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A Neural Network-Based Classi�cation
of Environment Dynamics Models for

Compliant Control of Manipulation Robots
Du�sko Kati�c and Miomir Vukobratovi�c

AbstractÐ In this paper, a new method for selecting the ap-
propriate compliance control parameters for robot machining
tasks based on connectionist classi�cation of unknown dynamic
environments, is proposed. The method classi�es the type of en-
vironment by using multilayer perceptron, and then, determines
the control parameters for compliance control using the estimated
characteristics. An important feature is that the process of pattern
association can work in an on-line mode as a part of selected
compliance control algorithm. Convergence process is improved
by using evolutionary approach (genetic algorithms) in order to
choose the optimal topology of the proposed multilayer percep-
tron. Compliant motion simulation experiments with robotic arm
placed in contact with dynamic environment, described by the
stiffness model and by the general impedance model, have been
performed in order to verify the proposed approach.

I. INTRODUCTION

MANY manipulation robots, especially in industrial prac-
tice, are required to operate in uncertain environments.

Thus, the characteristics of the environment can be assumed
to be unknown and to signi�cantly change according to the
task to be done. Beside environment uncertainties, for some
type of robots, uncertainties of robot dynamic model can have
a strong inuence on the quality of robot performance. In this
case, one of the most delicate problems in compliant motion
control of robots interacting with the dynamic environment is
the stability of both desired motion and interaction forces. A
multitude of various control approaches such as hybrid control,
stiffness control, impedance control, damping control, etc. [1],
point to the stability of control task as a problem which is
not yet satisfactorily solved, both from the theoretical and
the practical standpoint. Namely, when considering speci�c
contact tasks, simpli�cations in the modeling of robot and
environment dynamics are introduced in almost all approaches,
in order to obtain simpler control algorithms. Very popular
approach is to describe the environment by a set of algebraic
equations, assuming that the robot motion in contact is kine-
matically constrained [2], [3]. Colgate and Hogan consider the
environment to be a linear time invariant dynamic system [4].
In both cases experimental veri�cation [5] led to the discovery
of instability caused by the environment dynamics.

In [6], McClamroch and Wang emphasized the important
role of the constraints in the compliance control, especially
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with relation to the stabilization problem. They presented
global conditions for tracking, based on a modi�ed computed
torque controller, and local conditions for feedback stabi-
lization using a linear controller. The closed loop properties
in the case of force disturbances, dynamics in the force
feedback loops, or uncertainty in the constraint functions were
also investigated. In [7], Eppinger and Seering studied the
inuence of unmodeled dynamics on contact task stability,
introducing additional (elastic) degrees of freedom of both the
robot and the environment. Nevertheless, it was concluded that
environment dynamics cannot cause instability. In order to
extend the problem solving to the more general case when the
environment exhibits a dynamic behavior [8], Vukobratovi�c
and Ekalo have established a uni�ed approach to control
simultaneously position and force in an environment with
completely dynamic reactions [9]. Vukobratovi�c and Ekalo
[9] and Vukobratovi�c [10] especially focused their attention
to the role of dynamic environment and the stabilization of
the position, when asymptotic stability of the contact force
was ensured. This task is the basic problem of controlling
the robot interacting with dynamic environment. However,
without knowing a suf�ciently accurate environment model it
is not possible to determine, for instance, nominal (desired)
contact force. Besides, insuf�ciently accurate environment
dynamics model can signi�cantly inuence the contact task
performance. Also, in the case of unknown environment, it
is very dif�cult to determine the maximum boundary of the
feedback gains.

Hence, there still remain two critical problems in contact
task research: 1) how to determine control parameters under
the uncertain characteristics of robot and environment and
2) how to deal with nonlinear characteristics of robot and
dynamic environment. One excellent possible solution is to
use the learning concept for contact tasks, since we can sig-
ni�cantly enhance robotic performance by learning capabilities
which use an a priori low level of information about model
of manipulation robot and environment. The second important
characteristic of contact tasks is their repetitive nature which
is very important for process of learning by trial-and-error
procedure.

