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Figure 1.  Block diagram of PMSM controlled system using 
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Abstract—A new sensorless method of estimating the 
Permanent Magnet Synchronous Motor speed is presented. 
The method is based on sliding mode observer theory using 
Lyapunov stability criteria. The observation algorithm 
makes x use x of x the x machine x model x equations x allowing x the 
estimation of flux/current, stator resistance, rotor angle and 
rotor speed from the motor terminal measurement of 
currents and voltages. Speed/position observer is based on a 
modified back EMF state observer, which is considered in 
cascade with stator flux/current and resistance observers. 
The presented application has been implemented using an 
estimated γ-δ reference frame instead of α-β stationary 
reference frame. It is shown that the overall observation 
system gives exceptional estimation results at high and low 
speed ranges, without initial rotor angle knowledge.  
Simulation results of Permanent Magnet Synchronous 
Motor sensorless speed estimation are also presented. 

Index Terms— permanent magnet synchronous motor 
(PMSM), Lyapunov function candidate, sliding mode 
observer (SMO), modified back EMF. 
 
Notations 
Eγ = γ-axis modified back EMF  
Eδ = δ- axis modified back EMF 
θ =  angular position  
iγ = γ-axis current  
iδ = δ-axis current 
di = d-axis current 
qi = q-axis current 

dL = d-axis inductance 
qL = q-axis inductance  
γλ =  γ-axis magnetic flux  
δλ =  δ-axis magnetic flux  
dλ = d-axis magnetic flux  
qλ = q-axis magnetic flux 
mλ = permanent magnet flux 
mγλ = γ-axis partial flux 
mδλ = δ-axis partial flux  

sr = stator resistance 
uδ =  δ-axis voltage 
uγ = γ-axis voltage 

du = d-axis voltage 
qu = q-axis voltage 

ω = angular speed 

I. INTRODUCTION 
In the sensorless control of a PMSM drive two main 

strategies are applied, the fundamental excitation method 
and the saliency and signal injection method [9], [14]. The 
fundamental excitation method estimates the rotor 
position and speed from the stator voltages and currents 
and it does not need any additional test signal. At the same 
time, it is hard to estimate position at the low-speed 
region. In the saliency and signal injection method, the 
inductance varies depending on the rotor position. This 
feature of the salient-pole PMSM is used to estimate rotor 
position even at low speeds and standstill. Some 
fundamental excitation method approaches are based on 
the estimation of the back electromotive force (EMF) or 
flux linkage due to permanent magnets by means of a state 
observer or an extended Kalman filter [12]. Also other 
simple methods are based on the voltage or current error 
between the detected variables and the calculated 
variables from the motor model using state observer 
techniques. Among different observation methods used, 
the sliding mode observer (SMO) is a promising approach 
and an effective technique due to its outstanding 
robustness properties against system parameter 
uncertainties and external disturbances [4]-[7]. The 
sensorless strategy proposed in this study is based on 
sliding modes using the fundamental excitation method 
with a modified back EMF. A mathematical model of 
PMSM in an estimated γ-δ rotating reference frame is 
considered to estimate both rotor speed and position. Fig. 
1 shows the entire controlled system in block diagram.  
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Figure 2.  The stationary α-β, the synchronous rotating d-q and the

estimated γ-δ reference frames. 

II. SLIDING MODE OBSERVER 

A. Flux/Current Observer of PMSM  
In sensorless position/speed control, the rotor position 

cannot be detected, and therefore d-q axis mathematical 
model cannot be applied directly. Most approaches are 
based on the estimation of the back electromotive force 
(EMF) in the stationary reference frame α-β. The 
proposed PMSM mathematical model of sliding mode 
observer is reflected in an estimated reference frame γ-δ 
rotating at an estimated angular velocity ω̂  and lagging 
behind the d-q reference frame by electrical angle error 
θ . Fig. 2 shows the relations between the synchronous 
reference model (dq-axis) and the estimated reference 
model (γδ-axis) used in this study. The mathematical 
model of PMSM in dq-axis synchronous rotating 
reference frame is presented by the following flux/current 
state equations.  

