
Chapter 4 Frequency Estimation 

4.1 Historical overview of frequency measurement 

Power system frequency measurement has been in use since the advent of 
alternating current generators and systems. The speed of rotation of gen-
erator rotors is directly related to the frequency of the voltages they gener-
ate. The Watt-type fly-ball governor of steam turbines (Figure 4.1) is es-
sentially a frequency measuring device which is used in a feedback control 
system to keep the machine speed within a limited range around the nomi-
nal value. However, this measurement is available only at the generating 
stations, and there is need for measuring frequency of power system at 
network buses away from the generating stations. 
 

 
Fig. 4.1 Mechanical speed sensing used in a Watt-type speed governor of a steam 
turbine. 

     The earliest frequency measurement for power frequency voltages was 
performed by mechanical devices which employed mechanical resonators 
(similar to tuning forks) tuned to a range of frequencies around the nomi-
nal power frequency [1]. Such a frequency meter of mid-1950s vintage is 
shown in Figure 4.2 a. Another frequency measuring instrument of about 
the same period is a resonance-type device, whereby tuned resonant cir-
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cuits at different frequencies are energized by the secondary voltage ob-
tained from a voltage transformer, and the circuit which is in resonance 
provides the frequency measurement (Figure 4.2b) [1]. Typical resolution 
of these meters was of the order of 0.25 Hz. 
 
 

 
 
                    (a)                                                (b) 

Fig. 4.2 (a) A mechanical resonance-type frequency meter. (b) An electrical reso-
nance-type frequency meter. These instruments are for a 50-Hz power system. 

    The next advance in frequency measurement came with the introduction 
of precise time measurement techniques. By measuring the time interval 
between consecutive zero crossings of the voltage waveform the frequency 
of the voltage could be determined. Clearly the accuracy of such a meas-
urement depends upon the precision of time measurement, as well as on 
the accuracy with which the zero crossing of the waveform could be de-
termined. This latter measurement is affected by the presence of noise in 
the measurement, varying harmonic frequencies and levels, and the per-
formance of the zero-crossing detector circuits. 
    Synchronized phasor measurements offer an opportunity for measuring 
power system frequency which eliminates many of these error sources. It 
should be noted that the frequency measurement on a power system is 
primarily dedicated to estimating rotor speed(s) of connected generators. 
As such, the positive-sequence voltage measurement is an ideal vehicle for 
frequency measurement. In addition, phasors reflect the fundamental fre-
quency components of the voltages, and harmonics do not affect frequency 
measurement based upon phasors. Techniques for measuring frequency 
from phasors are described in the following sections. 
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4.2 Frequency estimates from balanced three-phase 
inputs 

Frequency and rate of change of frequency can be estimated from the 
phase angles of phasor estimates [2]. It was pointed out in Chapter 3 that 
positive-sequence phasor estimated from balanced inputs at off-nominal 
frequencies has a minor attenuation in phasor magnitude, and both the 
magnitude and phase angle estimates are free from a ripple of approximate 
second harmonic. Setting the negative-sequence component of the input  
X2 = 0 in Eq. (3.22) the estimate of the positive-sequence voltage is given 
by 
 

                                      tjr
r PXX Δ−=′ )(

11
0ωωε . (4.1) 

 
The magnitude of P is the attenuation factor, and phase angle of P is a 
constant offset in the measured phase angles. The angle of the phasor X′r1 
advances at each sample time by (ω − ω0)Δt, where ω is the signal fre-
quency, ω0 is the nominal system frequency, and Δt is the sampling inter-
val. 

It should be clear from Eq. (4.1) that the first and second derivatives of 
phase angle of the phasor estimate would provide an estimate of Δω = 
(ω − ω0), and the rate of change of frequency. Since there are errors of es-
timation in phasor calculation, it is desirable to use a weighted least-
squares approach over a reasonable data window for calculating the de-
rivatives of the phase angle. 

Assume that the positive-sequence phasors are estimated over one pe-
riod of the nominal frequency, and that the phasors calculated with several 
consecutive data windows over a span of 3–6 cycles are used for frequency 
and rate of change of frequency estimation. 

