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Abstract 

This paper describes the modelling and motion speci- 
fication of compliant motion tasks with two or three con- 
tact points. These tasks cannot be done with Mason’s 
classical “task frame” (TF) or “compliance frame ’’ ap- 
proach. Hence, a more JEexible and versatile motion con- 
straint model is introduced, that maintains most of the in- 
tuitiveness of the TF approach. 

1 Introduction 

The literature on force-controlled compliant motion 
most often uses (implicitly or explicitly) Mason’s “Task 
Frame” (TF) approach, [ 5 ] ,  to model the contact situation 
ofthe task, to specify the desired motion within this contact 
model, and to control the task execution. This approach 
is limited to tasks in which one single orthogonal refer- 
ence frame suffices to model force-controlled and velocity- 
controlled directions of the motion constraint. (See [ I]  for 
more details.) Previous publications by the authors (e.g., 
[ 3 ] )  have presented extensions to the TF approach that al- 
low to tackle tasks that could not previously be executed 
successfully. These extensions use the concept of “virtual 
contact manipulators” to model the instantaneous motion 
freedom of the manipulated object: each contact is mod- 
elled by a kinematic chain that gives the manipulated ob- 
ject the same local motion freedom as the contact; if the 
total motion constraint consists of several contacts that act 
simultaneously on the manipulated object, this total mo- 
tion constraint is hence modelled by a parallel manipulator. 
The kinetostatic properties of this parallel manipulator de- 
termine the force-controlled and velocity-controlled spaces 
at each instant. In the rest of the paper, these spaces will 
be called wrench space and tw is t  space, respectively. 

The advantage of this modelling approach is that it is 
completely general and independent of any coordinate rep- 
resentation. The resulting models, however, could lack 

the intuitiveness of the TF approach. Therefore, this pa- 
per gives ad hoc contact models for two frequently oc- 
curring contact situations (having two, respectively three, 
vertex-surface contacts between manipulated object and 
environment), in which the remaining degrees of freedom 
are defined in very intuitive and coordinate-independent 
ways. Coordinate expressions, however, are also given, 
such that implementation on a force-controlled robot sys- 
tem is straightforward. Section 2 describes the two-point 
contact situation, and Section 3 the three-point contact sit- 
uation. 

The contact models in this paper are basic to the motion 
specification and force control of every task that involves 
more than one single contact: instantaneously every con- 
tact is approximated by the position of the contact point 
and the direction of the contact normal, and this is exactly 
the situation where the presented models are valid. More- 
over, velocity-based on-line identification of these contact 
parameters [ 11 (i.e., the errors in the current estimates of 
the contact point position and contact normal direction) can 
be done for each contact separately. Hence, these ad hoc 
models are very practical in two ways: (i)  they allow to 
model and specify contact situations that the classical Task 
Frame formalism cannot cope with, and (ii) they simplify 
(without loss of functionality!) the general “virtual contact 
manipulator” approach in these particular cases. 

2 Two-point contact 

In this task, Fig. 1, the robot tool is in contact with two 
smoothly curved surfaces, which intersect each other in a 
“seam.” Each contact is of the vertex-surfiace type, with 
five velocity-controlled and one force-controlled direction. 
Hence, the two contacts together reduce the dimension of 
the motion freedom space to four. Examples of such a task 
are: tracking pipes in chemical, nuclear or undersea plants 
(in this case, the “seam” exists in the model only); follow- 
ing a surface with a heavy tool that needs bracing on a sup- 
port surface 161; guidance of a welding torch or a glueing 
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tool along a seam between two workpieces that have to be 
connected, etc. 

tool 

vertex-surface 
contact seam 

motion o j  

Figure 1: Seam following with two contact points. 

2.1 Geometric p'arameters 

2. The vector esa is the normalized cross product of e1 
and e2: 

3 .  p i  is the intersection of the tangent planes at (1) and 
{ a } ,  and the perpendicular plane through { 1): 

Similarly, p i  is the intersection of the tangent planes 
at (1) and {2}, and the perpendicular plane through 

(21: 

4. The distance d1 is the length of p i :  

The symbols { l} and { 2 )  denote the two contact points, 
as well as their associated contact frames, Fig. 2. The seam 
axis is the intersection of the two tangent planes at { l} and 
{ a } .  A parallel plar;se is each plane through a contact nor- 
mal and parallel to the seam axis. Aperpendicularplane is 
any plane perpendicular to the seam axis. The seam angle 
CT is the (free space) angle between the tangent planes. The 
contact points lie at distances d1 and d2 ,  respectively, from 
the seam axis. 

