Modelling and Specification of Compliant Motions with Two and Three Contact Points

Herman Bruyninckx, Joris De Schutter
Katholieke Universiteit Leuven
Department of Mechanical Engineering, Diviston PMA
Celestijnenlaan 300B, B-3001 Leuven, Belgium

Abstract

This paper describes the modelling and motion specification of compliant motion tasks with two or three contact points. These tasks cannot be done witt Mason's classical "task frame" (TF) or "contliance frame" approach. Hence, a more flexible and versatile motion constraint model is introduced, that maintains nost of the intuitiveness of the TF approach.

1 Introduction

The literature on force controfled complian motion most often uses (implicitly or explicitly) Mason's "Task Frane" (TF) approach, [5], to model the contact sitwation of the task, lo specify the desired motion withim this contact model, and to control the task exccution. This approach is limited to tasks in which one single orthogonal referance frame suffices to urodel force-controlled and velocity. controlled directions of the motion constraint. (See [1] for more details.) Previous publications by the anthors (e.g. 131) have presented extensions to the TF approach that al low to tackle tasks that could not previously be executed successfully. Thesc extensions ase the concept of "virtual contact manipulators" to model the instantaneous motion freedom of the manipulated object: each contict is modclled by a kinematic chain that gives the manipulated object the same local motion freedom as the contact; if the notal motion consmain consists of several contacts that act simultancously on the manipulated object, this total mo" tion constraini is hence modelled by a parallel manipulator. The kinetosiatic properties of this parallel manipulator determine the foree controlled and velocity-controlled spaces at each instant. In the rest of the paper, these spaces will be called wench space and twist space, tespectively.

The advantage of this modelling approach is that it is completely general and independent of any coordinate rep. resentation. The resulting models, however, could lack
the intuitiveness of the TF approach. Therefore, this paper gives ad hoe contact models for two frequently occurring contact situations (having two, tespectively three. vertex-warface contacts between manipulated object and emvironment), in whicl the romaining degrees of freedom are defined in very intuitive and coordinate independent ways. Coordinate expressions, however, are also given, such that implementation on a force controlled robot system is straightforward. Scction 2 describes the two point contact situation, and Section 3 the three-point contact situation.

The contact models in this paper are basic to the motion specification and force conmol of every task that involves more than one single contact: instantuneously every conhect is approximated by the position of the contact point and the direstion of the contace normal, and this is exactly the situation where the presented models are valid. Moreover, velocity-based on line identification of these contact parameters [1) (i.e. the errors in the current estimates of the contact poin position and contact normal direction) can be done for each contaci separarely. Hence, these ad hoc models are very practical in two ways: (i) they allow to model and specify contact situations that the classical Task Frame formalism cannot cope with, and (ii) they simplify (withou loss of functionality!) the general "virtual contact manipnlator" approach in these particular cases.

2 Two-point contact

In this task. Fig. 1 , the robot tool is in contact wilh two smoothly curved surfaces, which intersect each other in a "seam." Each contach is of the rertex-stuface type, with five velocity-controlled and one force-controlled direction. Hence, the two contacts together reduce the dimension of the motion freedom space to four. Examples of such a task are: tracking pipes in chemical, nuclear or undersea phans (in this case, the "seam" exists in the model only): following a surface with a heayy tool that needs bracing on a support surface [6]; gudance of a welding torh or a gheing
toot aloug a seam between two workpieces that have to be connected, etc.

Figure : Seam following with wo contact poins.

2.1 Geometric parameters

The symbols \{里\} and $\{2\}$ denote the wo contact points, as well as their associated contact frames, Fig. 2. The seam axis is the intersection of the two tangent planes at $\{t\}$ and 12). A parallel plare is each plane through a contact normal and parallel to the seam axis. A pemendicular plane is any plane perpenticular to the sean axis. The seam angle σ is the (frec space) angle between the tangent planes. The contact points fie at distances d^{7} and $d^{\prime \prime}$, fexpectively, from the seam axis.