Let [φk] {k =0,1,…,N – 1} be the vector of “N” samples of the phase 
angles of the positive-sequence measurement. The vector [φk] is assumed 
to be monotonically changing over the window of “N” samples. As the 
phase angles of the phasor estimate may be restricted to a range of 0–2π, it 
may be necessary to adjust the angles to make them monotonic over the 
entire spanning period by correcting any offsets of 2π radians which may 
exist. This is illustrated in Figure 4.3. 

If the frequency deviation from the nominal value, and the rate of 
change of frequency at t = 0 are Δω  and ω′, respectively, the frequency at 
any time “t” is given by 

                              ω(t) = (ω0 + Δω + tω′). (4.2) 
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Fig. 4.3 (a) Phasor estimates produce angles which are restricted to a range of 0–
2π. (b) For estimating frequency and rate of change of frequency, the offset of 2π 
in the phase angle estimates are removed. 

The phase angle is the integral of the frequency: 

   ωωωφωωωωφ ′+Δ++=′+Δ+== ∫∫ 2
000 2

1
)()( tttdtttdtt ,     (4.3) 

φ0 being the initial value of the angle. Assuming that the recursive algo-
rithm is used for estimating the phasors, the term tω0 is suppressed from 
the estimated phase angles (see Section 2.2.2). Thus, the phase angle as a 
function of time becomes 

                           .
2

1
)( 2

0 ωωφφ ′+Δ+= ttt                    (4.4) 

If  φ(t) is assumed to be a second degree polynomial of time: 

                          φ(t) = a0 + a1t + a2t
2 (4.5) 

it follows that at t = 0, 

                                   Δω = a1, 
                                   ω′ = 2a2,                                              (4.6) 

or, in terms of Hz and Hz s–1, 

                           Δf0 = a1/(2π) and f′ = a2/(π).                   (4.7) 

The vector of “N” angle measurements is given by 
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In matrix notation 

                                     [φ]=[B][A], (4.9) 

where [B] is the coefficient matrix in Eq. (4.8). The unknown vector [A] is 
calculated by the weighted least-squares (WLS) technique: 

                        [A] = [BTB]–1BT [φ] = [G] [φ], (4.10) 

where 

                                     [G] = [BTB]–1BT (4.11) 

The matrix [G] is pre-calculated and stored for use in real time. It has 
“N” rows and three columns. In real time, [G] is multiplied by [φ] to obtain 
the vector [A], and from that the frequency and rate of change of fre-
quency at any time t (which is a multiple of Δt) can be calculated. This 
time is usually associated with the time tag for which the measurement is 
posted. 
 
Example 4.1 
Numerical example of frequency and rate of change of frequency estima-
tion. 

Consider an input with a frequency of 60.5 Hz and a rate of change of 
frequency of 1 Hz s–1. The polynomial for phase angles is given by 
                        φ(t) = φ0 + 2π×0.5×t + (1/2)t2×1×2π. 
 

The initial angle φ0 is assumed to be 0.1 radian. Assuming that the 
phasors are calculated at a sampling rate of 24 samples per cycle of the 
nominal power system frequency, the time step is Δt = (1/1440) second. 
Phase angles over a span of four cycles are tabulated below with and with-
out a Gaussian random noise with zero mean and a standard deviation of 
0.01 radian (Table 4.1).
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Table 4.1 Partial list of 96 phase angle samples with and without noise 

Sample 
no. 

Phase angles without 
noise 

Phase angles with 
noise 

1 0.1000 0.1007 
2 0.1022 0.1017 
3 0.1044 0.1062 
4 0.1066 0.1077 
5 0.1088 0.1075 
6 0.1109 0.1103 
… … … 
88 0.3013 0.3015 
89 0.3037 0.3033 
90 0.3062 0.3056 
91 0.3086 0.3087 
92 0.3111 0.3123 
93 0.3135 0.3110 
94 0.3160 0.3166 
95 0.3185 0.3175 
96 0.3209 0.3219 

 

The estimated frequency and rate of change of frequency using the 
weighted least-squares formulation is found to be Δf = 0.5000 Hz and f′(0) 
= 1.0000 Hz s–1 with no noise in the phase angle measurement, and Δf = 
0.4968 Hz and f ′(0) = 1.0550 Hz s–1 with the noise. 

The estimates of Δf and f ′for different amounts of random noise in phase 
angle measurements are shown in Table 4.2. 

