2 are two independent draws of the

net consumer surplus. For simplicity, once the net utilities have realized we refer to the firms

by their type j ∈ {L, H} rather than their index i ∈ {1, 2}. Firm j’s profit πj depends on the

search rank r(bj, uj; θ) achieved through its bid, the other firm’s search rank (which determines

if j wins the auction or not), and its margin, which we normalize for both firms to one. 15 If

both firms achieve the same rank, then the search intermediary will adopt the tiebreaking rule

of displaying firm H with the better performing product first (note that Prob(uH = uL) = 0).

3 Equilibrium Strategies

At the end of the second period consumers form their beliefs h(θ) about the probability that the

high-type firm is ranked first. Based on Lemma 2 this determines the intermediated consumer

search classes, i.e., the partition (α0, α1, α2)(θ) of the consumer base C. At the beginning of

this period each of the two competing firms learns its type j ∈ {L, H} (from the realizations

of u1, u2 ∈ U) and the corresponding expected payoffs as a function of its bids (relative to the

consumers’ beliefs). The firms’ respective payoffs are given by

πH(bL, bH) =







(α1 + α2) (1 − bH) , if r(bH , uH) ≥ r(bL, uL),

α2 (1 − bH) , if r(bH , uH) < r(bL, uL),
(7)

and

πL(bL, bH) =







−α2bL, if r(bH , uH) ≥ r(bL, uL),

−α2bL + α1 (1 − bL) , if r(bH , uH) < r(bL, uL),
(8)

15The analysis remains essentially unchanged for any positive (possibly asymmetric) profit margins mL,mH ,
as long as mH ≥ mL. Firm H with the better-performing product can price in equilibrium at least as high
as the other firm and thus, ceteris paribus, obtains at least the same margin as the firm of type L. In the
event where mL > mH one can show that the notion of high-performing versus low-performing may be reversed
if firms’ performance differences are small. In addition, this distinction will then also depend on the design
parameter θ. The model can then still be solved if one allows the surplus distributions to depend on θ; however,
to keep our model simple and analytically tractable we exclude this somewhat implausible situation.
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where as before r(bj, uj) = r(bj, uj; θ) for j ∈ {L, H}. To simplify the exposition we have

dropped the explicit dependence on θ. Firm H is thereby ranked first by the intermediary, if

and only if the condition

r(bH , uH) ≥ r(bL, uL) ⇔ bH ≥ bL −
θ

1 − θ
(uH − uL) (9)

is satisfied. Maximizing firm j’s profit function with respect to bj in (7)–(8) we obtain the

best-response correspondences16

b∗H(bL) = arg max
bH≥0

πH(bL, bH) =







[bL − ∆]+ , if bL ≤ α + ∆,

0, if bL ≥ α + ∆,
(10)

and

b∗L(bH) = arg max
bL≥0

πL(bL, bH) =







bH + ∆ + ε, if bH ≤ α − ∆ − ε,

0, if bH ≥ α − ∆ − ε,
(11)

where we define α(θ) as “(maximum) value of a rank-one referral,” i.e., unit margin times the

fraction of searching consumers who sample only the first search result,

α = α1/(α1 + α2) ∈ [0, 1], (12)

and ∆(θ) as the “intermediated utility difference,”

∆ =
θ

1 − θ
(uH − uL) ≥ 0. (13)

It represents the cash equivalent (excluding the additional increment ε) by which the low-

type firm has to overbid the high-type firm to win a rank-one referral. We now examine the

second-period bidding game Γ(θ).17 The value of a rank-one referral corresponds to the value

(on a per-referral basis) of winning the intermediary’s auction. As a consequence, no bid can

rationally exceed α. The constant ε > 0 corresponds to the smallest monetary bid increment

accepted by the search intermediary.18 A pure-strategy equilibrium of this auction can exist

only if the corresponding consumer beliefs h(θ) ∈ {0, 1} about the probability of the high

type’s winning reflect the firms’ equilibrium bidding strategies. Let us first examine the case

16The correspondences are set-valued at the points of indifference. In (10) we use the notation [b]+ = max{0, b}
for any b ≥ 0.

17The set of players is N = {L,H}, the players’ strategy sets are Sj = R+ for j ∈ N , so that Γ(θ) =
{N , {Sj}, {πL(·; θ), πH(·; θ)}}.

18We assume that ε is “small” (e.g., 1¢ in the case of Overture), in particular less than the smallest possible
value of a rank-one referral, α|θ=0. Note that α is nondecreasing in θ (cf. the proof of Proposition 4).
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where h(θ) = 0, i.e., when the low-type firm is sure to be listed first in equilibrium. Then,

consistent with their beliefs, all consumers would start their search with the second rank, so

that the value of a rank-one referral becomes zero. As a result, both firms would bid zero,

which implies that the high-type firm would win with probability one, inconsistent with the

consumers’ beliefs. We now consider the case when h(θ) = 1, i.e., the consumers believe that

the high-type firm is sure to win the auction, and therefore r(bH , uH ; θ) ≥ r(bL, uL; θ) has to

hold in equilibrium. Then all consumers search exactly once, so that α1 = α = 1. From (7)

and (8) we can see that Firm L would prefer to lose the auction if any only if bL ≥ 1 while

firm H would agree to win the auction (at a bid of bH = bL −∆) if bH ≤ 1. Thus, there exists a

continuum of pure-strategy equilibria. However, it turns out that these pure-strategy equilibria

vanish if there is an arbitrarily small number of ‘noisy clicks’ in the system, which could be the

result of small deviations from full rationality by consumers, causing them to make a mistake

from time to time when following the online referrals.

Proposition 1 (Pure-Strategy Nash Equilibria) Let θ ∈ Θ. (i) The bidding-strategy

profile (b∗L, b∗H) = (1 + λ, 1 + λ − ∆) constitutes a pure-strategy equilibrium of the bidding

game Γ(θ) for all λ ∈ [0, ∆(θ)]. (ii) If, as a result of noisy clicks, α2 > 0, then a pure-strategy

equilibrium of Γ(θ) does not exist.

Part (i) of Proposition 1 states that similar to a separating equilibrium in the Spence

signaling game (cf. footnote 4) there exists a continuum of pure-strategy equilibria for which

the consumers are able to distinguish the firms by their ranking (with firm H being ranked first).

Most of these equilibria are (Kaldor-Hicks) ‘inefficient’ in the sense that firm L’s equilibrium

bid critically depends on the assumption that it never wins the auction (all consumers search

only once), increasing the minimum bid required for firm H. The latter would be willing to

avoid the high bids by a side payment to firm L. Note in particular that all pure-strategy

equilibria are such that firm L is never required to actually pay and that the ranking function

produces the same value for firm L and firm H, i.e., r(bL, uL; θ) ≡ r(bH , uH ; θ). Part (ii)

of Proposition 1 notes that if firm L can expect a nonzero number of clicks, then all of the

pure-strategy equilibria must vanish, as firm L is never able to offset the associated cost. From

part (ii) we conclude that the pure-strategy equilibria are not robust, and therefore examine the

possibility of mixed-strategy equilibria, which turn out to be unique and robust with respect
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Figure 4: Best-Response Correspondences for θ ∈ [0, θ̄).

to noisy clicks.