All these parameters can be calculated if the unit nor- 
mal vectors el and 'e2 are known, as well as the vector p 
linking the two coniact points. Expressed with respect to 
the reference frame { l} of Fig. 3 this gives: 

The distance d2 is the length of p: - p :  

d2 = lPzl 

contact norm 

el = [ ; ] > = [ i; ] 3 P = [ i; ] . (1) 

Then, the seam angk o, the direction of the seam axis esn, 
the position vectors p i  and p;  of the points on the seam 
axis closest to { l} and { a } ,  as well as the distances d l  and 
d2 from the contact points to the seam axis, are calculated 
as follows (the calciilations are straightforward but rather 
tedious): 

1. The seam angle C J :  Figure 2: Two-point contact: geometric definitions. 

7 l  

2 
7r 

2 
The tool plane is defined as the plane through the two con- 
tact points and a third user-defined point pt on the tool. 

CJ = arcsin (e' . e 2 )  + - = arcsin(e,) + -. 
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The tool plane has one coordinate-independent reference 
position when it lies in a perpendicular plane and d1  = d2. 
This situation is called the symmetric tool position. The 
tool looses one or two degrees of freedom if it is parallel 
to the seam, i.e., d1 = d2 = 0. 

The contact frames at each of the two contact points 
have their 2 axis along the contact normal. The X and 
Y axes are not uniquely determined geometrically; their 
direction can be freely chosen in the tangent plane. A con- 
tact frame is called parallel if its X axis is parallel to the 
seam axis, and the Y axis points towards the seam, Fig. 3. 

2.2 Twist space basis 

Each of the two contacts reduces the tool’s motion free- 
dom by one. With respect to the parallel reference frame 
in {l}, the bases for the five-dimensional twist space (i.e., 
the Jucobiun mutrices of the virtual manipulators at the two 
contacts) are: 

- 0 0 0 1 0  
0 0 0 0 1  
0 0 1 0 0  
1 0 0 0 0 ’  
0 1 0 0 0  
0 0 0 0 0  

- 

1 I 0 0 0 0 1  
0 0 0 1 0  

0 --Cu O l  :: :: -sa 
0 1 

The first three rows represent angular velocity, the last 
three rows represent translational velocity. c, and so are 
the cosine and sine of the seam angle a; a = -p,c,+p,s,, 
and b = pVs ,  + pzc,. Column two of J 2  is used to sim- 
plify the other columns to: 

0 0  0 1 0 
0 - Co 0 0 -so 

0 0 -cc 0 SO 

1 0  a 0 b 

0 su 0 0 0 
0 -cu 0 P z - P y %  -2 

(4) 

From this, it is clear that a basis for the twist space of 
the total constraint is found from either J1 or J 2  with the 
second column removed. We define the total constraint’s 
Jacobian matrix J as the matrix found from elementary 

column operations on J 2 :  

J [J:  J i  ( s U $  - cbJi  -p,.Jf) Jf] 

0 0  
1 0 I o  - S o  

Figure 3: Two-point contact: Roll, Pitch, Yaw, Slip, and 
Slide. 

These four remaining degrees-of-freedom represent ro- 
tations about, and translations along, geometrically defined 
lines, Fig. 3: 

1 .  Roll is rotation about the intersection of the parallel 
planes through { 1) and {2}. 

2. Pitch is rotation about the intersection of the perpen- 
dicular plane in { 1) and the parallel plane in { 2). 

3. Yaw is the rotation about the intersection of the paral- 
lel plane in { 1) and the perpendicular plane in { 2). 

4. Slide is translation in the direction of the seam axis. (It 
can also be considered as a rotation, i.e., about the in- 
tersection of the perpendicular planes in { l} and { 2) 
which lies at infinity.) 

Roll, Pitch and Yaw have (more or less) their original mar- 
itime interpretation if one looks at the tool as a “ship” trav- 
elling along the seam. Another coordinate-independent 
degree-of-freedom is the rotation about the line between 
the two contact points. This motion leaves the contact 
points unchanged on the environment; hence it is called 
slip. Slip is a linear combination of Roll, Pitch, Yaw and 
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2.3 Wrench sp;ace basis 

The basis forth: contact situation's wrench space (i.e., 
the force-controllell directions) is straightforward: it con- 
sists of unit forces along the contact normals in { l} and 
(2).  The 6 x 2 matrix containing the coordinate expres- 
sions of these two forces is called the wrench Jacobian 
matrix and is denoled by G. 

