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Globally Stabilizing Switching Controllers
for a Centrifugal Compressor Model

with Spool Dynamics
Alexander Leonessa, Wassim M. Haddad, Member, IEEE, and Hua Li

Abstract—In this paper we develop a globally stabilizing sta-
bility-based switching controller for a three-state lumped param-
eter centrifugal compressor surge model. The proposed model in-
volves pressure and mass flow compression system dynamics as
well as spool dynamics to account for the influence of speed tran-
sients on the compression surge dynamics. The proposed nonlinear
switching controller architecture involves throttle and compressor
torque regulation and is directly applicable to compression systems
with actuator amplitude and rate saturation constraints.

Index Terms—Centrifugal compressors, surge, state-space
model, globally stabilizing control, stability-based switching
control.

I. INTRODUCTION

THE desire for developing an integrated control system-de-
sign methodology for advanced propulsion systems

has led to significant activity in modeling and control of
flow compression systems in recent years (see, for example,
[1]–[14] and the numerous references therein). While the
literature on modeling and control of compression systems
predominantly focuses on axial flow compression systems, the
research literature on centrifugal flow compression systems
is rather limited in comparison. Notable exceptions include
[15]–[21] which address modeling and control of centrifugal
compressors. In contrast to axial flow compression systems
involving the aerodynamic instabilities of rotating stall and
surge, a common feature of [15]–[21] is the realization that
surge and deep surge is the predominant aerodynamic insta-
bility arising in centrifugal compression systems. Surge is a
one-dimensional axisymmetric global compression system
oscillation which involves radial flow oscillations and in some
case even radial flow reversal (deep surge) which can damage
engine components.

In this paper we address the problem of nonlinear stabiliza-
tion for centrifugal compression systems. First, we present a
three-state lumped parameter model for surge in centrifugal
flow compression systems that is accessible to control-system
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designers requiring state-space models for modern nonlinear
control. The low-order centrifugal compression system model
presented here closely parallels the model developed in [21]
and hence only salient portions of the model are presented
which are relevant for the proposed control design frame-
work. Specifically, the authors in [21] develop a centrifugal
compression system model involving pressure and mass flow
compression system dynamics using principles of conservation
of mass and momentum. Furthermore, in order to account for
the influence of speed transients on the compression surge
dynamics, turbocharger spool dynamics are also considered.

Next, using a nonlinear stability-based switching frame-
work, we develop a globally stabilizing control law for the
lumped parameter centrifugal compressor surge model. The
locus of equilibrium points on which the switching nonlinear
controller is predicated on is characterized by the axisymmetric
pressure-flow equilibria of the compression system. A similar
controller design framework for axial flow compression
systems was developed in [22], [23]. The proposed switching
nonlinear state feedback controller is directly applicable to
centrifugal compression systems with amplitude and rate
saturation constraints. Finally, even though for simplicity of
exposition we do not address system parametric uncertainty,
the proposed controller can be extended as in [23] to provide
robust stability guarantees in the face of system uncertainty.

II. GOVERNING FLUID DYNAMIC EQUATIONS FOR

CENTRIFUGAL COMPRESSION SYSTEMS

In this section we develop a low-order three-state surge model
for centrifugal compressors. Specifically, we consider the basic
centrifugal compression system shown in Fig. 1, consisting of a
short inlet duct, a compressor, an outlet duct, a plenum, an exit
duct, and a control throttle. We assume that the plenum dimen-
sions are large as compared to the compressor-duct dimensions
so that the fluid velocity and acceleration in the plenum are neg-
ligible. In this case the pressure in the plenum is spatially uni-
form. Furthermore, we assume that the flow is controlled by a
throttle at the plenum exit. In addition, we assume a low-speed
compression system with oscillation frequencies much lower
than the acoustic resonance frequencies so that the flow can be
considered incompressible. However, we do assume that the gas
in the plenum is compressible and acts as a gas spring. Finally,
we assume isentropic process dynamics in the plenum and neg-
ligible gas angular momentum in the compressor passages as
compared to the impeller angular momentum.
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Fig. 1. Centrifugal compressor system geometry.