Table 4.2 Effect of random noise on frequency and rate of change of frequency 
estimation 

σ of ran-
dom noise 
(radians) 

Mean of 
frequency 
estimate 

(Hz) 

σ of fre-
quency 

esti-
mate(Hz) 

Mean of rate 
of change of 
frequency es-
timate(Hz s–1) 

σ of rate of 
change of 
frequency 
estimate 

(Hz) 
0.0001 0.5000 0.0003 1.0000 0.0096 
0.0005 0.5001 0.0017 0.9979 0.0498 
0.0010 0.5000 0.0033 0.9986 0.0982 
0.0050 0.5000 0.0167 1.0038 0.4888 
0.0100 0.4998 0.0331 1.0033 0.9660 

 

The results in Table 4.2 are for 1000 Monte Carlo trials with the specified 
standard deviation of the noise. It is clear that the rate of change of fre-
quency is more sensitive to the amount of noise in the input. Also, the es-
timates are essentially zero-mean processes. 
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4.3 Frequency estimates from unbalanced inputs 

The effect of unbalance in input signals has been analyzed in Section 3.5. 
Equation (3.22) provides the formula for the estimate of the positive-
sequence component when there is a negative-sequence component present 
in the input signal: 
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where Q is given by Eq. (3.11), and X2 is the negative-sequence compo-
nent in the input signals. The effect of the second term of Eq. (4.12) is to 
produce a ripple in the angle estimate of the positive-sequence component. 
This ripple can be eliminated by one of the filtering techniques described 
in Section 3.3. When the ripple in angle is eliminated, the frequency and 
rate of change of frequency can be estimated as in Section 4.2. The error 
performance of the estimates is then identical to that corresponding to bal-
anced input signals. 

4.4 Nonlinear frequency estimators 

It is possible to formulate the frequency and rate of change of frequency 
estimation problem as a nonlinear estimation problem from the input sig-
nal waveform [3, 4]. Consider a single-phase input having a frequency de-
viation of Δω and a rate of change of frequency ω′ (as in Eq. 4.4): 
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“N” samples of this signal at a sampling interval of Δt are {xk, k = 0,1,…,N 
– 1}. It is assumed that there are four unknowns in the data samples: 
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The function x(t) is a nonlinear function of the four unknowns, and if “N” 
is greater than four, a nonlinear weighted least-squares iterative technique 
can be used to solve for the four unknowns. 
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Assuming reasonable initial values of the four unknowns as [z0], the ini-
tial estimates of the function x(t) are [x0]. Using first-order terms of Tay-
lor’s series to represent the nonlinear function around [z0] 
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where the partial derivatives are columns of “N” rows evaluated at the as-
sumed value of the unknown vector [z0]. Representing the matrix of partial 
derivatives by the Jacobian matrix [J], the weighted least-squares solution 
for [Δz] is 
 

                                           [Δz] = [JTJ]–1JT [x – x0]. (4.16) 
 

The four partial derivatives in Eq. (4.15) are obtained by differentiating the 
expression for x(t): 
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Having calculated the corrections [Δz] in Eq. (4.16), they are added to [z0] 
to produce the answer at the end of first iteration. The process is repeated 
until the residual [x – x0] becomes smaller than a suitable tolerance. 
 
Example 4.2 Numerical example of nonlinear frequency and rate of change 
of frequency estimation. 
    Consider a single-phase input with an amplitude of 1.1, a frequency 60.5 
Hz at t = 0, a rate of change of frequency of 1 Hz s–1, and a phase angle φ0 
of π/8. The initial values for starting the iteration are assumed to be 
 
                                                   X = 1.0, 
                                                   φ0 = 0, 
                                                 Δω = 0, 
                                                   ω′ = 0. 



4.4 Nonlinear frequency estimators      89 

The sampling rate is assumed to be 1440 Hz, and 96 samples of the in-
put signal are used to estimate the signal parameters. 

Table 4.3 lists first 10 values of the input signal, the estimated signal 
with the vector [z0], and the first 10 entries of the Jacobian matrix. 

