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Abstract- In this paper, a neural network based predictive controller is designed to govern the dynamics of a heat 
exchanger pilot plant. Heat exchanger is a highly nonlinear process; therefore, a nonlinear prediction method can be a 
better match in a predictive control strategy. Advantages of neural networks for the process modeling are studied and a 
neural network based predictor is designed, trained and tested as a part of the predictive controller. The dynamics of the 
plant is identified using a Multi Layer Perceptron (MLP) neural network. Then, the predictive control strategy based on 
the neural network model of the plant is applied to provide set point tracking of the output of the palnt. Also, The 
performance of the proposed controller is compared with that of Generalized Predictive Control (GPC) through 
simulation studies. Obtained results demonstrate the effectiveness and superiority of the proposed approach. 
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I. INTRODUCTION 
Predictive control is now widely used in industry and a large 
number of implementation algorithms. Most of the control 
algorithms use an explicit process model to predict the 
future behavior of a plant and because of this, the term 
model predictive control (MPC) is often utilized [1,2]. The 
most important advantage of the MPC technology comes 
from the process model itself, which allows the controller to 
deal with an exact replica of the real process dynamics, 
implying a much better control quality. The inclusion of the 
constraints is the feature that most clearly distinguishes 
MPC from other process control techniques, leading to a 
tighter control and a more reliable controller. Another 
important characteristic, which contributes to the success of 
the MPC technology, is that the MPC algorithms consider 
plant behavior over a future horizon in time. Thus, the 
effects of both feedforward and feedback disturbances can 
be anticipated and eliminated, fact, which permits the 
controller to drive the process output more closely to the 
reference trajectory. 
Although industrial processes usually contain complex 
nonlinearities, most of the MPC algorithms are based on a 
linear model of the process. Linear models such as step 
response and impulse response models derived from the 
convolution integral are preferred, because they can be 
identified in a straightforward manner from process test 
data. In addition, the goal for most of the applications is to 
maintain the system at a desired steady state, rather than 
moving rapidly between different operating points, so a 
precisely identified linear model is sufficiently accurate in 
the neighborhood of a single operating point. As linear 
models are reliable from this point of view, they will provide 
most of the benefits with MPC technology. Even so, if the 
process is highly nonlinear and subject to large frequent 
disturbances, a nonlinear model will be necessary to 
describe the behavior of the process. Also, in servo control 
problems where the operating point is frequently changing, a 
nonlinear model of the plant is indispensable [3-5]. 
In situations like the ones mentioned above, the task of 
obtaining a high-fidelity model is more difficult to build for 

nonlinear processes. Recently, neural networks have become 
an attractive tool in the construction of models for complex 
nonlinear systems [6,7]. A large number of control and 
identifications structures based on neural networks have 
been proposed [8-15]. Most of the nonlinear predictive 
control algorithms imply the minimization of a cost 
function, by using computational methods for obtaining the 
optimal command to be applied to the process. The 
implementation of the nonlinear predictive control 
algorithms becomes very difficult for real-time control 
because the minimization algorithm must converge at least 
to a sub-optimal solution and the operations involved must 
be completed in a very short time (corresponding to the 
sampling period). This paper analyzes an artificial neural 
network based nonlinear predictive controller for a heat 
exchanger, which is a highly nonlinear process. The 
procedure is based on construction of a neural network 
model for the process and the proper use of that in the 
optimization process. The method eliminates the most 
significant obstacles for nonlinear MPC implementation by 
developing a nonlinear model, designing a neural predictor 
and providing a rapid, reliable solution for the control 
algorithm. Using the proposed controller, the output 
temperature tracking behavior of the plant is studied. Also, 
the performance of the proposed neural network based 
predictive controller is compared with that of GPC one, 
which the former leads to better performance. 
 
II. HEAT EXCHANGER PILOT PLANT  
The problem of heat-exchanger control with sensors and 
actuators limitation represents a serious problem from the 
point of optimal energy consumption [16-18]. The problem 
lies in the nonlinearity of the system behavior [19-22]. There 
are a large number of phenomena associated with flow and 
heat transfer that are perhaps simple to solve singly, but 
when combined result in a system that is impossible to 
compute. Some of these are: complicated heat and fluid flow 
geometries, turbulence in the flow, existence of 
hydrodynamic and thermal entrance regions, non-uniform 



local heat transfer rates and fluid temperatures, secondary 
flows in the tube bends, vortices in the neighborhood of the 
tube-fin junctions, air-side flow development in fin 
passages, heat conduction along tube walls, natural 
convection within the tubes and between fins, and 
temperature dependence of fluid properties. 
The objective of our investigation, a real temperature plant, 
consists of a plate heat-exchanger, a reservoir with heated 
water, two thermocouples, and a motor driven valve. The 
plate heat exchanger, through which hot water from an 
electrically heated reservoir is continuously circulated in the 
counter-current flow to cold process fluid (cold water).  The 
thermocouples are located in the inlet and outlet flows of the 
exchanger; both flow rates can be visually monitored. Power 
to the heater may be controlled by time proportioning 
control using the external control loop. The flow of the 
heating fluid can be controlled by the proportional motor 
driven valve. A schematic diagram of the plant is shown in 
Figure 1. 