 

d s d d qr i uλ ω λ⋅= − + + ⋅     (1) 

q s q q dr i uλ ω λ= − + − ⋅i      (2) 

d d d mL iλ λ⋅= +           (3) 

q q qL iλ ⋅=       (4) 

The conventional d-q axis model can be transformed to 
γ-δ axis as follows (see Appendix A). 

( )sr i uγ γ γ δλ ω θ λ= − + + −            (5) 

( )sr i uδ δ δ γλ ω θ λ= − + − −      (6) 

d mL iγ γ γλ λ⋅= +      (7) 

q mL iδ δ δλ λ⋅= +                                 (8) 

The partial fluxes mγλ  and mδλ  are functions of mλ , 
θ  and 2L , where ( )2 / 2q dL L L= − . In the proposed 
sensorless scheme, this property of the partial fluxes is 
utilized to extract information of rotor speed and position 
error. 

The flux/current state observer is expressed by the 
following equations using as sliding surfaces 

( )ˆd ds L i i L iγ γ γ γ= − =  and ( )ˆq qs L i i L iδ δ δ δ= − = .  

( ) ( )ˆ ˆˆ sgns dr i u K L iγ γ γ δ γ γλ ω θ λ= − + + − +       (9) 

( ) ( )ˆ ˆˆ sgns qr i u K L iδ δ δ γ δ δλ ω θ λ= − + − − +     (10) 

ˆ ˆˆd mL iγ γλ λ⋅= +                                                         (11) 

ˆ ˆqL iδ δλ ⋅=                   (12) 
 
 

Here K γ , K δ  are adaptable positive gains. Using an 
appropriate Lyapunov function candidate irsV determined 
by 

( ) ( )2 2 21
2irs d q sV L i L i rγ δ⎡ ⎤= + +⎣ ⎦                (13) 

and analyzing the flux/current error dynamics, the 
irsV derivative is expressed by  

irsV ( )1
s s r d q

r
r r i L i i L iγ γ δ δγ

γ
⎡ ⎤= − +⎣ ⎦  

( )m d m d dL i L i K L iγ γ δ γ γ γλ ω θ λ− + − −  

( )m q m q qL i L i K L iδ δ γ δ δ δλ ω θ λ− − − −   

         (14) 
Here 0rγ >  represents the stator resistance observer 

gain. 
The system is asymptotically stable, if the following 

conditions are valid. 
 

 ( )s r d qr i L i i L iγ γ δ δγ= +                              (15) 

( )m mK γ γ δλ ω θ λ> − + − ⋅                 (16) 

( )m mKδ δ γλ ω θ λ> − − − ⋅                   (17) 

Therefore the global current error convergence to the 
origin of the current observer is succeeded, that is 

( ), 0i iγ γ =  and ( ), 0i iδ δ =  for nt t≥ ( nt = time required 

to reach the sliding surface).  
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Figure 3.  Block diagram of the entire sliding mode observer, in 

detailed form. 

B. Stator Resistance Observer 
The stator resistance observer is based on the condition 

expressed by Eq. (15). This is the adaptation law of stator 
resistance error leading to 0sr = , 0sr = and therefore the 
estimated stator resistance dynamics could be expressed 
by 

( )ŝ r d qr i L i i L iγ γ δ δγ= − +                 (18) 
The stator resistance observer is embedded in the 

flux/current observer and efficiently improves the 
flux/current estimation.  

 

C. Modified Back EMF, Rotor Angle and Speed 
Observer 

When sliding mode occurs in the flux/current and stator 
resistance observers, the error dynamics of the resulting 
system is expressed by means of partial fluxes. 

( ) ( )sgn 0m m eqK iγ δ γ γλ ω θ λ− + − − =           (19) 

( ) ( )sgn 0m m eqK iδ γ δ δλ ω θ λ− − − − =           (20) 

The last terms of the left-hand side of both equations 
represent the modified back EMF observer errors in γ-δ   
reference frame. These expressions are rearranged in such 
a way that the first right-hand terms are errors. 

 

( )ˆ sgn eqE E E K iγ γ γ γ γ= − = −                (21) 

( )ˆ sgn eqE E E K iδ δ δ δ δ= − = −                (22) 

 
Here sinmEγ ωλ θ= −  and cosmEδ ωλ θ= .  