A. Conservation of Mass in the Plenum

Using continuity and assuming the plenum is a rigid volume
with isentropic flow dynamics, it follows that mass conservation
in the plenum is given by [21]

(1)

where is the mass flow rate at the plenum entrance, is the
mass flow rate through the throttle, is the plenum volume,

is the flow pressure inside the plenum, and is the ambient
sonic velocity. Next, assuming that the throttle discharges to an
infinite reservoir with pressure it follows that the pressure
difference must balance both the throttle pressure loss
and the net difference in pressure due to the flow acceleration
through the throttle duct. Here we model the flow through the
throttle by [3]

(2)

where the parameter is proportional to the throttle opening
and is the downstream pressure. If the plenum exit duct is
short, then can be regarded as the ambient pressure. Now
substituting (2) into (1) and defining the nondimensional pres-
sure, mass flow, and time, respectively, by

(3)

where is the cross sectional area of compressor exit duct and
is the length of the compressor duct, it follows that

(4)

where represents differentiation with respect to nondimen-
sional time and

(5)

B. Conservation of Momentum

Using a momentum balance with the assumption of incom-
pressible flow, it follows that the pressure difference between

the exit of the compressor and the plenum is proportional to the
rate of change of the mass flow rate, that is,

(6)

where is the pressure rise at the exit of the compressor. Next,
assuming isentropic process dynamics with a constant specific
heat , it follows that [24]

(7)

where is the compressor inlet temperature, is the fluid
temperature at compressor rotor exit, and is the specific heat
ratio. Now, using , where is the
ideal change in fluid specific enthalpy which, for a conservative
system, is equal to the work done by the compressor rotor, it
follows from (7) that

(8)

The energy delivered to the fluid by the compressor is given by

(9)

where is the angular velocity of the compressor spool and

(10)

where , cor-
respond to incidence and frictional losses at the inducer and dif-
fuser, respectively. For details see [21].

In order to capture compressor efficiency, define the isen-
tropic efficiency as [21]

(11)

Substituting (8) and (11) into (6) yields

(12)
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Next, defining the nondimensional angular velocity of com-

pressor spool by , where is the radius of the rotor
tip, and using (3), it follows that

(13)

where and is the compressor characteristic
pressure-flow/angular velocity map given by

(14)

where

(15)

is the slip factor corresponding to the ratio between the tan-
gential velocity of the fluid at the rotor outlet and the rotor tip
velocity, and , are nondimensional param-
eters related to the compressor dimensions, the ambient sonic
velocity, the inducer and rotor geometry, and the friction coef-
ficients. For details see [21].

It is important to note that the compressor characteristic map
given by (14) holds for the case where the flow through the com-
pressor is positive. In the case of deep surge involving negative
mass flow, it is assumed that the pressure rise in the compressor
is proportional to the square of the mass flow so that [17], [25]

(16)

where is a constant and

(17)

where

(18)

Now, for a fixed , taking the gradient of with
respect to the nondimensional flow it follows that the
flow corresponding to the maximum pressure point of the
compressor characteristic map is directly proportional to the
nondimensional angular velocity of the compressor spool and
is given by , where

(19)

Similarly, for a fixed taking the gradient of with
respect to the nondimensional flow we obtain that the max-
imum value for the isentropic efficiency is given by (20), shown

Fig. 2. Compressor characteristic maps and efficiency lines for different spool
speeds.

at the bottom of the page. Note that is constant for all
spool speeds. This indicates that the compressor achieves the
same maximum isentropic efficiency at each maximum pres-
sure point for all spool speeds. However, since these points are
critically stable, the need for active control is severe to guar-
antee stable compression system operation for peak compressor
performance. Fig. 2 shows a typical family of compressor char-
acteristic maps for different spool speeds along with the corre-
sponding constant isentropic efficiency lines. The stone wall de-
picted in Fig. 2 corresponds to choked flow at a given cross-sec-
tion of the compression system. For details see [21]

C. Turbocharger Spool Dynamics

Using conservation of angular momentum in the turbocharger
spool it follows that the spool dynamics are given by

(21)

where is the spool mass moment of inertia, is the driving
torque, and is the compressor torque. Now, using the
fact that the change in angular momentum of the fluid is equal
to the compressor torque and assuming absence of prewhirl at
the rotor inlet, it follows that [26], [27]

(22)

Substituting (22) into (21) we obtain

(23)

(20)
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which, using (3) and , can be written in nondimen-
sional form as

(24)

where

(25)