With recent extensive research in the area of robot posi-
tion/force control, various learning algorithms for constrained
manipulation have been proposed such as iterative-analytical,
tabular and connectionist (neural networks) methods [11].
Neural networks are able to compensate for a wide range
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of robot uncertainties and to perform excellent association
and knowledge generalization. In the application of neural
networks in robot contact tasks two essentially different ap-
proaches can be distinguished: one, the aim of which is the
transfer of human manipulation skills to robot controllers,
and the other in which manipulation robot is treated as an
independent dynamic system in which learning is achieved
through repetition of the working task. The principle of
transfer of human manipulation skill is developed in the
papers of Asada and coworkers [12], [13]. The approach is
based on acquisition of manipulation skills and strategies from
human experts and their transfer to the robot controller by
learning connectionist structures. The second group of learning
methods, based on autonomous on-line learning procedures
with the repetition of the working task, is also evaluated
through several algorithms [14]±[20]. The main distinction
between these algorithms is in the aim of learning which is in
�rst case the on-line modi�cation of the control signal, and in
the second the building of internal model of robotic system.

Previous research, however, did not specially consider
the problem of environment uncertainties. Without adequate
knowledge about environment dynamics it is not even possible
to determine consistent values of nominal trajectory and
force, as well as nominal control, not to mention achieving
asymptotic stability. In this case, algorithms that identify
the type of environment models on-line, could signi�cantly
improve the performance of contact task control schemes. As
one solution, off-line identi�cation of environment parameters
based on experimental measuring [21] may also result
in good system performance with approximate modeling
of robot dynamic environment that would be suf�ciently
exact. But in the case of nonlinear complex models of
environment or uncertain structure of environment model,
conventional parameter identi�cation method is not a solution
for compliance control synthesis.

As another solution for the expressed problem, some re-
searchers [22]±[24] used the intelligent techniques (neural net-
works and fuzzy logic) for dynamic environment identi�cation.
In paper [22], direct method of environment parameter identi�-
cation using recurrent neural networks with terminal attractors
for space robotic applications is proposed. Results indicate
good performance in learning and generalization processes.
Very interesting approach is using intelligent techniques for
dynamic environment classi�cation, instead using intelligent
techniques for parameter identi�cation. Cha et al. [23] used the
indirect method with neural networks for telerobotic purposes,
in order to classify the dynamic environment, and fuzzy logic
to select force reection gain based on estimated characteristic
of the environment.

In this paper, a new method for selecting the appropriate
control parameters and parameters of dynamic robot envi-
ronment for robot machining tasks, based on connectionist
classi�cation of unknown dynamic environments, is proposed.
This method classi�es the type of robot environment using
multilayer perceptron through off-line training process and
through process of on-line pattern association. It is assumed
that for classi�ed dynamic environment, the control parameters
and parameters of environment models (structure of environ-

ment model is known) are de�ned in advance, or that they
can be obtained by the process of linear interpolation. It is
important that the process of pattern association by proposed
multilayer perceptron can work in an on-line mode as an inte-
gral part of selected compliance control algorithm [9]. Based
on classi�cation and generalized features of the proposed neu-
ral network, acquired in off-line training process, the control
algorithm can select the appropriate control parameters which
achieve the satisfying system performance. In the proposed
off-line training algorithm, convergence process is improved
by using evolutionary approach (genetic algorithms) in order
to choose the appropriate topology of the proposed multilayer
perceptron. It is important to notice that it is assumed that
the manipulation robot is a deterministic system without
uncertainties. There are some other papers about connectionist
approach to robot contact tasks based on compensation of
dynamic robot model uncertainties [19], [25]±[27].

The paper is organized as follows: In Section II, factors af-
fecting contact task performances in stabilizing position/force
control algorithms are analyzed. In Section III, the basic
principles of connectionist approach utilized for environment
classi�cation purposes and selection of appropriate control
parameters, including applied learning rules and evolutionary
approach, are introduced. In Section IV, overall structure of
the proposed connectionist control algorithms is presented.
In Section V, the proposed approach is veri�ed through sim-
ulation experiments. Section VI concludes the paper with a
discussion on ongoing and future work.