By defining  

( ) 1Ê E c Eγ δ γω θ= − +    (23) 

( ) 2Ê E c Eδ γ δω θ= − − +    (24) 

and using the Lyapunov function candidate EV ω  
determined by 

2 2 21
2

1
EV E Eω γ δ

ω
ω

γ
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

      (25) 

then 

( )2 2
1 2

1 ˆ ˆEV c E E E E E c Eω γ ω δ γ γ δ δ
ω
ω ω γ

γ
⎡ ⎤= − + − − −⎣ ⎦

                   (26) 
Here, 1c , 2c  and 0ωγ >  are the modified back EMF and 
speed observer gains. 

In order EV ω  to be negative, the following speed 
adaptation law is assumed to be valid. 

( )ˆ ˆE E E Eω δ γ γ δω γ= −                  (27) 

The above leads to the estimated speed dynamics 
expressed by 

 

( )ˆ ˆˆ E E E Eω δ γ γ δω γ= − −                 (28) 

From the previous analysis results that the rotor angle 
error could be calculated by  

1 1
ˆ

tan tan ˆ
E E
E E

γ γ

δ δ
θ − − ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
                (29) 

 
If rotor angle error is known and by considering 

ˆ ˆ sgnKθθ ω θ= + , the error dynamics for θ  is 
expressed as follows. 

sgnKθθ ω θ= −                 (30) 

The angle error converges to zero for Kθ ω> . 

From (30) it is obvious that the term ( )ω θ−  used in the 

flux/error sliding mode observer is given by 

 ( ) ˆ sgnKθω θ ω θ− = +                 (31) 

The above sliding mode observer analysis ensures the 
observer stability and the considerably fast tracking 
convergence. Fig. 3 shows that the modified back EMF 
observer is in cascade with the flux/current observer 
using as inputs the stator current errors.  

III. SIMULATION RESULTS 
The presented method was tested and verified using 

Matlab/Simulink facility on a PMSM voltage model. 
Simulation results are presented first without external 
torque disturbance. Afterwards it is considered that an 
external torque disturbance (1.0 p.u.) is applied at time 

1t =1.5s and it is removed at time 2t =2.5s. Fig. 5 (b) 
shows the estimated (ω̂ ) and real (ω ) speed responses of   
PMSM with external disturbance applied. In the 
simulation, it is assumed that the stator resistance changes 
between 0.8 and 1.5 of the nominal value. It is found that 
the estimated stator resistance ŝr  follows any variation of 
the real stator resistance sr . This permits the overall 
observer to work at high and low speed as well, even close 
to zero. 
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(a) 

 
(b) 

Figure 4.  γ-axis stator current error response for step change of 
speed reference 0-0.04pu with initial position error π/12 and (b) δ-
axis stator current error response for step change of speed reference

0-0.04pu with initial position error π/12 

 
(a) 

 (b) 

Figure 5.  Speed responses for step change of speed reference with 
initial position error π/12 (a) 0-0.04pu and (b) 0-0.14pu  

 (a) 

 
(b) 

Figure 6.  Position tracking experiments for step change of speed 
reference with initial position error π/12(a) 0-0.04pu and (b) 0-

0.14pu 

 
Figure 7.  Stator resistance-tracking response for step change of 

resistance 1.0-1.5pu with initial position error π/12 and speed 
reference 0.04pu 

 

Figure 8.  Position error-tracking response for step change of 
speed reference 0-0.04pu with initial position error π/12 
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Figure 9.  The relations between several reference frames used in 

PMSM Mathematical model analysis 

 
 

 

IV. CONCLUSIONS 
A new method is developed for speed estimation of a 

PMSM, witch uses sliding mode observer and gives an 
effective approach of rotor speed at high, low and almost 
zero speed. Moreover the developed sliding mode 
observer can effectively estimate the stator resistance 
variation, due to temperature change. The proposed 
scheme is based on the measured stator currents and 
voltages. Simulation results demonstrate the efficiency 
and the robustness of this sliding mode estimation method. 