All these parameters can be calcolated if the unit notmal vectors e^{2} and e^{2} are known, as well as the vector p linking the two contact points. Expressed with respect to the reference frame [t] of Figg 3 this gives:

$$
e^{2} \underline{\ldots}\left[\begin{array}{c}
0 \tag{1}\\
0 \\
1
\end{array}\right], e^{2}=\left[\begin{array}{l}
e_{x} \\
e_{y} \\
e_{z}
\end{array}\right], p=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]
$$

Then, the xearn angle σ, the direction of the seam axis e^{x+6}, the position vectors p_{d}^{t} and p_{d}^{2} of the points on the sean axis closest to $\{1\}$ and $\{2\}$, as well as the distances d^{1} and d^{2} from the contact points to the seam axis, are calalated as follows (the catentations are straightforward but rathes tediens):

1. The seam angle σ :

$$
\sigma=\arcsin \left(e^{1} \cdot e^{2}\right)+\frac{\pi}{2}=\arcsin \left(c_{z}\right)+\frac{\pi}{2}
$$

2. The vector $e^{s a}$ is the nomalized cross product of e^{x} and e^{2};

$$
e^{\pi a}=\frac{e^{2} \times e^{1}}{\left|\boldsymbol{e}^{2} \times e^{1}\right|}=\frac{1}{\sqrt{e_{x}^{2}+e_{y}^{2}}}\left[\begin{array}{c}
e_{y} \\
-e_{x} \\
0
\end{array}\right]
$$

3. p_{d}^{1} is the intersection of the tangent planes at $\{1\}$ and $\{2\}$, and the perpendicular plane through $\{1\}$:

$$
p_{d}^{1}=\frac{e_{x} p_{x}+e_{y} p_{y}+\epsilon_{n} p_{z}}{e_{x}^{2}+e_{y}^{2}}\left[\begin{array}{c}
e_{x} \\
e_{y} \\
0
\end{array}\right] .
$$

Similaty, p_{d}^{2} is the intersection of the tangent planes at $\{1\}$ and $\{2\}$, and the perpendicular plane through $\{2\}:$

$$
p_{d}^{2}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
0
\end{array}\right]+\frac{\epsilon_{z} p_{z}}{e_{x}^{2}+\epsilon_{y}^{2}}\left[\begin{array}{c}
e_{x} \\
e_{y} \\
0
\end{array}\right]
$$

4. The distance d^{1} is the length of p_{i}^{1} :

$$
d^{3}=\frac{\left|e_{x} p_{x}+e_{y} p_{y}+e_{z} p_{z}\right|}{\sqrt{e_{x}^{2}+e_{y}^{2}}}
$$

THe distance d^{2} is the length of $p_{i d}^{2}-p$;

$$
d^{2}=\left|p_{2}\right| \sqrt{\frac{e_{x}^{2}+e_{y}^{2}+e_{z}^{3}}{e_{x}^{2}+e_{y}^{2}}},
$$

Figure 2: Two point contact geometric definitions.
The tool plane is defined as the plane through the two contact points and a third user-defined point p^{t} on the tool.

The tool plane has one coordinate-independent reference position when it lies in a perpendicular plane and d^{l} :o d^{2}. This situation is called the symmetric toot position. The toollooses one or two degrees of freedom if it is parallet to the seam, ie, $d^{2}=d^{2}=0$.

The contact frames at each of the two contact points have their Z axis along the contact normal. The X and Y axes are not uniquely determined geometrically; their direction can be freely chosen in the tangent plane. A contact frame is called parallel if its X axis is parallel to the seam axis, and the Y axis points towards the seam, Fig. 3.

2.2 Twist space basis

Each of the two contacts reduces the tool's motion freedom by one. With respect to the parallel reference frame in $\{1\}$, the bases for the five dimensional twist space (ie., the Jacobian matrices of the virtual manipulators at the two contacts) are:

$$
\begin{gather*}
\boldsymbol{J}^{3}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \tag{2}\\
\boldsymbol{J}^{2}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & -s_{\sigma} & 0 & -c_{\sigma} \\
0 & 0 & -c_{\sigma} & 0 & s_{\sigma} \\
1 & 0 & a & 0 & b \\
0 & -c_{w} & p_{x} \varepsilon_{\sigma} & p_{\sim} & -p_{i z} s_{v} \\
0 & s_{\sigma} & -p_{z} s_{\sigma} & -p_{y} & -p_{x} c_{\sigma}
\end{array}\right] \tag{3}
\end{gather*}
$$