II. FACTORS AFFECTING TASK PERFORMANCE AND

STABILITY IN ROBOTIC COMPLIANCE CONTROL

In this section we introduce the speci�c nonlinear and
linear models of robot and environment that are considered
for classi�cation and control purposes, as well as special
control algorithms for stabilizing position and force based on
quality of transient processes [9]. These stabilizing control
laws ensure exponential stability of the closed loop systems.
In order to connect these control algorithms with connectionist
classi�cation, factors affecting task performance and stability
in control algorithms based on classi�cation of unknown
dynamic environment are specially analyzed. The main idea
of using neural networks for classi�cation of unknown robot
dynamic environment can be ef�ciently applied to other types
of robot contact control algorithms, too. Since this paper
primarily considers contact with unknown environments, prob-
lems related to gross motion control and impact control are
neglected.

The dynamic model of the robot interacting with the envi-
ronment is described by a vector differential equation in the
form

(1)

where, is an -dimensional vector of robot general-
ized coordinates; is an positive de�nite matrix of
inertia moments of the manipulation mechanism; is an

-dimensional nonlinear function of centrifugal, Coriolis, and
gravitational moments; is an -dimensional vector of
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input control; is an Jacobian matrix connecting
the velocities of robot end-effector and the velocities of robot
generalized coordinates; and is an -dimensional
vector of generalized forces or of generalized forces and
moments from the environment acting on the end-effector.
Presently, it will be adopted that (in general ),
where is number of contact force components.

The model of working environment represents one of the
most complex and least investigated problems in the robot
contact tasks. In the case when the environment does not
possess the displacements that are independent from the robot
motion extra degrees of freedom, mathematical model of
the environment can be described by nonlinear differential
equations [8]

(2)

where is a vector of environment coordinates (displacements)
and is a vector function connecting two coordinate
frames. In the frame of robot joint coordinates, the model of
environment dynamics can be presented in the form

(3)

where is a nonsingular matrix; is
a nonlinear vector function; and is the matrix
with .

The end-effector of the manipulator is constrained on static
geometric surfaces

(4)

where is the holonomic constraint function.
The presented forms of the robot dynamics model and the

model of the dynamic environment which can be used for
learning control synthesis have important features that are
given in nonlinear form of generalized coordinates, although
the commonly used mathematical models for contact tasks
are based on linearized models and external coordinates [1].
Hence, in practice it is convenient to adopt a simpli�ed model
of the environment, taking into account the dominant effects,
such as stiffness

(5)

or an environment damping during the tool motion

(6)

where are semide�nite matrices
describing the environment stiffness and a damping, respec-
tively, and denotes the coordinate vector in Cartesian
coordinates of the point of contact between the end-effector
(tool) and a constraint surface. However, it is more appropriate
to adopt the relationship de�ned by speci�cation of the target
impedance [28]

(7)

where

(8)

and is a positive de�nite inertia matrix. The matrices
de�ne the target impedance which can be selected

to correspond to various objectives of the given manipulation
task. The application of this linear model may be limited to
the class of contact tasks, with which either the environment
dynamics can be described suf�ciently exactly by a linear
equation, or to the tasks where the application of linearized
equations of the environment dynamics is admissible. The
latter is possible, e.g. in the case of solving the assembly task,
when jamming of parts during the assembly should be avoided.

In the case of contact with the environment, the robot
control task can be described as robot motion along a pro-
grammed trajectory representing a twice continuously
differentiable function, when a desired force of interaction

acts between the robot and the environment. Thus,
the programmed motion and desired interaction force

cannot be arbitrary. These two functions must satisfy
the following relation:

(9)

The control goal of robot interacting with dynamic environ-
ment can be formulated in the following way.

Let us de�ne the control for , that is to satisfy
the target conditions

as

as
(10)

In this paper, we generally adopted the principle of control
laws synthesis on the basis of preset quality of the transient
responses [9]. Because of the relation de�ned by (9), simul-
taneous stabilization of perturbed robot motion and perturbed
interaction force with independent requirements for a desired
quality of their transient responses is not possible.

As a �rst example, the control algorithm based on stabi-
lization of the robot motion with a preset quality of transient
responses is considered, which has the following form [9]:

(11)

The family of desired transient responses is speci�ed by the
vector differential equation

(12)

(13)

where is the diagonal matrix of position feedback
gains and is the diagonal matrix of velocity
feedback gains. The right side of (12), i.e., PD-regulator is
chosen such that the system de�ned by (12) is asymptotically
stable in the whole. The values of matrices and can
be chosen according to algebraic stability conditions.