 
Figure 1 The heat-exchanger pilot plant. 

 
III. NEURAL NETWORK BASED 
PREDICTION 
This section presents the role and architecture of the neural 
predictors resulting from the following nonlinear modeling 
techniques based on neural network principles. 
 
a) Modeling of nonlinear systems using neural networks 
The use of neural networks for nonlinear process modeling 
and identification is justified by their capacity to 
approximate the dynamics of nonlinear systems including 
those with high nonlinearities or dead time [23-25]. In order 
to estimate the nonlinear process, the neural network must 
be trained until the optimal values of the weight vectors (i.e. 
weights and biases in a vector form organization) are found. 
In most applications, feedforward neural networks are used, 
because the training algorithms are less complicated. When 
it comes to non-linear models, the most general one, which 
includes the largest class of non-linear processes, is 
doubtless the NARMAX model [6] given by 

[ ])(),...,1(),(),...,1()( nkykymdkudkuFky −−−−−−=  (1) 

where F(·) is a nonlinear function, d is the dead time, n and 
m are the orders of the nonlinear system model. A neural 
network-based model corresponding to the NARMAX 
model may be obtained by adjusting the weights of multi-
layer perceptron architecture with adequately delayed inputs. 
In this case, the neural network output will be given by 

[ ])1(),1()( −−−= kYdkUFky N  (2) 

where NF  denotes the input–output transfer function of the 
neural network which replaces the nonlinear function F in 
(1), and )1( −− dkU , )1( −KY  are vectors which contain m, 

respectively, n delayed elements of u and y starting from the 
time instant k-1, i.e. 
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The neural NARMAX corresponds to a recurrent neural 
network, because some of the network inputs are past values 
of the network output. 
 
b) Neural network based predictors 
The predictors are necessary for the prediction of future 
values of the plant output that are considered in the 
predictive control strategy. The implementation approach of 
this paper uses neural predictors obtained by appropriately 
shifting the inputs of the neural based model. The predictive 
control algorithm utilizes them in order to calculate the 
future control signal. Neural predictors rely on the neural-
based model of the process. In order to obtain the model of 
the nonlinear system, a neural network with a hidden layer is 
considered. A sequential algorithm based on the knowledge 
of current values of u and y together with the neural network 
system model gives the i-step ahead neural predictor. In this 
case one can properly derive the network output at the k+1 
time instant: 
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where N is the number of neurons in the hidden layer, jσ  is 

the activation function for the jth neuron from the hidden 

layer, u
jw  is the weight vector (row vector) for the jth    

neuron with respect to the inputs stored in )1( −− dkU , 
y
jw is  the weight vector (row vector) for the jth neuron with 

respect to the inputs stored in )1( −kY , jb  is the bias for the 

jth neuron from the hidden layer, and jw  is the weight for the 

output layer corresponding to the jth neuron from the hidden 
layer, and b the bias for the output layer. 
Extending (5) one step further ahead, y(k+2) can be obtained 
and generally, the i-step ahead predictor can be derived: 
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where 

[ ]TmidkuidkuidkU )(),...,1()1( −+−−+−=−+−  (7) 

[ ]TnikyikyikY )(),...,1()1( −+−+=−+  (8) 

The neural predictors will be used by the predictive control 
algorithm for calculating the future control signal to be 
applied to the non-linear system. 
 
c) Neural network model of a heat exchanger 
In order to construct a neural network model for the heat 
exchanger, the input-output data of the plant is considered 
[19], where the output variable is the outlet liquid 
temperature and the input variables is the liquid flow rate.  
In this experiment the steam temperature and the inlet liquid 
temperature are kept constant to their nominal values. A 
multilayer perceptron neural network with 10 neurons in the 
hidden layer and 2,3;0 === nmd  is used0. The output of 
the model for the test data is compared with the actual 



output in Fig. 2. As it is seen, the error is acceptable, so the 
model can be used for the objective of predictive control. 

 
Figure 2 Model validation: actual output and the output of 

the neural network model for test data. 
 