The first three rows represent angular velocity, the last three rows represent translational velocity, c_{θ} and s_{g} are the cosine and sine of the seam angle $\sigma, a=-p_{y} \epsilon_{\sigma}+p_{z} s_{\sigma}$, and $b=p_{v} s_{\sigma}+p_{z} c_{\sigma}$. Column two of J^{2} is used to simnplify the other columns to:

$$
\boldsymbol{J}^{2} \approx\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \tag{4}\\
0 & 0 & \cdots s_{\varepsilon r} & 0 & \cdots c_{\sigma} \\
0 & 0 & -c_{\sigma} & 0 & s_{\sigma} \\
1 & 0 & a & 0 & b \\
0 & -c_{\sigma} & 0 & p_{s}-p_{y} \frac{c_{\sigma}}{s_{\alpha}} & -\frac{n_{x}}{s_{\alpha}} \\
0 & s_{\sigma} & 0 & 0 & 0
\end{array}\right] .
$$

From this, it is clear that a basis for the twist space of the total constraint is found from either J^{1} or J^{2} with the second column removed. We define the total constraint's lacobian matrix I as the matrix found from elementary
columu operations on J^{2} :

$$
\begin{align*}
J & \cong\left[\begin{array}{cccc}
J_{4}^{2} J_{3}^{2}\left(s_{\sigma} J_{b}^{2}-c_{\sigma} J_{3}^{2}-p_{y} J_{1}^{2}\right) & \left.J_{1}^{2}\right] \\
1 & 0 & 0 & 0 \\
0 & -s_{\sigma} & 0 & 0 \\
0 & -c_{\sigma} & 1 & 0 \\
0 & \cdots p_{y} c_{\sigma}+p_{\tau} s_{\sigma} & 0 & 1 \\
p_{x}-p_{y} \frac{c_{\pi}}{s_{\sigma}} & 0 & \cdots p_{x} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{align*}
$$

Figure 3: Two-point contact: Roll, Pitch, Yaw, Slip, and Slide.

These four remaining degrees-of-freedom represent rotations about, and transiations along, geometrically defined lines, Fig. 3:

1. Roll is rotation about the intersection of the parallel planes through $\{1\}$ and $\{2\}$.
2. Pitch is rotation about the intersection of the perpendicular plane in $\{1\}$ and the parallel plane in $\{2\}$.
3. Yaw is the rotation about the intersection of the paral. lel plane in $\left\{\begin{array}{l}\text { t }\end{array}\right.$ and the perpendicular plane in $\{2\}$.
4. Slide is translation in the direction of the seam axis. (It can also be considered as a rotation, i.e., about the in tersection of the perpendicular planes in $\{1\}$ and $\{2\}$ which lies at infinity)

Roll, Pitch and Yaw have (more or less) their onginal matitime interpretation if one looks at the tool as a "ship" trayelling along the seam, Another coordinate-independent degree-of-freedon is the rotation about the line between the two contact points. This motion leaves the contact points unchanged on the environment: hence it is called slip. Slip is a linear combination of Roll, Pitch, Yaw and

Slide:

$$
\begin{aligned}
& J^{t_{i j} s} \quad \underline{m} \quad\left[p^{T} 0^{T}\right]^{T}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(p_{\mathrm{z}} s_{\theta} \cdots p_{s} \mathrm{C}_{4}\right) J^{\text {sidete }} .
\end{aligned}
$$

2.3 Wrench space basis

The basis for the contach simation's wrench space (i.e. the force-controlled directions) is strathtion ward: it consists of unit forces along the contact normals in \{1\} and $\{2\}$. The 6×2 matrix conaining the coordmate expres. sions of these two forces is called the urenoh Jacobian matrix and is denoted by G.

2.4 Comparison to T

The differences between a classical Task Frame model and the Roll-Pich-Yaw Slide/Slip model are:

1. The lines on which the basis twists and wrenches are defined do no: intersect in one point.
2. The bases are time-varying, i.e, the relative positions of the lines clanges during the motion, due to the curvature of the contach surfaces.

The similanties are that:

1. An intuitive, geometric and hence coordinateindepentenntwish and wrench space model exists.
2. Only zem or infinte pitch screws are needed. At least in the grontetric model, since, due to the nomintersecting akes of the geometric model, no coordi" nate representation exists in which the Jacobian matrices J and G also contain only zero or infinite pitch serews.

2.5 Motion specification

The previous faragraplos describe bases allowing to specify unambiguensly the instantaneous twist of the too and the desired ideal wrench on the toel. However, a hos man user might like more intuine ways of specilying the instananenus twist of be desired position. The following paragraphs describe two prossible approaches, a local one and a globat one.

The local specifation approki follows the classical TF innition: each minidual conact gets its own TT, as if it were be only conact occurng on the anmputat forl.

However, the user should not specify more than four independent motions in both TFs together. It is then the controller's job to translate the local specification in an instan taneors twist that does not violate the contact constraints. This translation can, c.g., be done with "projection matri" ces" on the instantaneone twist space basis, [2].