The proposed control law represents a version of the well-
known computed torque method including force term which
uses dynamic robot model and the available on-line infor-
mation from the position, velocity and force sensors. The
important characteristic of this control algorithm is that model
of robot environment does not have any inuence on the
performance of control algorithm. Hence, inuence of different
robot environments is expressed through different values of
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initial force at robot tip, i.e., through to different parameters of
environment model. In initial contact there are different values
of initial force for various robot environments, while all other
model and control parameters are equal. These different initial
conditions cause different force transient responses. Also, the
inclusion of noises from robot sensors cause different force
steady-state responses for various robot environments. But,
if our aim is the to achieve same quality of force steady-
state responses for different environments, the same force
performance can be achieved only with different values of PD
gains. Hence, in this case PD local gains based on classi�cation
of robot environment affect the task performance.

As the second example, control algorithm based on stabiliza-
tion of the interaction force with a preset quality of transient
responses is considered, which has the following form [9]:

(14)

where ; is the matrix
of proportional force feedback gains; and is
the matrix of integral force feedback gains. Here, it has been
assumed that the interaction force in transient process should
behave according to the following differential equation:

(15)

(16)

PI force regulator (continuous vector function Q) is chosen
such that the system de�ned by (15) is asymptotically stable
in the whole.

In this case, environment dynamics model has explicit
inuence on the performance of contact control algorithm,
also having inuence on PI force local gains. It is clear that
without knowing a suf�ciently accurate environment model
(parameters of matrices ) it is not possible
to determine the nominal contact force . Besides that,
inexact model of environment dynamics can signi�cantly inu-
ence the contact task performances. Hence, in our analysis, if
the aim is to obtain the same quality of force steady-state pro-
cesses for different environments, the same force performances
can be achieved only by parameter identi�cation of robot
environment models, and with equal �xed PI force local gains.
The unknown parameters of robot environment model have
a greater signi�cance for system performance in comparison
with PI force local gains. Hence, in this case, parameters of
robot environment models based on classi�cation of robot
environment affect the task performance.

The previously selected compliance control algorithm is
a very complex control algorithm, but in order to enhance
robustness of compliance control algorithms due to high
uncertainties in modeling of robot environment, more relaxed
practical stability conditions can be used [29]. The use of
practical stability tests enable the study of dynamic effects
that have to be compensated for given control algorithm under

given conditions (manipulation robot structure, environment
dynamics, required performances, i.e., speed, accuracy, etc.).

III. THE CONNECTIONIST CLASSIFICATION

OF UNKNOWN ROBOT ENVIRONMENTS

The two control algorithms presented in the previous section
do not work in a satisfactory way if there is no suf�ciently
accurate information about the type of robot environment and
the parameters of their models. Hence, our idea is to use
the connectionist approach instead of parameter identi�cation,
which is capable to assure a suf�ciently exact classi�cation
of type of robot dynamic environment and determination of
environment model parameters through the off-line learning
process. A neural network classi�er based on four-layer per-
ceptron is chosen for the purpose of classi�cation due to
its good generalization properties. Its objective is to classify
the type of the environment in an on-line manner. Hence,
the application of the connectionist approach to this type
of problems is divided into two phases: �rst , related to the
acquisition process and off-line training of the proposed neural
network, and second association phase, where on-line control
algorithms based on excellent generalization properties of
neural network classi�er must assure the necessary quality of
the system performances.

A. Acquisition Process of Neural Classi�erÐThe First Phase

In the acquisition process of the �rst phase, based on
the real-time realization of two proposed contact control
algorithms and using a previously chosen set of different
working environments, force data from force sensors are
collected. In the case of the �rst simple example (compliance
control algorithm with stabilizing robot motion), for each
chosen robot environment and for the chosen contact control
algorithm, values of normal force in time instants