Table 4.3 First 10 values of [x], [x0], and [J] at the beginning of the iteration 

 [x] [x0] [J1] [J2] [J3] [J4] × 104 

1 1.0163 1.0000 1.0000 0 0 0 
2 0.8712 0.9659 0.9659 –0.2588 –0.0002 –0.0006 
3 0.6658 0.8660 0.8660 –0.5000 –0.0007 –0.0048 
4 0.4143 0.7071 0.7071 –0.7071 –0.0015 –0.0153 
5 0.1340 0.5000 0.5000 –0.8660 –0.0024 –0.0334 
6 –0.1555 0.2588 0.2588 –0.9659 –0.0034 –0.0582 
7 –0.4343 0.0000 0.0000 –1.0000 –0.0042 –0.0868 
8 –0.6830 –0.2588 –0.2588 –0.9659 –0.0047 –0.1141 
9 –0.8843 –0.5000 –0.5000 –0.8660 –0.0048 –0.1336 

10 –1.0244 –0.7071 –0.7071 –0.7071 –0.0044 –0.1381 
 
The corrections vector at the end of first iteration are 
 

     Δ(X)   =    –0.0365,  
     Δ(φ0)   =     0.4072, 
     Δ(Δω) =     4.2767, 
     Δ(ω′)   =   –32.2073. 

 
At the end of four iterations correct values for the unknowns are obtained. 
 

    It is necessary to consider the effect of noise in the sampled data on the 
performance of the nonlinear frequency estimator. Zero-mean normally 
distributed random noise was added to the sampled data of the above ex-
ample, and the effect on the results obtained after five iterations evaluated. 
Thousand Monte Carlo trials produce the result shown in Table 4.4. It can 
be seen that the mean of the parameter estimation is very close to the true 
value, although the standard deviation of the estimation increases very rap-
idly as the size of the noise added increases. The rate of change of fre-
quency is practically unusable when the noise exceeds 1% of the signal 
peak value. The amplitude and phase angle estimates are quite good even 
for very large sample errors. 
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Table 4.4 Effect of sample noise on estimation of signal parameters 

σ 
sam-
ple 

noise 

Mean 
X 

Mean 
φ0 

Mean 
Δω 

Mean 
ω′ 

σX σφ0 σΔω σω′ 

0.0 1.1000 0.3927 0.5000 1.0000 0 0 0 0 
0.01 1.1000 0.3929 0.4982 1.0511 0.0014 0.0037 0.0430 1.3061 
0.02 1.1000 0.3924 0.5011 0.9927 0.0028 0.0076 0.0878 2.6582 
0.03 1.1001 0.3923 0.5028 0.8986 0.0043 0.0112 0.1323 4.0170 
0.04 1.1001 0.3926 0.4992 1.0135 0.0056 0.0144 0.1620 4.9061 
0.05 1.1001 0.3928 0.5045 0.8704 0.0072 0.0187 0.2153 6.4638 
0.06 1.1007 0.3930 0.5068 0.7559 0.0086 0.0223 0.2543 7.7155 
0.07 1.1004 0.3930 0.5028 0.8911 0.0099 0.0269 0.3029 9.0593 
0.08 1.1010 0.3910 0.5185 0.4604 0.0119 0.0293 0.3424 10.4239 
0.09 1.1003 0.3942 0.4814 1.6546 0.0129 0.0337 0.3877 11.7737 
0.10 1.1006 0.3943 0.4957 1.0495 0.0143 0.0376 0.4451 13.5048 

The signals are the same as for Example 4.1. 

4.5 Other Techniques for frequency measurements 

A number of other techniques for measuring power system frequency have 
been published in the technical literature [5, 6, 7, 8]. These references are 
provided for the interested reader as a sample of what is available, and is 
by no means a complete listing of papers dealing with frequency meas-
urement. In general, the faster approaches (measurements made within one 
or two periods of the power frequency signal) tend to have greater errors 
than those using longer data windows. It is better to keep in mind that a 
traditional use of frequency measurement is in under-frequency load-
shedding. Relays used for that purpose tend to have operating times of the 
order of 5–6 cycles of the nominal power frequency. This is probably a 
good size for a data window to be used in frequency estimation. 
    One should not have excessively long data windows for frequency esti-
mation in order to improve the accuracy of the estimate. During transient 
stability swings, the frequency of the power system may change rapidly. 
Thus, a long window may include significantly different frequencies over 
the window span, and once again the frequency estimation may be in error. 
We will consider the effect of changing frequency due to transients in 
Chapter 6. 
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