For a given rank-one-referral value α(θ) and an intermediated utility difference ∆(θ) Figure 4

depicts the firms’ best-response correspondences in the bidding game Γ(θ). It can readily be

verified that their intersection is empty. For example, starting with a bid amount bL ∈ [∆, α],

we see by tracing the firms’ best responses successively that both firms will tend to bid until one

of them drops out, upon which the firms start bidding up again.19 It is crucial that α(θ) ≤ ∆(θ),

or equivalently that

θ < θ̄ =
α(θ̄)

α(θ̄) + (uH − uL)
, (14)

since otherwise firm L would need to (with positive probability) bid more than the rank-one

referral value α(θ) to ever be able to win the auction, which is a dominated strategy. The search

intermediary therefore has a natural incentive to keep the design parameter θ below a critical

value θ̄. This makes plain the search intermediary’s desire to limit the transparency of the

provided search results, a pervasive managerial insight in intermediated search markets. If the

search engine design is such that the weight on product performance is high with θ ≥ θ̄, then

a mixed-strategy bid equilibrium does not exist. The intermediated utility difference in (13) is

too large for the low-type firm to be able to win the auction at a gain. The cash equivalent of

this difference exceeds the value of a rank-one referral, i.e., ∆ ≥ α.

19Weber and Zheng (2002) observed intertemporal bid cycles. Recent work by Edelman et al. (2007), and
Zhang and Feng (2005) addresses the corresponding cyclical “sawtooth” bidding behavior more formally in a
dynamic setting.
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Proposition 2 (Mixed-Strategy Nash Equilibrium) Let θ ∈ [0, θ̄). Then there is a

unique mixed-strategy Nash equilibrium of Γ(θ), which is given by the following probability dis-

tributions of bids:

P ∗
H(z; θ) = Prob(bH ≤ z|θ) =

(1 − α(θ))(z + ∆(θ))

α(θ)(1 − z − ∆(θ))
(15)

for firm H, and

Q∗
L(y; θ) = Prob(bL ≤ y|θ) =











y − α(θ)(y − ∆(θ))

α(θ)(1 − y + ∆(θ))
, y ≥ ∆(θ),

∆(θ)/α(θ), y ≤ ∆(θ),

(16)

for firm L.20

In the case where the search engine design allows firm L to in principle win a rank-one referral

at a gain (i.e., α > ∆), then the only Nash equilibrium of the open-bidding game Γ(θ) is in

mixed strategies, where both firms L and H randomize over their bids.21 The mixed-strategy

equilibrium found in this search market implies a bid dispersion that is somewhat related to

equilibrium price dispersions noted earlier in search markets (Varian 1980). Figure 5 depicts the

mixed-strategy equilibrium. In order to achieve mutual indifference (the defining condition for

a mixed-strategy equilibrium), both firms when randomizing need to make higher bid amounts

progressively more likely. Note that these mixed-strategy profiles contain generally nonzero

atoms, in particular whenever ∆ > 0 and α < 1.22

20The corresponding densities p∗H(z|θ) and q∗L(y|θ) can be obtained via (generalized) differentiation,

p∗H(z|θ)
a.e.
=

1 − α

α(1 − ∆ − z)2
rect

(

z

α − ∆

)

+
(1 − α)∆

α(1 − ∆)
δ(z),

for firm H, and

q∗L(y|θ)
a.e.
=

1 + ∆ − α

α(1 + ∆ − y)2
rect

(

y − ∆

α − ∆

)

+
∆

α
δ(y),

for firm L, where we have omitted the dependence on θ on the right-hand sides, for simplicity. The Dirac

distribution δ(·) is such that δ(y) = 0 for all y 6= 0 and
∫ ε

−ε
δ(y)dy = 1 for any ε > 0. The rectangular function

rect(·) is defined by rect(y) = 1 for y ∈ [0, 1] and rect(y) = 0 otherwise. Note that when ∆ > 0 there is a
positive probability of either firm bidding zero.

21The mixed-strategy equilibrium specified in Proposition 2 supposes uncorrelated strategy profiles. In ad-
dition there may be correlated equilibria (Aumann 1974) if firms can coordinate on an appropriate interbid
correlation (e.g., by using a public randomizing device). Naturally in the realistic (and empirically observed)
setting of a dynamic bidding game, bids are typically correlated (cf. Appendix B, Figure 7). Our theory is
limited to the firm’s one-shot (or repeated myopic) equilibrium behavior, which naturally also constitutes a
subgame-perfect Nash equilibrium of the infinitely repeated game.

22The existence of the mixed strategy profiles also follows from Simon (1987), as the firms’ payoffs (7)–(8)
satisfy the “complementary discontinuity property.” The well-known earlier existence result for mixed-strategy
equilibria in games with discontinuous payoffs by Dasgupta and Maskin (1986) does not allow for such atoms.
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Figure 5: Mixed-Strategy Nash Equilibrium of Γ(θ) (10,000 Simulated Bids) for θ = 1/5.

As a consequence of Proposition 2 we can determine both firms’ expected bids,

b̄∗H =

∫ α−∆

0

z dP ∗
H(z) =

1

α

(

α − ∆ + (1 − α) ln
1 − α

1 − ∆

)

, (17)

and

b̄∗L =

∫ α

∆

y dQ∗
L(y) =

1

α

(

(1 + ∆)(α − ∆) + (1 + ∆ − α) ln (1 + ∆ − α)
)

, (18)

where ∆ ∈ [0, α]. For not too high values of α it is b̄∗H < b̄∗L, which stresses the importance the

presence of the low-type firm has for the intermediary. However, there are cases (for large α and

small ∆) in which b̄∗H > b̄∗L; in those situations the value of a rank-one referral α is very high

and the bid-advantage through better product performance relatively low, so that the high-type

firm ends up bidding higher on average. Note also that the bids are generally not visible to

consumers, and as a consequence bids cannot act as a signal separating the firms’ types in

expectation. In addition, even if firm L bids higher than firm H, its probability of winning

the auction can never reach a value above .5, the critical value above which consumers would

find it beneficial to inspect the second referral first. However, the latter switch in consumer

behavior cannot occur, because firm H by mimicking firm L could always preempt it through

a simple bid increase. Lastly, we remark that, in contrast to the pure-strategy equilibria in
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Proposition 1, the mixed-strategy equilibrium is robust with respect to noisy clicks in the sense

that the cost of additional random consumers that search twice can be offset (in expectation)

by a small random number of additional consumers that only search once. Because firm H can

(for θ > 0) expect a positive profit, its participation is not sensitive to noisy clicks.

Lemma 3 (Expected Firm Profits in Equilibrium) (i) Let uH > uL and θ ∈ [0, θ̄). At

the beginning of the second period, the expected firm profits in equilibrium are π̄∗
H = α2 + (α1 +

α2)∆ and π̄∗
L = 0. (ii) Each firm’s ex-ante expected profits ¯̄π∗

F at the beginning of the first period

are

¯̄π∗
F =

α2

2
+

1

2

(

α1Prob (∆ ≥ α) + (α1 + α2)E (∆ |∆ < α) Prob (∆ < α)
)

, (19)

where ∆ = θ
1−θ

δu with δu = uH − uL the surplus difference between the two firms.