The global approach relies on a model of the remaining four motion degrees of freedom, for example Roll-Pitch-You-Slide as described above. Then, the well-known Jacobian equation, $t=\boldsymbol{J} \boldsymbol{I}$ applies, with J a basis of the twist space, and \dot{q} the magnitudes of the Roll, Pitch, Yaw and Slide basis twists. The advantage is that, by construction, any specified twist will be compatible with the modelled constraint. However, the resulting motion of each individnal contact point might be less intuitive than in the local approach. If the user prefers to specify the desired position of the too, instead of the desired instantaneous twist, he could for example specify desired values for the following four geometrically determined distances: $d_{1}, p_{z}^{t}, p_{x}^{2}$, and the tesired position along the seam. Again, the controller is responsible for transforming these four numbers into a resultant motion that is instantaneously compatible with the contacts.

3 Three-point contact

The general contact situation with three contact points, Fig. 4, has three degrees of motion frecdom. The following paragraphs present an intuitive and coordinate-independent way to model the instantaneons degrees of freedom in this contact situalion.

3.1 Geometric parameters

Instantaneously, the contact situation is determined by the tangent planes at the three contact points. As in the fwo-point contact case, the unt nofmal vector at contact point is denoted by \boldsymbol{e}^{i}. The geometric parameters defined in Sect. 2.1 exist in the three point contact also, for cach couple of contact points; the formulas to calculate these paramelers remain unchanged. The notations, however, are slighty alapred, in order to discrimimate the three possible combinations. For example, d_{13} denotes the distance be. tween contach point I and the sean belween the tangent planes in points 1 and 3 ; e^{13} is the unit vector parallel to this seam.

3.2 Twist space basis

A basis for the three-dimensional twist space can be chosen in many different ways. The folfowing Jacobian

Figure 4: Three point contact.
matrix has three basis twists that are an intuitively appeal. itg extension to a classical Task Frame appoach, Fig. 4:

$$
\begin{equation*}
\boldsymbol{J}=\left[\operatorname{side}_{i, j} \text { Slide }_{i k} \operatorname{Rot}_{i}\right]^{\prime} \tag{6}
\end{equation*}
$$

Slide i_{j} is the translation of paint i aver its own tangent plane in the direction of the seam with point j; similarly for Slide ${ }_{i k} ;$ Rot $_{i}$ is the instantaneous pure rotation that leaves cantact point i motionless, and moves the two other contact points in the ir local tangent planes. The basis in J can he used to specify the three available motion degrees of freedom by considering the motion of the contact point i only. Of conse, all hine hasis motoms must satisfy the instantanedus cousuaimts. The following paragraphs explain how this is achicved:

1. Side ${ }_{i j}$. The seam between the contact points i and j is detemined in exactly the same way as in the case of twa-point contact. Hence, a corresponding "Roll" ax is $l_{i j}$ can be defined. Rotation sbout this axis makes the conact points i and y translate in their local tangent planes and perpendicular to the common seam axis. However, a pure rotation about this "Roll" axis is only possible if (i) the lurd tangent plane (i.e., the tangent plane at point $k, k \notin\{i, j\}$ is perpendicular to the wo langent planes that fetermine this "Roll" axis, or (ii) the third contact point k happens to lie on the "Roll" axis. "Hercfore, in general, a translational velocity v (Tiy. 5) along the "Roll" axis should he added, in order to keep this third contact point k on its local tangent plare. Hence, the pare rotation "Roll" in the twompaint contact case must he replaced by a non-zero pitch screw "Slide i_{j} " in the three point contace case. The translational velocity component of this sorew can be found as follows: $v_{i j, k}$ is the velocity of point k if it were to rotate about the "Rall" axis $l_{i j} ; v_{k}$ is the velocity in the tangen plane through k
that makes the paint k follow the rotation about the "Roll" axis without leaving its instantancous tangent plane; v_{k} is perpendicular to e^{k} (since it lies in the taugent plane) and to $d_{i j, k}$ (i.e., the direction vector through k and perpendicular to the "Roll" axis $l_{i j}$); the wanslational component v of the "Slide $e_{i j}$ " screw is parallel to $l_{i j}$, and proportional to the tamgent of the angle between the vector $v_{i y, k}$, and the unit vector along \boldsymbol{v}_{k}. All these vectors and angles can be calculated with simple vector calculus.