2.4 Comparison to TF 

The differences between a classical Task Frame model 
and the Roll-Pitch-Yaw-Slide/Slip model are: 

I .  

2. 

The 

1. 

2. 

2.5 

The lines on which the basis twists and wrenches are 
defined do no1 intersect in one point. 

The bases are time-varying, i.e., the relative positions 
of the lines changes during the motion, due to the cur- 
vature of the contact surfaces. 

similarities are that: 

An intuitive, geometric and hence coordinate- 
independent twist and wrench space model exists. 

Only zci-o or infinite pitch screws are needed. At 
least in the geometric model, since, due to the non- 
intersecting axes of the geometric model, no coordi- 
nate represenfation exists in which the Jacobian ma- 
trices J and C: also contain only zero or infinite pitch 
screws. 

Motion specification 

The previous pragraphs describc bases allowing to 
specify unambiguciusly the instantaneous twist of thc tool 
and the desired ideal wrench on thc tool. However, a hu- 
man user might like more intuitive ways of specifying the 
instantaneous twisi or the desircd position. Thc following 
paragraphs dcscribe two possible approaches, a locul one 
and a global one. 

The local specification approach follows thc classical 
TF intuition: each individual contact gets its own TF, as if  
it were the only contact occurring on the manipulatcd tool. 

However, the user should not specify more than four inde- 
pendent motions in both TFs together. It is then the con- 
troller's job to translate this local specification in an instan- 
taneous twist that does not violate the contact constraints. 
This translation can, e.g., be done with "projection matri- 
ces" on the instantaneous twist space basis, [2].  

The global approach relies on a model of the remaining 
four motion degrees of freedom, for example Roll-Pitch- 
Yaw-Slide as described above. Then, the well-known Jaco- 
bian equation, t = J q  applies, with J a basis of the twist 
spacc, and q the magnitudes of the Roll, Pitch, Yaw and 
Slide basis twists. The advantage is that, by construction, 
any specified twist will be compatible with the modelled 
constraint. However, the resulting motion of each individ- 
ual contact point might be less intuitive than in the local 
approach. If the user prefers to specify the desired position 
of the tool, instead of the desired instantaneous twist, he 
could for example specify desired values for the following 
four geometrically determined distances: d l  , p t  , p:, and 
the desired position along the seam. Again, the controller is 
responsible for transforming these four numbers into a re- 
sultant motion that is instantaneously compatible with the 
contacts. 

3 Three-point contact 

The general contact situation with three contact points, 
Fig. 4, has three degrees of motion freedom. The following 
paragraphs present an intuitive and coordinate-independent 
way to model the instantaneous degrees of freedom in this 
contact situation. 

3.1 Geometric parameters 

Instantaneously, the contact situation is determined by 
the tangent planes at the three contact points. As in the 
two-point contact case, the unit normal vector at contact 
point i is denoted by ez. The geometric parameters defined 
in Sect. 2.1 exist in the three-point contact also, for each 
couple of contact points; the formulas to calculate these 
parameters remain unchanged. The notations, however, are 
slightly adapted, in order to discriminate the three possible 
combinations. For example, d13 denotes the distance be- 
tween contact point l and the seam between the tangent 
planes in points 1 and 3;  el3 is the unit vector parallel to 
this scam. 

3.2 Twist space basis 

A basis for the threc-dimensional twist space can be 
chosen in many diffcrent ways. The following Jacobian 



Figure 4: Three-point contact. 

matrix has three basis twists that are an intuitively appeal- 
ing extension to a classical Task Frame approach, Fig. 4: 

J = [Slide,; Slideik Roti]. (6) 

Slideij is the translation of point i over its own tangent 
plane in the direction of the seam with point j ;  similarly for 
Slideik; Roti is the instantaneous pure rotation that leaves 
contact point i motionless, and moves the two other contact 
points in their local tangent planes. The basis in J can be 
used to specify the three available motion degrees of free- 
dom by considering the motion of the contact point i only. 
Of course, all three basis motions must satisfy the instanta- 
neous constraints. The following paragraphs explain how 
this is achieved: 