In a mixed-strategy Nash equilibrium, at t = 2 firm L expects zero profits, even though in

many cases it is firm L that expects to bid more than firm H. Even conditional on having

realized uL, it is (according to (18)) still incentive compatible for firm L to expect to bid a

positive amount leading to zero expected profits.23 However, ex ante (at t = 1) both firms

have symmetric expectations about their types, and thus both generally expect a positive profit

of ¯̄π∗
F according to part (ii) of Lemma 3. From expression (19) it is clear that both firms would

prefer ex ante full transparency, i.e., a search engine design θ∗F = 1 with full weight on product

performance. It is clear that ¯̄π∗
F cannot exceed (α1 + α2)/2, i.e., half of the total surplus to be

shared between firms and intermediary. Setting θ = 1 implies that Prob(∆ ≥ α) = 1, so that

this upper bound is achieved. We note, however, that given a certain design θ < 1, it may be

the case that the firms would locally prefer less transparency, i.e., the intermediary’s placing a

higher weight on the firms’ bids. In other words, ¯̄π∗
F (θ) may be nonmonotonic with respect to

θ.24 Since α(θ) is nondecreasing in θ (cf. Lemma 2) one obtains – in view of relation (14) – that

as long as θ does not exceed some critical value ¯̄θ ∈ Θ (which is a lower bound for θ̄ in (14)),

θ ≤
α(0)

α(0) + max(u1,u2)∈U |u1 − u2|
≡ ¯̄θ (≤ θ̄), (20)

expression (19) for ex-ante expected firm profits simplifies to

¯̄π∗
F =

1

2

(

α2 + (α1 + α2)∆̄
)

, (21)

23This is also realistic, since at this point the cost of goods sold is already sunk.
24The slope of ¯̄π∗

F (θ) with respect to θ becomes negative when the loss from the decrease in twice-searching
consumers is outweighed by the gains from the overall increase in consumers who search.

20



where ∆̄ = θ
1−θ

δ̄u is the expected intermediated utility difference and δ̄u = E(δu) is the expected

product-performance difference. Relation (20) ensures that (14) is satisfied for any possible

surplus realizations.

Proposition 3 (Equilibrium Search Behavior) For any θ ∈ [0, θ̄) the consumers’ equi-

librium search behavior is determined by the following system of equations:



























α(θ) = 1 −
(

F (µ
(2)
u − µ̂

(1)
u (θ))/F (µ̂

(1)
u (θ))

)

,

µ̂
(1)
u (θ) =

∫

U

(

ϕ(u2 − u1, θ)u2 + (1 − ϕ(u2 − u1, θ))u1

)

g(u1, u2) d(u1, u2),

ϕ(u2 − u1, θ) = ∆
α(θ)

+ 1−α+∆
α2∆2

(

(α − ∆)∆ + (1 − α) ln 1−α
(1−∆)(1−α+∆)

)
∣

∣

∣

∆=
θ|u2−u1|

1−θ

,

(22)

where µ
(2)
u is given by (2), and ϕ denotes the probability density that the high-type firm wins

the rank-one referral. In a pure-strategy equilibrium, all consumers inspect only the first link,

so that α(θ) ≡ 1 and µ̂
(1)
u (θ) ≡ µ

(2)
u , where µ

(2)
u is given by (2).

In the interesting case where θ ∈ [0, θ̄), the equilibrium system in Proposition 3 determines the

consumers’ search behavior in the sense that the sizes of the intermediated consumer search

classes, α1 and α2, as well as the function h in (4), which was used to construct the equilibrium,

are obtained from a solution (α, µ̂
(1)
u , ϕ) to (22) as follows:



















α1(θ) = F (µ̂
(1)
u (θ)) − F (µ

(2)
u − µ̂

(1)
u (θ)),

α2(θ) = F (µ
(2)
u − µ̂

(1)
u (θ)),

h(θ) = 1 −
(

µ
(2)
u − µ

(1)
u

)−1 (

µ
(2)
u − µ̂

(1)
u (θ)

)

.

(23)

The dependence of the consumers’ search behavior in a mixed-strategy equilibrium becomes

apparent by inspecting (22) and (23): as θ ∈ [0, θ̄) increases, µ̂
(1)
u (θ) increases, so that α1(θ) also

increases while α2(θ) decreases. The value h(θ) corresponds to the consumers’ beliefs about

the probability that firm H is listed first, which are correct in equilibrium. We note that h(θ)

is continuous and increases in equilibrium (with h(0) = 1 − h(1) = 0), as posited in Section 2.

4 Search Engine Design

We now solve the intermediary’s first-stage problem of finding an optimal (public) weighting

parameter θ that trades off between product performance and bids in the ranking function.
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The intermediary’s second-period profits πI as a function of the firms’ bids (bL, bH) are given

by

πI(bL, bH) = α2(bL + bH) +







α1bH , if r(bH , uH) ≥ r(bL, uL),

α1bL, if r(bH , uH) < r(bL, uL).
(24)

Using the results in Proposition 2 we can determine the intermediary’s expected profits in the

mixed-strategy bidding equilibrium.

Lemma 4 (Expected Intermediary Profits in Equilibrium) The search intermediary’s

ex-ante expected equilibrium profits are given by

¯̄π∗
I (θ) =

(

α1 − (α1 + α2)E (∆ |∆ < α)
)

Prob (∆ < α) , (25)

where ∆ is given as in Lemma 3.

Analogous to our remark after Lemma 3, as long as (20) holds, expression (25) simplifies to

¯̄π∗
I = α1

(

1 −
∆̄

α

)

= α1 − (α1 + α2)∆̄. (26)

In the first period (at t = 1), i.e., at the time when the mechanism is designed, the intermediary

does not know the product performance of the respective firms. Because in equilibrium the

intermediary’s prior beliefs are distributed in the same way as those of the consumers, the

search engine design itself does not depend on the product performance of the firms present in

the market. At the beginning of period 2, the intermediary obtains information about the firms’

respective product performance levels, before consumers start their search. It becomes clear

below that the intermediary generally has a strict incentive to obtain such information, e.g., as

a result of its own product testing, or using third-party data. The ranking thus occurs under

complete information, whereas the search engine design is chosen under incomplete information:

the intermediary expects a surplus dispersion of δ̄u = E(uH − uL).

Proposition 4 (Optimal Search Engine Design) Assume that at an optimal search en-

gine design θ∗ condition (20) holds. Then the intermediary’s optimal first-period search engine

needs to satisfy

dµ̂
(1)
u (θ)

dθ

∣

∣

∣

∣

∣

θ=θ∗

≤
F (µ̂

(1)
u (θ∗))

(

1 − θ∗

1−θ∗
δ̄u

)

f(µ̂
(1)
u (θ∗)) + f(µ

(2)
u − µ̂

(1)
u (θ∗))

δ̄u

(1 − θ∗)2 , (27)

whereby equality in (27) holds whenever the optimum is interior, so that θ∗ > 0.