IV. PREDICTIVE CONTROL OF A HEAT 
EXCHANGER BASED ON NN 
The objective of the predictive control strategy using neural 
predictors is twofold: (i) to estimate the future output of the 
plant and (ii) to minimize a cost function based on the error 
between the predicted output of the processes and the 
reference trajectory. The cost function, which may be 
different from case to case, is minimized in order to obtain 
the optimum control input that is applied to the nonlinear 
plant. In most of the predictive control algorithms a 
quadratic form is utilized for the cost function: 
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with the following requirements 

21        0)1( NiNiku u ≤<≤=−+∆  (10) 

where uN is the control horizon, 1N and 2N are the 

minimum and maximum prediction horizons respectively, i 
is the order of the predictor, r is the reference trajectory, λis  
the weight factor, and ∆  is the differentiation operator. 
The command u may be subject to amplitude constraints: 

uNiuikuu ,...,2,1              )( maxmin =≤+≤  (11) 

The cost function is often used with the weight factor λ=0. A 
very important parameter in the predictive control strategy is 
the control horizon uN , which specifies the instant time, 

since when the output of the controller should be kept at a 
constant value. 
The output sequence of the optimal controller is obtained 
over the prediction horizon by minimizing the cost function 
J with respect to the vector U. This can be achieved by 
setting 
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However, when proceeding further with the calculation of 
∂J/∂U, a major inconvenience occurs. The analytical 
approach to the optimization problem needs for the 
differentiation of the cost function and, finally, leads to a 
nonlinear algebraic equation; unfortunately this equation 
cannot be solved by any analytic procedure. This is why a 
computational method is preferred for the minimization of 
the cost function, also complying with the typical 
requirements of the real-time implementations (guaranteed 
convergence, at least to a sub-optimal solution, within a 
given time interval). 
For the minimization of the cost function, the Matlab’s 
Optimal Toolbox functions fminunc and fmincon were used, 

which allow dealing with either unconstrained or 
constrained optimization problems. Unlike the fminunc 
function, fmincon allows imposing constraints with respect 
to the value of the control input such as upper or lower 
bounds, which are often required in practice. The cost 
function J is given as an input parameter for the functions 
mentioned above together with the initial values for the 
control input vector and some options regarding the 
minimization method (the maximum number of iterations, 
the minimum error value, the use of analytical gradients, 
etc.). In the case of fmincon the constraints must also be 
specified as input parameters in a matrix form. 
The advantage of this nonlinear neural predictive controller 
consists in the implementation method that solves the key 
problems of the nonlinear MPC. The implementation is 
robust, easy to use and fulfills the requirements imposed for 
the minimization algorithm. Changes in the parameters of 
the neural predictive controller (such as the prediction 
horizons, the control horizon, as well as the necessary 
constraints) are straightforward operations. A simple block 
diagram of predictive control strategy is depicted in Fig. 3. 

 
Figure 3 The scheme of neural network based predictive 

control. 
 
The optimization problem was addressed in accordance with 
the computational scenario built in the above. With respect 
to the notations introduced in the above, the following 
concrete values were chosen for the tuning parameters of the 
predictive control algorithm: 5,10,1 21 === uNNN . Next, 

the cost function J is constructed: 
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the minimization algorithm gives the control input vector 
U=[u(k),u(k+1),u(k+2),u(k+3),u(k+4)]T to be applied to the 
plant described by (3). The set point tracking results of the 
simulation on the plant and the corresponding input signal 
are depicted in Fig. 4. Clearly the system could track the set 
points with satisfactory settling time.    

 
Figure 4 Response of the plant with proper control signal for 

tracking the desired set points. 
 



In order to investigate the effectiveness of the neural 
network based predictive controller, we will compare the 
performance of that with that of GPC controller. It is 
remarkable that the controllers are applied to a process 
which is modeled by neural network. The comparison is 
depicted in Figure 5. As it can be seen, the closed loop 
system with neural network based control action performs 
much better than the other one and the output temperature 
can track the set point values better. 

 
Figure 5 Response of the plant for tracking the desired set 

points using neural network based controller and GPC. 
 
V. CONCLUSIONS 
In this apper, a neural network based predictive control 
strategy was applied to a heat exchanger pilot plant. Heat 
exchanger is a highly nonlinear process; therefore, a 
nonlinear prediction method, e.g. neural network based one, 
can be a better match in a predictive control strategy.  Using 
the neuro predictive controller, the outlet liquid temperature 
of the plant tracked the desired set points by applying the 
liquid flow rate as a control signal. A neural network model 
for the plant was constructed. Once having such a model, 
i-step ahead predictors were obtained and a quadratic form 
cost function was utilized to compute the prediction error 
and to derive the optimal predictive control strategy. The 
performance of the proposed control strategy was compared 
with that of Generalized Predictive Control strategy, which 
uses a linear model for prediction. Simulation results 
showed that the former strategy performs much better than 
the latter one, when dealing with the tracking problem of 
output temperature. 
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