1 .  Slideij . The seam between the contact points i and j 
is determincd in exactly the same way as in the case 
of two-point contact. Hence, a corresponding “Roll” 
axis l i j  can be defined. Rotation about this axis makes 
the contact points i and j translate in their local tan- 
gent planes and perpendicular to the common seam 
axis. However, a pure rotation about this “Roll” axis 
is only possible if (i) the third tangent plane (i.e., the 
tangent plane at point I C ,  IC # { i , j } )  is perpendicular 
to the two tangent planes that determine this “Roll” 
axis, or (ii) the third contact point IC happens to lie 
on the “Roll” axis. Therefore, in general, a transla- 
tional velocity ‘U (Fig. 5 )  along the “Roll” axis should 
be added, in order to keep this third contact point k 
on its local tangent plane. Hence, the pure rotation 
“Roll” in the two-point contact case must be replaced 
by a non-zero pitch screw “Slidei,” in the three-point 
contact case. The translational velocity component of 
this screw can be found as follows: u i j , k  is the veloc- 
ity of point k if it were to rotate about the “Roll” axis 
l i3;  v k  is the velocity in the tangent plane through IC 

that makes the point IC follow the rotation about the 
“Roll” axis without leaving its instantaneous tangent 
plane; z)k is perpendicular to ek (since it lies in the 
tangent plane) and to d i j , k  (i.e., the direction vector 
through k and perpendicular to the “Roll” axis Zi j ) ;  

the translational component U of the “Slideij” screw 
is parallel to l i j ,  and proportional to the tangent of 
the angle between the vector u i j , k  and the unit vector 
along ‘ u k .  All these vectors and angles can be calcu- 
lated with simple vector calculus. 

Figure 5 :  Three-point contact: velocity components due to 
slide. 

2 .  Rot,. Rotation about an axis through i moves the con- 
tact point j in the direction perpendicular to both p 2 J  
(i.e., the vector from point i to point j ,  since point i re- 
mains motionless) and the normal direction e3 (since 
point j must move in its tangent plane). Hence, the 
axis of Roti goes through i and has direction vector 
(pili x e j )  x (p+ x e”). 

3.3 Wrench space basis 

The basis for the contact situation’s wrench space is 
equally straightforward as in the two-point contact case: it 
consists of unit forces along the contact normals in {l}, 
{2} and ( 3 ) .  The wrench Jacobian matrix G is now a 
6 x 3 matrix, containing the coordinate expressions of these 
three forces. 

3.4 Comparison to TF 

The differences between a classical Task Frame model 
and the above-described three-point contact model are: 

1. The lines on which the basis twists and wrenches are 
defined do not intersect in one point. 
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2. The bases are tinevarying, i.e., the rclative positions 
of the lines change during the motion, due to the cur- 
vature of the con tact surfaces. 

3. The twist space cannot be spanned anymore by pure 
translations and/or pure rotations. 

3.5 Motion specification 

As in the two-point contact case, both local and global 
motion specifications are possible. 

In the local approach, (part of) the motion of each con- 
tact point individually is specified as if no constraints were 
acting on the object. At the user level, the constraints 
are only taken into account by the requirement that one 
should not specify more than three independent velocity 
set-points. The others get “don’t care” values that the robot 
controller must fill in in such a way that the resulting mo- 
tion is compatible with the constraints. 

In the global approach, the user constructs a compatible 
instantaneous motion by using, for example, the Jacobian 
matrix in Eq. (6). Alternatively, he can specify three de- 
sired distances of the contact points to some of the seams; 
for example, the distances of  one of the three contact points 
to its two neighbouring seams, together with the distance 
of one o i  the other contact points to the tangent plane of 
the first contact point. The controller must again take care 
of the instantaneous motion interpolation required to reach 
the specified goal without violating the contact constraints. 
To this end, he can use the instantaneous twist space basis 
in Eq. (6). 

4 Conclusions 

This paper has described how classical Task Frame mo- 
tion constraint modelling and motion specification proce- 
dures are extended to contact situations with two or three 
contact points. The Fresented approach is completely co- 
ordinate independent, and requires only the knowledge of 
the positions of the c,ontact points as well as the contact 
normal directions in each of the points. The two presented 
contact models keep most of the intuitiveness of the Task 
Frame approach, but have nevertheless to compromise on 
two points: (i) some basis screws in the models are not 
pure translations or pure rotations, and (ii) the screw axes 
don’t always intersecl in one single point. 

If the contact surfaces are curved, on-line “tracking” al- 
gorithms are required in order to be able to continuously 
update the contact normal directions during the motion of 
the contact points. This tracking can be done, for example, 
with the “velocity-based’’ tracking approach explained in 

~ 4 1 .  
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