22



Provided that an optimal search engine design θ∗ satisfies condition (20), this design must be

such that the increase of consumers in the system is balanced against the tendency of firms to

reduce their bids when the weight on product performance is very large. The left-hand side

of (27) is equal to h′(θ∗)
(

µ
(2)
u − µ

(1)
u

)

and corresponds to the change of the probability that

firm H wins the auction, times the expected (non-intermediated) gain from searching twice

over searching once. The first term on the right-hand side is akin to a hazard rate, while second

term is the expected utility difference, weighted by the design parameter.

Note that relation (27) provides a necessary condition for the optimal search engine design θ∗:

due to nonconvexities in the input distributions, condition (27) may allow for several solutions

corresponding to local extrema of the intermediary’s ex-ante expected profits. As long as h′′ > 0

(implying a fast increase of the consumers’ expected payoff in θ), condition (27) implies that

the optimal weight on product performance decreases as the expected difference in product

performance increases, which indicates the intermediary’s desire to maintain incentives for

the low-type firm to participate with nonzero bids. In case the simplifying condition (20)

is not satisfied, the optimal search engine design θ∗ maximizes the intermediary’s profit (25)

in which one needs to substitute the equilibrium quantities α1(θ), α2(θ), α(θ), and ∆(θ) that

can be obtained by solving the equilibrium system (22). The corresponding one-dimensional

maximization problem can then be solved numerically.

We now contrast the intermediary-optimal design to a design that maximizes overall welfare.

Because in equilibrium consumers of search classes 1 and 2 eventually purchase a product, the

total ex-ante expected consumer surplus is

CS =

∫ c2

0

(

µ(2)
u − 2c

)

f(c)dc +

∫ c1

c2

(

µ̂(1)
u − c

)

f(c)dc

= α1µ̂
(1)
u + α2µ

(2)
u −

∫ c1

0

cf(c)dc −

∫ c2

0

cf(c)dc. (28)

Overall (ex-ante) social welfare W in the system is then defined as the sum of ex-ante expected

firm profits, intermediary profits and consumer surplus, so that W = α1 + α2 + CS. The

following proposition provides a necessary optimality condition for a welfare-maximizing search

engine design, provided that condition (20) holds at the optimum.

Proposition 5 (Consumer-Surplus and Welfare-Maximizing Design) (i) Consumer

surplus is nondecreasing in the design parameter θ. (ii) The unique ex-ante social-welfare
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Figure 6: Expected Equilibrium Profits for θ ∈ [0, ¯̄θ] in the Example.

maximizing search engine design is to rank based exclusively on product performance by set-

ting θ∗W = 1.

Unlike the firms (as seen in the previous section, cf. footnote 24), consumers always prefer

a maximum of transparency, which is then also socially optimal as the pie (α1 + α2) to be

shared between firms and intermediary increases in the weight θ on product performance. As

a result obfuscation is socially wasteful: the intermediary’s self-interested behavior of choosing

a revenue-maximizing design introduces systematic obfuscation into the market place, which

– even though anticipated by the consumers – limits the transparency of the resulting interme-

diated search market. From a public policy perspective a larger degree of transparency may

be desirable. It may be achieved through private and/or public-sector organizations such as

SearchEngineWatch.com (which reveals the performances of various search engines and thus

indirectly enforces market discipline) or the Federal Trade Commission (which may act upon

receiving consumer complaints).

Example. As a practical illustration of our results (cf. Figure 6), we now consider the concrete

case in which the probability densities f and g are constant on C = [0, 1] and U = [0, 1]2

respectively. Under this specification, we find that (for θ = 0) the consumer’s expected surplus

after one search is µ
(1)
u = 1/2 and after two searches it is µ

(2)
u = 2/3. Hence, by Lemma 2

and (23) the intermediated consumer search classes are given by α1(θ) = 2µ̂
(1)
u (θ) − (2/3)
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and α2(θ) = (2/3) − µ̂
(1)
u (θ). On the other hand, from (22) we obtain that the consumers’

expected benefit from searching once using the search intermediary is

µ̂(1)
u (θ) =

1

3
+ 2

∫ 1

0

ϕ(s, θ)(1 − s)s ds,

where the probability ϕ that the high-type firm wins a rank-one referral in a mixed-strategy

bidding equilibrium is given by the last relation in (23) with α(θ) = (1/3) + µ̂
(1)
u (θ). By (20)

we know that for θ ≤ ¯̄θ = α(0)/(α(0) + 1) = 2/5 the intermediary is guaranteed a nontrivial

mixed-strategy equilibrium. Maximizing the intermediary’s expected profits α1(θ) − (α1(θ) +

α2(θ))∆̄(θ) =
(

2 − θ
3(1−θ)

)

µ̂
(1)
u (θ)− 2

3
with respect to the design parameter θ, we find θ∗ ≈ 0.34,

leading to an optimal expected equilibrium profit of ¯̄π∗
I ≈ 0.39, a 17% improvement over its

expected equilibrium profits of 1/3 at θ = 0. Taking the socially optimal solution θ∗W =

θ∗F = 1 as a benchmark, the intermediary reduces ex-ante consumer surplus CS = (2/9) −
(

(2/3) − µ̂
(1)
u (θ)

)

µ̂
(1)
u (θ) by 23% from CS(θ∗W ) = 2/9 ≈ .2222 to CS(θ∗) ≈ .1712. Similarly, the

number of consumers using the engine is reduced by 13%, from 2/3 to about .5786. We should

note, however, that in the absence of the intermediary consumers would expect ū0, i.e., only

zero surplus. �

5 Conclusion

In this section we discuss managerial implications of our results and theoretical contributions

of this research, including its current limitations. We then provide some directions for further

research.

Managerial Implications. Let us first consider our important conclusions regarding the

design of a mechanism for selling paid referrals. If consumers observe bids and the weight

on product performance in the ranking function is greater than zero, then consumers could

rationally infer that in expectation bids from the lower-performance firm would be (weakly)

higher and adjust their search order accordingly, starting their inspections with the firm bidding

less. However, this would in turn (by a process of “unraveling”) remove the incentive for the

lower-performance firm to bid at all and thus result in a zero-bid equilibrium unfavorable for the

intermediary. On the other hand, if the intermediary places no weight on product performance

in its ranking function, then by Proposition 2 (for ∆ = 0) we obtain a symmetric bidding
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equilibrium in mixed strategies and consumers cannot infer anything (even in expectation)

from the observed bid amounts; they thus do not have any incentive to change their order of

inspection to anything different from the order the intermediary provides to them. Naturally,

market transparency would be minimal in that case, to the detriment of consumers, by Lemma 2

resulting in a minimum number of consumers (α1 + α2) using the intermediary’s site. We can

thus conclude that if the firms’ bid amounts are known to the consumers, then it is optimal

for the intermediary to base the ranking purely on the bid amounts, which is the current

choice of leading search intermediaries such as Yahoo! or Nextag. However, when the firms’

bid amounts are not known to the consumers, as is the case with 95 percent of Overture’s

click-throughs (which take place at affiliates’ sites), then we argue that it is possible for the

intermediary to increase revenues by choosing an optimal search engine design parameter θ∗ ∈

[0, 1) in accordance with Proposition 4. If it turns out to be profitable to use the firms’ product

performance (or a correlated indicator such as consumer feedback) in the ranking (i.e., θ∗ > 0),

then the intermediary would rationally spend an amount, which at most equals its expected

gains of ¯̄πI(θ
∗) − ¯̄πI(0), to obtain this product performance information (from third parties or

own research; cf. also footnote 3). We note that in order to optimize the search engine design,

the intermediary needs to have some beliefs about the consumers’ search cost and the surplus

of the firms’ products (in terms of the cfd’s F and G).