, and are measured, calculated,
and stored as special input patterns for training of neural
network. In the case of the second complex example with
compliance control algorithm with stabilizing interaction force,
for each chosen robot environment and for the chosen contact
control algorithm, values of normal force and error
of normal force ( , where is desired
normal force) in time instants and
are measured, calculated, and stored as special input patterns
for training of neural network. Generally, six contact force
sensor components can be gathered during the task realization,
but we will focus our attention only to normal force, as
one of the most interesting components which is suf�cient
to classify the unknown environment characteristics. It is
assumed that normal force component can be obtained from
force sensor, because in considering machining operations,
normal and tangential directions of force components are
de�ned. The choice of error of normal force in previous time
instants as input variables is determined because the nonlinear
mapping depends on the previous inputs and outputs of the
system. On the other side, the acquisition process must be
accomplished using various robot environments, starting with
the environment with a low level of system characteristic
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TABLE I
INPUTS AND TARGET OUTPUTS OF NEURAL CLASSFIER

(for example, with a low level of environment stiffness) and
ending with the environment with a high level of system
characteristic (with high level of environment stiffness). This
approach represents good foundation in order for encircling
the wide range of unknown robot environment characteristics.
It is important to note that the main idea is classi�cation of
environment type, not environment parameter identi�cation.
Hence, using this approach, it is possible in similar way
to include one extension in classi�cation process which is
connected for recognition of environment types with different
structure of environment models.

After that, during the extensive off-line training process,
neural network receives a set of input-output patterns, where
input variables form a previously collected set of force data
(in each learning iteration normal force in time instants

and or normal force and error
of normal force in time instants and

during force transient process). As desired output, neural
network has a value between zero and unity which exactly
de�nes the type of training robot environment. The aim of
connectionist training is that the real output of neural network
for given inputs can be exact or very close to the desired output
value determined for appropriate training robot environment.
In our example, training of neural network is accomplished
with �ve different working environments (similar to [23]).
The input variables and target outputs for neural classi�er are
shown in Table I.

The target outputs of neural classi�ers for various environ-
ments are chosen by equidistant numerical values between zero
and 1, in order to drive the process of linear interpolation in
�nal procedure of on-line control parameters selection.

It is generally assumed that training examples (training
patterns) represent common and most used robot-environment
con�guration models. Hence, the success of the classi�cation
is determined by the ªrichnessº of the training patterns.

B. Learning Process for Neural Classi�erÐThe First Phase

After acquisition process in the �rst phase, it is very
important to choose an ef�cient learning algorithm for off-
line training process in order to assure the best convergence
of learning process. Hence, in this paper, learning algorithms
for adjusting the network weights based on application of
recursive least-square (RLS) method with gradient approxi-
mation [30] is considered. Using these methods with time-
varying learning rates yields bene�ts for learning speed and
generalization as compared to those available with the standard
back propagation algorithm.

The main relations in process of training for forward-pass in
four-layer networks are described according to the following

expressions:

(17)

(18)

(19)

(20)

(21)

(22)

where and are the output vectors for linear
parts of layers in time instant ; and are the
output vectors of the hidden layers; ,

, and are the weighting factors
of the layers; are inputs to the network (force data

bias member ); and is output of network
in time instant .

The general idea is that multilayer perceptrons can be
observed as a set of sequential linear decomposed subsystems
which are connected by nonlinear connections. As it is well-
known, recursive estimators for linear deterministic systems
show faster convergence properties than gradient estimators
(BP algorithm). Hence, the aim of estimation is to de�ne
the optimal values for matrices , , and . In
application of this method, for speci�cation of desired values
for linear parts of layers gradient approximation
is used. The basic equations which describe the proposed
learning rules based on RLS gradient approximation method
are given according to the following formulae [30]:

for

(23)

for

or (24)

for

(25)

for

(26)

for

or

(27)
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where is the appropriate learning rate; is the appropriate
covariance matrix; and is the desired output of the network.

C. Improvement of Learning Process for Neural Classi�er by
Evolutionary ApproachÐThe First Phase

One of the main design parameters related to network
topology is the number of neurons on each hidden layer.
In order to avoid heuristic selection of number of neurons
based on long-time simulation experiments, a new approach
to network topology selection based on evolutionary neural
networks (ENN) is proposed. ENN represents a combination of
the connectionist approach and evolutionary search procedures
like genetic algorithms (GA) [31]. GA has been proposed to
tackle different kind of problems in neural network research
area. One type of problems is determination of connection
weights, and overcoming local minimum (referred as training
of network) [32]. Another applications of GA is searching
the topology of neural network (referred as designing of a
network) [33].