 

V. APPENDIX A 
The sensorless approach considered in this study, is 

based on the property of d-q reference frame being 
transformed to an estimated γ-δ reference frame using the 
angle error θ .  This is the angle difference between real 
and estimated reference frames and denoted as ˆθ θ θ= − .  
The transformation is described schematically in Fig. 9, 
where the vector sλ  represents the stator flux analyzed to 
its components in d-q and γ-δ reference frames. As it can 
be seen, these reference frames are rotating at different 
angular speeds ω (synchronous speed) and ω̂ (estimated 
speed). 

The flux/current mathematical model of PMSM in d-q 
synchronous rotating frame is given by the system (A.1) 
and (A.2) in matrix form. 

 

0
1

d s q d d
dq m

d s q qq

r L i u
L r i u

λ ω
λ ωλ

ωλ

⎡ ⎤ − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
          (A.1) 

0 1
0 0

d d d
dq m

q q q

L i
L i

λ
λ λ

λ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

             (A.2)

     
 

 

 
It is obvious from Fig. 9, that  
  

( )cos sin

sin cos

d q d

qd q
T

γ
γδ

δ

λ λ θ λ θ λ
λ θ

λ λλ θ λ θ

⎡ ⎤−⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦

  

     (A.3) 
and 

( ) d

q
J T

γ γ
γδ

δδ

λ λ λ
λ θ θ

λλ λ

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

             (A.4) 

 
Since 

( ) ( )0 1 cos sin
1 0 sin cos

T JT
θ θ

θ θ θ θ
θ θ

− ⎡ ⎤−⎡ ⎤
= =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

Here ( )T θ is the transformation matrix, used to 
transform any vector from d-q to γ-δ reference frame and 
it is defined by 

cos sin
( )

sin cos
T

θ θ
θ

θ θ
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

  

and 
0 1
1 0

J
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                

Equation (A.4) could be rewritten in the following 
form.  

 

( ) ( )d d

qq
T JT

γ

δ

λ λ λ
θ θ θ

λλ λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
             (A.5) 

 

TABLE  I 
PARAMETERS OF  PERMANENT  MAGNET  SYNCHRONOUS  MACHINE 

Symbol Quantity Expressed in SI 

mλ  Permanent Magnent Flux 0.213 Wb 

l lV −  Voltage line to line 415 V 

P  Electric Power 2.2 kW 
sr  Stator Resistance 3.01 Ω 

dL  D-axis Inductance 0.060 H 

qL  Q-axis Inductance 0.340 H 

J Moment of Inertia 0.089 Kgs 

p Magnetic Pole Pairs 2 

ωn Mechanical Angular Speed 3600 rpm 
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Multiplying (A.1) by ( )T θ  the following relation is 
evident. 
 

( ) ( ) ( ) ( )d d d d
s

q q qq

i u
T r T T JT

i u
λ λ

θ θ θ ω θ
λλ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
       (A.6) 

  
The right-hand side parts of equations (A.5) and (A.6) 

are equals. Therefore by solving with respect to γδλ , a 
similar to equation (5.1) results. 

 

γ

δ

λ

λ

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
 ( ) d

s
q

i
r T

i
θ

⎡ ⎤
− ⎢ ⎥

⎣ ⎦
( ) d

q
JT

λ
θ θ

λ
⎡ ⎤

− ⎢ ⎥
⎣ ⎦

  

  ( ) ( )d d

q q

u
T JT

u
λ

θ ω θ
λ

⎡ ⎤ ⎡ ⎤
+ −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
         (A.7)

       
Equations (A.1) and (A.7) can be rewritten in a more 

convenient form as follows. 

dq s dq dq dqr i u Jλ ω λ= − + −                     (A.8) 

( )sr i u Jγδ γδ γδ γδλ ω θ λ= − + − −              (A.9) 

Here 
 

d
dq

q

u
u

u
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
d

dq
q

i
i

i
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
u

u
u
γ

γδ
δ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and 
i

i
i
γ

γδ
δ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
Equations (A.8) and (A.9) represent the flux/current 

mathematical model of PMSM in γ-δ reference frame. 

It must be noted   that ( )ω θ− is used instead of ω  and 
the real and estimated reference frames coincide when 

0θ =  and 0θ = .   
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