Given a search engine design θ > 0, the firms’ equilibrium bidding strategies in Proposition 2

are such that often (but not always!) it is best for a low-type firm to bid higher in expectation

than the high-type firm, in order to take advantage of α1-consumers with high sampling cost.

In fact, it is the presence of a low-type firm and the externality it exerts on a high-type firm

that generates revenue for the search intermediary (cf. also Bandyopadhyay et al. (2005)). The

low-type firm, in trying to obtain rents from α1-consumers, spends all its expected surplus

on bidding, whereas the high-type firm which obtains rents from both α1- and α2-consumers,

spends as much on bidding so as to make the low-type firm in equilibrium indifferent between

staying in and dropping out. The more the low-type firm sees its chances in using a high

search-ranking to sell to consumers with a high opportunity cost of time, the more rent a search

intermediary is able to appropriate, thereby naturally limiting the transparency of the market.

As a perhaps surprising conclusion, we have seen at the end of Section 3 (cf. footnote 24) that

it may be sometimes (at least locally) not only in the intermediary’s but also in the firms’ best
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interest to limit transparency, i.e., to decrease the search engine design parameter θ. In contrast

to this, consumers always prefer higher transparency, as it increases their expected utility from

inspecting the most promising (rank-one) referral. The presence of the search intermediary

in our model is generally welfare improving (though naturally not welfare maximizing), in

contrast to Posner’s (1975) “dissipation” and “wastefulness” postulates alluded to in Section 1.

We have shown that the intermediary manages to appropriate all of the expected rents of the

low-performance firm, which tends to bid higher expected amounts for rank-one referrals than

its high-performance competitor to compensate for this performance difference. As a result,

given the weighted average that a revenue-maximizing search intermediary is likely to choose

in its ranking function, consumers should be concerned about the endogenous obfuscation in

the search results provided by an information intermediary, and adapt their behavior, which in

turn will tend to moderate the intermediary’s opportunistic course of action.

Contributions and Limitations. Our paper is among the first attempts to address mech-

anism design issues for search intermediaries. We provide a model of an intermediated search

market, whereby the intermediary adopts a bidding model for selling referrals to competing

firms, as is the current practice of many leading search intermediaries. The resulting auction

with interdependent valuations is in reality complicated by the fact that actual payments occur

stochastically, only when consumers actually click through on the referrals provided by the

intermediary. To make the model tractable we assumed a single bidding round, so that some

of the dynamic traits found in the data, such as end-of-day effects, weekend dropouts, or in-

terbid correlation, cannot be replicated in our single-period model. Our empirical observations

(cf. Appendix B) can thus serve only as anecdotal evidence (as is the case with most data when

trying to confirm game-theoretical conclusions), and we hope that further research can shed

more light on the intertemporal bidding behavior of firms, which interestingly is (in light of

the firms’ often very significant total expenditures on paid referrals) sometimes aided by “bid-

ding agents.” We believe that the mixing of bids that can be found in the data corroborates

our rent-seeking interpretation and that the results of our model can be widely applied where

referrals are common practice, such as in real estate, the law, accounting, and medicine. Our

results can also be applied to brokerages, where referral payments are generally not observable

by the end consumer. The generic lack of transparency in equilibrium can also be interpreted

as a consequence of an intermediary’s inability to commit to a specific ranking function, if al-
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locations are not fully verifiable by the participating firms. Such a lack of commitment ability

can naturally be expected in at least some of the aforementioned industries.

Directions for Future Research. As the Economist (2002) noted, “the Internet is being

transformed, from a vast repository of mostly free content into a commercial cauldron in which

almost everything is available ... [e]ven Internet search terms” (pp. 23–24) In this paper, which

is part of a larger research program on search efficiency, we attempt to shed some light on this

phenomenon of decreasing transparency on the Internet by constructing an empirically validated

model of paid referrals in this intermediated search environment. Future research could proceed

along the following three axes: (1) formulate the referral auction as a dynamic game and

examine the resulting intertemporal bidding strategies, which can then be directly compared to

the available time-series bidding data; (2) find and examine more general revenue-maximizing

mechanisms for providing intermediary supply-demand matching services; and (3) allow for

competition among multiple heterogeneous intermediaries using differentiated mechanisms for

allocating referrals (cf. Bhargava et al. (2007) for a first step in this direction).

Appendix A: Proofs

Proof of Lemma 1. Note first that always µ
(2)
u − µ

(1)
u ≤ µ

(1)
u , i.e., the expected gain in utility

by one additional search cannot exceed the expected utility from a single search. Using (2) the
expected ex-ante benefit from searching twice is

µ(2)
u =

∫

U

max{u1, u2}g(u1, u2)d(u1, u2) ≤

∫

U

(u1 + u2)g(u1, u2)d(u1, u2) = 2µ(1)
u ,

since U ⊂ R
2
+ by assumption. Naturally, the partition of the consumer base C, outlined in

Lemma 1, is free of overlaps, so that α0 + α1 + α2 = 1. Let Ak be the set of consumers for
whom searching k times is individually rational (cf. footnote 10). For k ≥ 1 searches it is

Ak =
[

0, F (µ
(k)
u )
]

∩C, so that A2 ⊂ A1 and A0 = C \A1. In other words, consumers in A1 who

search at least once might also search twice, and those that do not search at all are in the com-
plement of A1 with respect to C. The marginal consumers are determined by the distribution
function F evaluated at the expected benefit µ

(k)
k of searching k times. It is ex ante incentive-

compatible for a consumer c ∈ A1 to perform k∗(c) = 2 instead of just one search if and and

only if µ
(2)
u − 2c ≥ µ

(1)
u − c, or, equivalently, if and only if c ∈

[

0, F (µ
(2)
u − µ

(1)
u )
]

∩C ⊂ A2. This

yields the proposed segmentation of the consumer base C into search classes with α2 = |A2|,
α1 = |A1 \ A2|, and α0 = 1 − α1 − α2, which concludes our proof. �

Proof of Proposition 1. (i) For any given θ ∈ [0, 1] let λ ∈ [0, ∆(θ)] be an arbitrary con-
stant. If firm L bids b∗L = 1+λ, then firm H’s lowest winning bid is b∗H = b∗L−∆ = 1+λ−∆. Its
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payoffs at that bid are π∗
H = (1− b∗H)h(θ) = ∆− λ ≥ 0, where h(θ) ≡ 1 is firm H’s probability

of winning the auction. Hence, there is no reason for firm H to deviate from this equilibrium
strategy. Firm L also has no reason to deviate, because its profits cannot increase beyond zero
by increasing (or decreasing) its bid. (ii) If firm L expects a random number of clicks, then in
a pure-strategy equilibrium firm L can never recoup its cost, implying nonparticipation by the
low-type firm. �

Proof of Proposition 2. Because θ ∈ [0, θ̄), it is α > ∆. If the firm of performance-type H
randomizes over bids with probability distribution PH and the firm of performance-type L
randomizes over bids with probability distribution QL, then the firms’ respective expected
payoffs are

π̄H(PH , QL) =

∫ α−∆

0

(1 − z)
(

α1QL(z + ∆) + α2

)

dPH(z) (29)

for firm H, and

π̄L(PH , QL) =

∫ α

∆

(

α1(1 − y)PH(y − ∆) − α2y
)

dQL(y) (30)

for firm L. Note that in equilibrium the support of firm H’s bids is contained in [0, α −
∆] whereas the support of firm L’s nonzero bids is contained in [∆, α] (bidding less than ∆
results in a sure loss of the auction for firm L so that bidding zero is better). Because by
part (ii) of Proposition 1 a pure-strategy equilibrium does not exist, we look for a mixed-
strategy equilibrium. Firm H is willing to randomize on the support [0, α − ∆] if and only if
the integrand in (29) is equal to a constant cH , i.e.,

(1 − z)
(

α1QL(z + ∆) + α2

)

= cH (31)

for all z ∈ [0, α − ∆]. By setting z = α − ∆ we find that cH = (α1 + α2)(1 − α + ∆). Thus,
by substituting y = z + ∆ and the expression for cH in (31), firm L’s bid distribution can be
written in the form (16) for all y ∈ [0, α]. Similarly, setting the integrand in (30) equal to a
constant cL, i.e.,

α1(1 − y)PH(y − ∆) − α2y = cL

for all y ∈ [∆, α], we obtain cL = α1(1−α)−α2α (by setting y = α), and thus (with z = y−∆)
relation (15). By construction, the distributions PH and QL in (15) and (16) constitute a
mixed-strategy equilibrium of the bidding game.

We now show that this mixed-strategy equilibrium is unique. Suppose that there is an-
other mixed-strategy equilibrium with respective bid distributions Q̂L for firm L, and P̂H for
firm H. By the same argument as above the respective supports for these distributions must
be contained in [0, α] and [0, α − ∆] respectively. It is also clear that QL is constant on the
interval (0, ∆) because such positive bids lead to a sure loss for firm L. Thus, the only way the
equilibrium described by Q̂L, P̂H can differ from the one described by QL, PH is if the support of
the new mixed-strategy equilibrium differs by a set of nonzero measure. In other words, there
exists a bid amount so that a firm does not submit any bid in the neighborhood of that bid
amount. But then the other firm can ensure winning the all-pay auction for sure by bidding
that amount (plus or minus ∆) for sure, resulting in a pure-strategy equilibrium. �
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Proof of Lemma 3. (i) We assume that both firms L and H follow the mixed equilibrium
strategies according to q∗L(·) and p∗H(·) specified in (15)–(16). Then, based on (7) and using (17),
firm H expects to net the profits

π̄∗
H =

∫

R
2
+

πH(y, z)q∗L(y)p∗H(z)d(y, z)

= α1

(

1 − α

1 − ∆

(

∆

α

)2

+
∆

α

(

α − ∆

α(1 − ∆)
− b̄∗H

)

+ B∗
H

)

+ α2

(

1 − b̄∗H
)

, (32)

where using (15)

B∗
H =

∫ α−∆

0+

(1 − z)p∗H(z)

[
∫ z+∆

∆

q∗L(y)dy

]

dz =
1 − (α − ∆)

α
b̄∗H . (33)

By substituting the expressions (17) and (33) into (32), one obtains that π̄∗
H = α2 +(α1 +α2)∆.

Let us now turn to the expected equilibrium profits for firm L, which using (8) as well as (18)
can be written as

π̄∗
L =

∫

R
2
+

πL(y, z)q∗L(y)p∗H(z)d(y, z) = α1

(

(1 − α)∆

α(1 − ∆)

(

α − ∆

α
− b̄∗L

)

+ B∗
L

)

− α2b̄
∗
L, (34)

where with (16) and (18):

B∗
L =

∫ α

∆

q∗L(y)(1 − y)

[
∫ y−∆

0+

p∗H(z)dz

]

dy =
(1 − α)∆

α(1 − ∆)

(

b̄∗L −
α − ∆

α

)

+
1 − α

α
b̄∗L. (35)

Substituting expressions (18) and (35) into (34) yields that π̄∗
L = 0. (ii) In period one, both

firms expect the same equilibrium profits ¯̄π∗
F . With probability Prob(∆ ≥ α) a zero-bid equi-

librium occurs in which ¯̄π∗
F |∆≥α = (α1 +α2)/2. In the event that this is not the case, both firms

expect to bid the positive amount (b̄∗L + b̄∗H)/2, so that with probability Prob(∆ < α) we obtain
using part (i) that ¯̄π∗

F |∆<α = E ( π̄∗
H |∆ < α) /2. This implies expression (19), which completes

our proof. �

Proof of Proposition 3. Let (u1, u2) ∈ U , and uH , uL be defined by (5)–(6). We first
consider the case where θ ∈ [0, θ̄), where θ̄ is implied by (14). Thus, there is a nonzero-bid
equilibrium with the firms’ choosing equilibrium bid distributions p∗H and q∗L according to (15)–
(16). Then the probability that the firm of performance-type H wins the auction is given
by

ϕ(u2 − u1, θ) =

∫

[0,α]2
1{z≥y+θ|u2−u1|/(1−θ)} p∗H(z; α)q∗L(y; α) d(y, z)

where p∗H and q∗L depend on α = α(θ), which we have explicitly noted. The integration (which
is similar to the one carried out in the proof of Lemma 3) yields the explicit expression for ϕ
in (22). The (maximum) value of a rank-one referral α is in turn determined by Lemma 2 and

thus is a function of µ̂
(1)
u . The three equations in (22) therefore determine the tuple (α, µ̂

(1)
u , ϕ)

for any given θ ∈ [0, θ̄). We now consider the situation when θ ∈ [θ̄, 1] which implies a zero-bid
equilibrium. In that case, firms do not bid and – as a consequence of our tiebreaking rule which
weakly favors the high-performance type – no consumers will search twice, so that α(θ) ≡ 1
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and correspondingly µ̂
(1)
u (θ) ≡ µ

(2)
u , which completes our argument. �

Proof of Lemma 4. In equilibrium all products will get sold at a unit margin. Thus,
W = α1 +α2 is the sum of the welfare allocated to the search intermediary and both firms L,H.
Using Lemma 3 we have that ¯̄π∗

I = (α1 + α2) − 2¯̄π∗
F , which using (12) implies (25). �

Proof of Proposition 4. By differentiating (26) with respect to θ we obtain:

∂π̄∗
I

∂θ
(θ) = α′

1 − (α1 + α2)
′ ∆̄ − (α1 + α2)∆̄

′, (36)

with

α′
1(θ) =

[

f(µ̂(1)
u (θ)) + f(µ(2)

u − µ̂(1)
u (θ))

] (

µ(2)
u − µ(1)

u

)

h′(θ) > 0, (37)

α′
2(θ) = −f(µ(2)

u − µ̂(1)
u (θ))

(

µ(2)
u − µ(1)

u

)

h′(θ) < 0, (38)

∆̄′(θ) = δ̄u/(1 − θ)2 > 0.