For the proposed approach, i.e., for the problem of deter-
mination of network topology, the neural network and the
genetic algorithms works together in a collaborative fashion.
The �rst step in application of genetic algorithms is to set a
generation of initial population of possible network topologies
in a random way. In this case, it is a previously determined
number of pairs which de�ne the number of neurons in the
�rst and the second hidden layer. For the second step, it is
necessary to convert the numeric values of number of neurons
in hidden layers to a binary representation (two 8-bit strings).
The crucial point in GA algorithm is the choice of �tness
function. Our aim is to choose a topology of neural network
with the minimum approximation error, i.e., we can use the
value of well-known mean square error criterion at the end
of previously de�ned learning epoch as a quality information
for search

(28)

where is the target output of neural network in learning
epoch ; is the real value of network output in learning
epoch ; is the value of the mean-square criterion for
one input±output pattern in learning epoch ; and

is the set of input±output pairs.
Now, after neural network training, all strings in initial

population have their own �tness function. Hence, according
to the basic idea of ªsurvival of the �ttestº, the selection
genetic operator is applied. There are many selection proce-
dures, but in this case the roulette wheel selection [31] that
chooses individuals for reproduction according to their �tness
function values is chosen. Due to the experience in training of
multilayer perceptrons, one limitation in selection procedure is
included, i.e., only pairs of strings where number of neurons in
the �rst hidden layer is greater than the number of neurons in
the second hidden layer are ready for reproduction purposes. In
order to improve the search process, the following two genetic
operators (crossover and mutation) are applied with some
limitations. Uniform crossover, which swaps each column

in chromosome representation having the same probability
is chosen. In order to avoid great changes in numerical
representation of the proposed problem and the proper nature
of the search problem, the second operator mutation is limited
only to �ve lower bits of each string. Now the complete new
population is generated, which is converted into numerical
representation after decoding process, and which is ready
for evaluation of its �tness function through neural network
training process with a new network topology. The process is
stopped when the desired value of �tness function is achieved.

Using the proposed approach and choosing the optimal node
size in hidden layers of network, it is possible to assure a
fast learning process and better classi�cation properties of the
neural classi�er.

IV. ON-LINE COMPLIANCE CONTROL ALGORITHMS

FOR CONTACT TASKS WITH ENVIRONMENT

CLASSIFICATIONÐT HE SECOND PHASE

Based on the �rst phase, related to the acquisition process
and off-line training process of neural classi�er, it is possi-
ble to determine the whole structure of compliance control
algorithms including the �xed neural classi�er.

In the �rst example considered, the following stiffness
model of robot environment is chosen for the control algorithm
based on the stabilization of the robot motion with a preset
quality of transient process

(29)

After the off-line training process with different working en-
vironments (different environment stiffness), neural classi�er
with �xed weighting factors is included in on-line version of
control algorithm (11) to produce some value at the output
of network, between zero and 1, based on on-line force inputs
de�ned in the previous section

(30)

(31)

(32)

where and are linear interpolation functions for
positional and velocity feedback gains; and is the output
of the neural classi�er.

If we adopt as a performance criterion the same force
steady-state process for all different robot environments, then
we can a priori choose, using algebraic stability conditions, the
set of PD local gains for previously de�ned set of known robot
environments (in our case, there are �ve different environ-
ments) which will satisfy this requirement. Hence, in the case
of unknown environment type, the information from neural
classi�er output can be ef�ciently utilized for calculation of
necessary PD local gains by linear interpolation procedures.
It is also assumed that output of neural network for the given
environment varies in small ranges. In this way, local PD gains
are relatively �xed during the operations. They are chosen for
preset stability conditions for each environment type. Fig. 1
shows the overall structure of the proposed algorithm.

In the second example, for the control algorithm based
on stabilization of the interaction force with a preset quality
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Fig. 1. Scheme of control law stabilizing robot motion with neural classi�er.

of transient process, the general impedance model of robot
environment is chosen

(33)

Hence, after the off-line training process, on-line version of
compliance control algorithm with neural classi�er with �xed
weighting factors based on on-line force and force errors inputs
is given by the following relations for speci�ed environment
model (7)

(34)

(35)

(36)

(37)

where , and are linear interpolation functions for
parameters of matrices , and .