Figure 5: Three poin contact: velocity components due to slide.
2. Rot ${ }_{i}$. Rotation ahou an axis hrough moves the con tact point j in the direction perpendicular to boh $\boldsymbol{p}^{i, j}$ (i.e., the vector from point i to point j, since point i remains notonless) and the normal direction e^{i} (since poin j must mave it its tangent plane). Hence, the axis of Rot i goes throught i and has direction vector $\left(\boldsymbol{p}^{i, j} \times \boldsymbol{e}^{j}\right) \times\left(\boldsymbol{p}^{i, k} \times \boldsymbol{e}^{k}\right)$.

3.3 Wrench space basis

The basis for the contact sttuation's wrencly space is equally straightforward as in the 1 wo point contact case: it consisis of unit forces along the contact nommals in $\{1\}$, $\{2\}$ and $\{3\}$. The wreneb Jacobian marix G is now a 6×3 matrix, containing the coordinate expressions of these three forces.

3.4 Comparison to TF

The differences between a classical Task Frame model and the above described three-point contact model are:

1. The lines on which the basis twists and wrenches ate defined do not intersect in one point.
2. The bases are fime-varying, i.e, the relative positions of the lines change durng the mation, due to the curvature of the comact surfaces.
3. The fwist space canot be spaned anymore by pure transations and/or pure rotations.

3.5 Motion specification

As in the two-point contact case, both local and global motion specificationts are possible.

In the local aproach, (p ant of) the motion of cach contact point individrally is specified as if no constants were acting on the abject. At the user level, the constraints are only taken into accann by the requirement that one should not specify more than three independent velocity set-points. The others get "don't care" values that the robot controller must fill in ill such a way that the resulting mofion is compatible with the comstraints.

In the global approach, the user constructs a compatible instantancous motion by asing, for example, the Jacabian matrix in Eq. (6). Altomatively, he can specify three desifed distances of the contad points 10 some of the seams; for example, the distances af ane of the three confact points to its two neighbonring seams, together with the distance of one of the other contact points to the tangent plane of the first contact point. The controller must again take care of the instantaneons motion interpolation required to reach the specified goal without violating the contact constraints. To this end, he can use the instantaneous twist space basis in Eq. (6).

4 Conclusions

This paper has destribed how classical Task Frame mation constraint modelling and motion specification proce dures are extended fo contact situations with two or three contact points. The rresented approach is completely coordinate independent and requires only the knowledge al the positions of the contact points as well as the contact nomal directions in each of the points. The two presented contact models keep most of the intuitiveness of the Task Frame appoach, bit have nevertheless to compromise on two points: (i) some basis screws in the models are not pure translations or pure rotations, and (ii) the serew axes don't always intersect in one single point.

If the contact sutaces are curved, on line 'tracking" algorithons are required in order to be able to continuonsty update the contact nomal directions during the motion of the contact points. This racking can be done, for example, with the "velocity-based" tracking apprach explained in [1. 4].

Acknowledgment

H. Bruyninckx is Postdoctoral Fellow of the Fund for Scientific Research Flanders (F.W.O.) in Belgium. Financial support by the Belgian Programme on Inter thiversity Attaction Poles initiated by the Belgian State-Prime Minister's Office Seience Policy Programme (UAP) is gratefully acknowledged.

References

[1] H. Bruyninckx and J. De Schutter. Specification of force controlled actions in the "Task Frame Formalism": A survey. IEEE Trans. Rob. Automation, 12(5):581-589. 1996.
[2] E. Bmynuckx and I. De Schutter. Where does the Task Fane go? In The Eighth International Symposum of Robotics Research (Preprints), pages 86-91, Hayama, Japan, 1997.
[3] H. Bruyninckx. S. Demey, S. Dutré, and I. De Solutter. Kinematic models for model based compliant mofion in the presence of uncertanty. Int. J. Robotics Research, 14(5):465-482, 1995.
[4] J. De Sclinter and M. Van Brussel. Compliant robat motion I. A formalism for specifying compliant motion tasks. Int. J. Robotics Research, 7(4):3-17, 1988.
[5] M. T. Mason. Compliance and force control for computer confrolled manipulatars. IEEE Trans. on Systems, Man, and Cybernetics, SMC-11(6):418-432, 1981.
[6] H. West and 4. Asada. A method for the design of hybrid pasition/force controllers for manipulation constrained by contact with the environment. In IEEE Int. Conf. Robotics and Automation, pages 251-259, St. Louis, MS, 1985.