Substituting the last expressions into (36) and rearranging yields the equality in (27). If θ∗ = 0
is a strict maximizer of the intermediary’s expected equilibrium profits, then the slope of π̄∗

I (θ)
must be negative in a right-neighborhood of θ∗ = 0, which implies the inequality in (27). This
concludes the proof. �

Proof of Proposition 5. Differentiating the social welfare W with respect to θ yields

W ′(θ) = (α′
1 + α′

2)(θ) + CS′(θ) = f(µ̂(1)
u (θ))

(

µ(2)
u − µ(1)

u

)

h′(θ) + CS′(θ), (39)

where CS is given by (28),

CS = α1µ̂
(1)
u + α2µ

(2)
u −

∫ c1

0

cf(c)dc −

∫ c2

0

cf(c)dc.

Using the definition of ck for k = 1, 2 in footnote 13 as well as relation (4), we obtain

∂

∂θ

∫ c1

0

cf(c)dc = c1f(c1)c
′
1 = µ̂(1)

u f(c1)f(µ̂(1)
u )
(

µ(2)
u − µ(1)

u

)

h′,

and
∂

∂θ

∫ c2

0

cf(c)dc = c2f(c2)c
′
2 = −

(

µ(2)
u − µ̂(1)

u

)

f(µ(2)
u − µ̂(1)

u )
(

µ(2)
u − µ(1)

u

)

h′.

As a direct consequence we obtain

CS′(θ) = α1(θ)
(

µ(2)
u − µ̂(1)

u (θ)
)

h′(θ) > 0,

for all θ ∈ Θ. This proves part (i). Part (ii) then follows directly from (39) after noting that

(α1 + α2)
′(θ) = f(µ̂

(1)
u (θ))

(

µ
(2)
u − µ

(1)
u

)

h′(θ) > 0 for all θ ∈ Θ, which completes the proof. �
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Appendix B: Some Empirical Observations

In this section we provide some empirical observations on firms’ actual referral bidding behavior,

which is far from conclusive evidence. Nevertheless, we believe that they can contribute some at

least anecdotal justification for our results, which were derived from a one-shot bidding model.

In reality firms bid in multiple rounds, and we do hope that further theoretical and empirical

research can shed more light on firms’ (behavioral) dynamic strategies when bidding for paid

referrals. Our bidding data were obtained from Overture Services, a market leader in the paid

search market (taken over by Yahoo! in 2003 for US$1.63B, and Yahoo! Search Marketing, as

of May 2007). The data stem from the U.S. flower market spanning about 18 months, from

January 2001 to August 2002. They contain four variables: firm ID, the search term on which

bids are placed, a time stamp for each bid, and the respective bid amounts. In total, 384 firms

bid 282,480 times across 12 search terms, with an average bid of $1.45 per referral (or “click-

through”). As a reference, we also report the number of searches (corresponding to α1 + α2 in

our model) incurred in the month of September 2002 with respect to each search term. Bids

for paid referrals in the U.S. flower market are substantial: the average bid is above $1 for

eight out of twelve search terms, and some firms are willing to pay as high as $8.86 for each

consumer referral by Overture, whose ranking is entirely based on bid amount (corresponding

to θ = 0 in our model). Search terms are auctioned off in a continuous open-bid auction. The

firm that bids the most is displayed first; in the case of tied bids the intermediary displays the

corresponding firms randomly on their achieved rank.25

To examine the firms’ bidding behavior, we focus our analysis on the “flower” search term

and we restrict our attention to those 33 firms that bid at least 100 times. Examining individual

firms’ bidding histories shows that there is high relative bid dispersion, which can be charac-

terized by the coefficient of variation (corresponding to sample standard deviation divided by

sample mean). The coefficient of variation measures the degree of deviation from the mean as

a percentage. The average of this coefficient over 33 firms is 35.5%, which implies that firms’

bids fluctuate 35.5% around the mean. We find that relative bid dispersion is high, as 27 out

of 33 firms exhibit bids with a coefficient of variation above 30%.

We assume here that firm bidding occurs within “strategic groups” (Caves and Porter 1977,

McGee and Thomas 1986) of the flower industry. For simplicity, and to be able to relate our

observations to the model, we restrict attention in this paper to strategic groups consisting of

two firms. Using as a criterion for competitive bidding a “small” relative difference of not more

than 20% in bid averages, we identified six strategic groups among the 33 firms that bid at least

100 times for the search term “flower.” To maximize the signal-to-noise ratio we concentrated

on strategic groups with frequent bidding activity and high average bids, which led us to the

25This tiebreaking rule is somewhat different from the one assumed in our model (higher-performance firm
first), but this has no effect on the model outcome for ǫ → 0+.
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Figure 7: Firm 352 and 356’s Bidding Behavior (July 28 – August 31, 2002).

strategic group consisting of Firm 352 and Firm 356 for closer examination.26 From July 28,

2002 to August 31, 2002, Firm 352 bid 452 times with average amount $3.42, and Firm 356

placed 477 bids averaging $3.02.

Figure 7 plots the two firms’ bids over a time interval from July 28 through August 31, 2002.

In Section 3 we showed that a pure-strategy Nash equilibrium does not exist for θ = 0, as is the

case for Overture. However, according to Proposition 2 there is a unique mixed-strategy Nash

equilibrium, with bid densities specified by (15)–(16). Note that pH = qL, if ∆ = 0. The latter

condition is satisfied, because Overture’s engine design is such that θ = 0 (full ranking weight

on bid). We test the goodness-of-fit of our derived mixed strategy with respect to the bidding

data collected for Firms 352 and 356. For this purpose we use the quantile-quantile (Q-Q)

plot technique (Chambers et al. 1983, Johnson and Wichern 1998), a graphical technique for

determining if two data sets come from populations with a common distribution. For identical

distributions (up to scaling and translation) the Q-Q plot naturally degenerates to a straight

line. Using linear regression it is then possible to test the goodness-of-fit between each firm’s

sample bid distribution and the theoretical distribution. Our hypotheses are therefore

H352/H356 : Firm’s 352/356 bidding data is consistent with (15)–(16) and θ = 0.