According to the similar principle, the same condition for
control law and all different robot environments is using the
same local PI force gains. In our case, parameters of dynamic
models of different chosen environments and are
stored as an information necessary for calculating the basic
control algorithm. In the case of the unknown environment,
information from neural classi�er output can be ef�ciently
utilized for calculation of necessary environment parameters

, and by linear interpolation procedures. Fig. 2
shows the overall structure of the proposed algorithm.

V. CASE STUDY

A. General Reference Task Description

For demonstrating the performance of contact control
schemes with neural elements, compliance control imple-
mentations are simulated using robot MANUTEC r3 (Fig. 3)
[34] and various models of robot environment.

Technological working demands for reference working op-
eration are de�ned by the following statements. a) The working
tool of the robot was realized in the form of a rotational-
milling tool, performing surface processing in the plane which
is parallel to the - plane. b) Tool trajectory is 100 mm-long.
c) The task of the robot is to carry out the machining process of
the work surface along the prescribed trajectory with a desired
contact force N and a prescribed velocity of 25 mm/s.

The following initial conditions were used in the simulation:
the robot gripper starts with zero initial velocity. The settling
time of the desired contact force is given as s.

For the �rst example of stabilizing motion control algorithm,
the stiffness model of environment is adopted, while in the
case of stabilizing interaction force algorithm, a general model
of impedance is chosen. The parameters of the environment
model in the form of diagonal members of appropriate matrices
for all different chosen environments and for both control
algorithms are given in Tables II±IV.

B. The Stabilizing Motion Control AlgorithmÐChoice
of Local Gains for Network Training

To investigate the effect of different chosen PD local
gains for stabilizing motion control law and various robot
environments, some simulation experiments were conducted
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Fig. 2. Scheme of control law stabilizing interaction force with neural classi�er.

Fig. 3. Industrial robot MANUTEC r3.

with two set of PD local gains. One set of gains is chosen
for low stability degree, while the other is chosen for high
stability degree. Internal coordinates error and force error

TABLE II
THE STIFFNESS PARAMETERS OF ROBOT ENVIRONMENT MODELS

TABLE III
THE DAMPING PARAMETERS OF ROBOT ENVIRONMENT MODELS

TABLE IV
THE INERTIA PARAMETERS OF ROBOT ENVIRONMENT MODELS

in this case are presented in Figs. 4±7. The feedback gains
for stabilizing control laws with required quality of position
transient response have been chosen in the form of diagonal
matrices for the �rst set of gains (low-stability degree)

(38)
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TABLE V
PD LOCAL GAINS FOR SATISFACTION OF PERFORMANCE CRITERION

Fig. 4. Force error for control law stabilizing robot motion with �rst set of
feedback gains.

Fig. 5. Internal coordinate error for control law stabilizing robot motion with
�rst set of feedback gains.

(39)

and for the second set of gains (high-stability degree)

(40)

(41)

We can observe the dependance of transient processes on
the type of robot environment and chosen set of PD-gains. In
the case of high gain feedback, there are differences only at the
beginning of transient process. In the case when force noise
is included, different force steady-state processes for different
working environments are presented (Fig. 8).

Hence, for our reference case, the following performance
criterion is chosen: The sum of force error during the task
cannot be greater than 11. To achieve this performance crite-
rion, different local PD gains for different environments must
be synthesized based on simulation experiments (Table V).

Fig. 6. Force error for control law stabilizing robot motion with second set
of feedback gains.

Fig. 7. Internal coordinate error for control law stabilizing robot motion with
second set of feedback gains.

Fig. 8. Steady-state process for normal force control law stabilizing robot
motion with second set of feedback gains.

C. The Stabilizing Motion Control
AlgorithmÐOff-Line Training Process

In the process of neural network training, 500 force training
patterns are used (for all �ve different environments with the
same control law and different previously chosen PD local
gains there are 100 input±output patterns). After intensive
simulation experiments, the following network topology is
chosen: 5-62-41-1 (represents a number of neurons in network
layers). According to the proposed learning rules, initial values
of covariance matrix are and gradient
factor . The training results are shown in Figs. 9
and 10, which represent square criterion during training and
the comparison of desired and real outputs of network after
training.
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Fig. 9. Square criterion during learning epochs.