We first generated 1000 bids according to the theoretical equilibrium densities in Propo-

sition 2. Overture, for example, originally based its rankings purely on the bid amount, so

that θ is zero in this case (so that ∆ = 0 as a consequence). The precise value of α ∈ (0, 1)

is immaterial to the Q-Q analysis. Using this simulated data, we then plotted two Q-Q charts

as shown in Figure 8, with the theoretical data at the x-coordinate and the observed data

26We refer to the firms anonymously due to a non-disclosure agreement with Overture.
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Figure 8: Q-Q Plots Comparing Firm 352 and 356’s Bidding Behavior to the Theoretical

Mixed-Strategy Equilibrium Distribution.

at the y-coordinate. The distance of the curve to the reference line (the straight line in the

plots) reflects the closeness of the theoretical distribution to the empirical distribution. The

straight line in the Q-Q plot connects the first and the third quartile to provide – as commonly

practiced – some visual indication of fit. A correlation-coefficient test is often used to measure

the straightness of the Q-Q plot (Johnson and Wichern 1998 p. 193) and thus the fit between

the two sample distributions. Computing the correlation coefficients based on 50 data points

sampled from the Q-Q plot, we obtain 0.972 and 0.982 for Firm 352 and Firm 356 respectively.

Since the firms’ bids are not independent, we need to test the two hypotheses H352 and H356

simultaneously. For this we use the standard Bonferroni correction for multiple comparisons.

The corrected critical values (using a one-way test) are R∗
50,0.05 = 0.977 at the 0.05-significance

level and R∗
50,0.10 = 0.967 at the 0.10-significance level. This indicates that at the 0.05-level,

there is no significant difference between the distributions governing the simulated data and

Firm 356’s bidding data. Similarly, there is no significant difference between the simulated data

and Firm 352’s bidding data at a 0.10-level. Thus, neither H352 nor H356 can be rejected by

our sample data.

The observed bidding data of Firm 352 and Firm 356 indicate that their intertemporal

bidding behavior is distributionally consistent with our theoretical mixed-strategy equilibrium

specified in Proposition 2. However, as can easily be seen by inspecting the firms’ time-series

bidding behavior as well as Figure 7, those intertemporal bidding strategies are correlated (the

corresponding cross-correlation coefficient is .65), which is not consistent with the theoretical

one-shot mixed-strategy equilibrium (cf. footnote 21). This suggests that those firms that

engage in intertemporal correlated bidding are not myopic when determining their bid amounts.

A high bid is more likely to be trumped by an even higher bid. The firms thus seem to iterate

through their best-response correspondences yielding a noticeably cyclical behavior.
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Appendix C: General Ranking Functions

We now discuss the generality of the intermediary’s search engine design based on the ranking

function r in (3), in which the relative weight placed on consumer surplus versus bids is a

convex combination determined by the design parameter θ ∈ [0, 1]. For this, let us consider

an alternative, more general, smooth ranking function ρ(b, u; ϑ) which depends on a design

parameter ϑ ∈ [0, 1]. In order not to induce perverse bidding behavior, it is clear that for

each feasible value of ϑ the ranking function ρ needs to be increasing in both b and u. As a

result, given the surplus realizations uH and uL and firm j’s bid bj with j ∈ {L, H} firm i 6= j

(with i ∈ {L, H}) needs to bid such that

ρ(bi, ui; ϑ) ≥ ρ(bj, uj; ϑ) (40)

in order to win the auction (with the inequality being strict in case i = L). Using the implicit

function theorem (Rudin 1976, pp. 224–225), there is a smooth function β(ui, ρ(bj, uj; ϑ); ϑ)

such that the inequality (40) can be rewritten in the form

bi ≥ β(ui, ρ(bj, uj; ϑ); ϑ) (41)

for any ϑ ∈ [0, 1]. To address the question about the relative importance of bids versus surplus

in the ranking of firms we assume that the intermediary’s mechanism parametrization is chosen

such that the ratio

η(b, u; ϑ) ≡

(

∂ρ(b, u; ϑ)

∂b

)−1(
∂ρ(b, u; ϑ)

∂u

)

(42)

is increasing in ϑ for any fixed (b, u) and η(·, ·; 0) = 0, η(·, ·; 1) = ∞. The last two relations

express the natural boundary conditions for the search engine designer which are such that

for ϑ = 0 the ranking function does not depend on the firms’ product performance while

for ϑ = 1 the ranking function does not depend on the firms’ bids. This in turn implies the

firms’ expected payoffs as a function of their bids,

πH(bL, bH ; ϑ) =

{

(α1 + α2) (1 − bH) , if bH ≥ β(uH , ρ(bL, uH ; ϑ); ϑ),

α2 (1 − bH) , if bH < β(uH , ρ(bL, uH ; ϑ); ϑ),
(43)

and

πL(bL, bH ; ϑ) =

{

−α2bL, if bL > β(uL, ρ(bH , uH ; ϑ); ϑ),

−α2bL + α1 (1 − bL) , if bL ≤ β(uL, ρ(bH , uH ; ϑ); ϑ),
(44)

as well as their response correspondences,

b∗H(bL; ϑ) = arg max
bH≥0

πH(bL, bH ; ϑ) =

{

[bL − ∆H ]+ , if bL ≤ α + ∆H ,

0, if bL > α + ∆H ,
(45)

and

b∗L(bH ; ϑ) = arg max
bL≥0

πL(bL, bH ; ϑ) =

{

bH + ∆L + ε, if bH < α − ∆L − ε,

0, if bH ≥ α − ∆L − ε,
(46)
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where for any α ∈ [0, 1] the function ∆i = ∆i(ui, uj, ϑ, α) is implicitly defined by

β(uj, ρ(∆j + α, ui; ϑ); ϑ) = α. (47)

Note that in the case where ϑ = θ and ρ = r as in (3) we obtain that ∆H = ∆L = ∆ as in (13).

Thus, the analysis in the main portion of the paper remains essentially unchanged except

for the fact that the bid difference ∆i required for winning (as a result of the intermediary’s

consideration of surplus when determining the winning bidder) as perceived by firm i ∈ {L, H}

becomes firm-specific. We now show that ∆i is nonnegative, which implies that all the results

in the main paper remain qualitatively unchanged. Indeed, for ϑ = 0 relation (47), combined

with the definition of β as the inverse of the ranking function ρ with respect to bids, becomes

ρ(α, ui; 0) = ρ(∆i + α, uj; 0),

so that necessarily ∆i = 0 (given that, by virtue of η(·, ·; 0) = 0, the ranking function ρ

is independent of a firm’s product performance and, by assumption, increasing in its bid).

From (40) and (41) we obtain that β is – all else equal – decreasing in ϑ, for (given any nonzero

product performance) as the relative weight of bids decreases the bid necessary to attain a given

fixed ranking-function value decreases. Using the assumed monotonicity of ρ we therefore find,

by differentiating (47) with respect to ϑ, that

∂∆i

∂ϑ
= −

(

∂β

∂ρ

∂ρ

∂b

)−1(
∂β

∂ϑ

)

−

(

∂ρ

∂b

)−1(
∂ρ

∂ϑ

)

≥ 0,

which thus together with ∆i|ϑ=0 = 0 implies that ∆i is nonnegative for any ϑ ∈ [0, 1].
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