Fig. 10. Comparison of desired and real output of network.

D. The Stabilizing Motion Control AlgorithmÐOn-Line
Generalization Process

In the generalization test, the ªlearnedº neural classi�er with
�xed weighting factors is included in control algorithm for the
recognition of unknown robot environment. In this case, the
robot environment with dominant stiffness is selected.
The goal is to achieve the same quality of force steady-
state process. The neural classi�er based on input force data
generates output of network having numeric values of 0.62.
This information is necessary for calculating the local PD gains
by linear interpolation that can satisfy the desired performance
criterion (Fig. 11). For comparison, the example of application
of nonlearning control laws with inexact (user assumed) infor-
mation of environment stiffness is given in Fig. 12. It is clear
that in the case when there are no exact information about
robot environment, the quality of performance is very poor.
Hence, inclusion of neural classi�er is very important in order
to improve the capabilities of control algorithms in working
environment with signi�cant level of uncertainties.

E. The Stabilizing Force Control AlgorithmÐInuence
of Different Working Environments

In the second case, for the application of stabilizing force
interaction control algorithm, the performance criterion based
on selection of the same force PI gains is chosen. These PI
force gains are synthesized using the same system frequencies

Fig. 11. Normal force with neural classi�erÐstabilizing robot motion.

Fig. 12. Normal force without neural classi�erÐstabilizing robot motion.

Fig. 13. Internal coordinate error for stabilizing interaction force control
algorithm.

for all different working environments ( Hz). The
transient processes of internal coordinates error and force error
are given in Figs. 13 and 14. We can notice the inuence of
different working environments.

F. The Stabilizing Force Control AlgorithmÐOff-Line
Training Process with Evolutionary Approach

In the phase of connectionist training, the ef�cient genetic
algorithm is used in order to select the optimal topology of
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Fig. 14. Force error for stabilizing interaction force control algorithm.

Fig. 15. Internal coordinate errorÐcomparison with and without neural
classi�er.

Fig. 16. Force errorÐcomparison with and without neural classi�er.

neural network. The initial population of 50 pairs of possible
topology solutions is given and three successive generations
are simulated. The following genetic parameters are chosen:
crossover probability pcros and mutation probability
pmut . Using this procedure, the following optimal
network topology is selected: 6-32-21-1.

Using adopted network topology and the same learning rules
and learning parameters, training process is achieved with
stored weighting factors.

G. The Stabilizing Force Control AlgorithmÐOff-Line
Training Process with Evolutionary Approach

In similar way as in the previous case, generalization test
with unknown environments (dominant stiffness and
output of neural classi�er 0.70) using approaches with and
without neural classi�er is performed. The results are given
in Figs. 15 and 16. The conclusions are the same as in the
case of stabilizing robot motion control algorithms, but in this
case the inuence of unknown environment is very signi�cant,
because of the implicit inclusion of environment parameters
in the control law. Hence, the neural classi�er signi�cantly
improves the system performance.

VI. CONCLUSION

This paper presents a new method for selecting the ap-
propriate compliance control parameters for robot machining
tasks based on connectionist classi�cation of unknown dy-
namic environment type. The method classi�es the type of
environment by using in the �rst phase, acquisition process of
force sensor data and off-line training process by multilayer
perceptrons. The off-line process is signi�cantly improved by
special genetic algorithms with some limitations on genetic
operators in order to choose the optimal number of neurons
in hidden layers for fast learning. In the second on-line phase,
based on inclusion of neural classi�er, the compliance control
algorithm determines the control parameters based on network
output and previously determined set of environment model
characteristics by linear interpolation procedure. The important
feature is that the process of pattern association can work in
an on-line mode as a part of selected compliance control algo-
rithm. Simulation experiments show that well-trained neural
classi�er in on-line mode can identify characteristics of robot
environment in various machining tasks.

Further work includes one comprehensive connectionist
approach for compensation of the inuence of uncertain-
ties of the robot and robot environment, consideration of
connectionist identi�cation of nonlinear environment models,
and the development of other similar approaches for explicit
estimation of robot environment by neural networks.
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