III. PARAMETERIZED SYSTEM EQUILIBRIA AND LOCAL SET

POINT DESIGNS

The stability-based switching nonlinear control strategy
developed in this paper stabilizes a given nonlinear system by
stabilizing a collection of nonlinear controlled subsystems over
a parameterized set of system equilibria. In this section we
develop Lyapunov-based subcontroller designs of the local set
points parameterized by the axisymmetric stable pressure-flow
equilibrium branch given by (14) for a fixed angular velocity
of the compressor spool. It is important to note that even
though a Lyapunov-based framework can be used to stabilize
the compression system, the resulting controller may generate
unnecessarily large control amplitude and rate signals that can
amplitude and rate saturate the control actuators resulting in
system performance degradation and even instability (see [28]
and the references therein). To proceed with the local set point

designs, first note that with control inputs and

it follows from (4), (13), and (24), that a state-space
model for the centrifugal compressor is given by

(26)

(27)

(28)

Next, note that for fixed values of the control inputs and ,
(26), (27) and (28) give an equilibrium point ,
where is given by

(29)

Defining the shifted variables , and

, so that the given equilibrium point is translated

to the origin, along with the shifted controls

and , it follows that the parameterized translated
nonlinear system is given by

(30)

(31)

(32)

where

(33)

(34)

Now, setting

(35)

(36)

where , and substituting (35) and (36) into (30)–(32)
yields

(37)

(38)

(39)

Next, consider the equilibria-dependent Lyapunov function
candidate

(40)

where . The corresponding Lya-
punov derivative is given by

(41)

where

(42)
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(43)

and where

(44)

and we have (45), shown at the bottom of the page.
Now, choosing the nonlinear control law

(46)

where , it follows that

(47)

for , so that the equilibria-dependent
nonlinear controller

(48)

guarantees that the closed-loop system (30)–(32) is globally
asymptotically stable for all parameterized system equilibria
given by (29). As mentioned above, however, the nonlinear con-
troller (48) may generate unnecessarily large control amplitude
and rate signals leading to actuator amplitude and rate satu-
ration. In the next section, we develop a globally stabilizing
switching control strategy that directly addresses actuator am-
plitude and rate saturation constraints.

IV. STABILITY-BASED SWITCHING NONLINEAR CONTROLLER

In this section we develop a globally stabilizing switching
control strategy for controlling the centrifugal compressor
model (26)–(28). Specifically, using Lyapunov stability theory,
a switching nonlinear globally stabilizing control law based on

equilibria-dependent or, instantaneous (with respect to a given
equilibrium) Lyapunov functions, with converging domain of
attractions is developed. Since the desired maximum pressure
operating point for a given angular velocity of the compressor
spool can be captured by the parameterization given by (29),
let the shifted variables correspond to a shifting
of the desired maximum pressure point so that the translated
system is given by

(49)

(50)

(51)

Next, let the diffeomorphism , be
such that , is an equilibrium point of (49)–(51)
and . Shifting the control law (48) and the Lyapunov
function (40) to the shifted variables , we obtain
the shifted control law which globally stabilizes
the equilibrium point , with an associated Lya-
punov function . Next, for the shifted control law

, consider an estimate of the domain of attrac-

tion given by ,
where is the finite value of on the boundary of

. Furthermore, assume that is a function of
and note that since and is continuous and radially
unbounded, is a compact set for , which further
implies that is a positively invariant set of (49)–(51) with
feedback control law . Finally, since

is not empty for all , there exists such

that and , where denotes the interior

of , that is, .
Using the properties of we now present the following

globally stabilizing switching nonlinear control strategy. Let
be such that , and

. Furthermore, define

(52)

Since for each it
follows that is a nonincreasing function of
time along the state trajectories of (49)–(51). Hence, with

, where the nota-
tion denotes a switching nonlinear
feedback controller with the switching function
defined as in (52), the solution of (49)–(51)

(45)
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approaches in a finite time. However, since is a
conservative estimate of the domain of attraction of the origin
of (49)–(51) , it follows that globally stabilizes
the desired maximum pressure point.

Note that the control law is a stability-based
switching controller and hence discontinuous. Next,
we present a modification to (52) so that the resulting
control law is continuous modulo at most one discon-
tinuity. For this development define the compact set

, consisting of the union of the compact
sets . Next, if , setting

the state trajectories
, will approach the globally asymptotically

stable equilibrium point . In particular, since
then there exists such that .
Now, let be such that and define

(53)

and . From the defini-
tion of it follows that is on

, where denotes the boundary of , that is,

. Further-
more, since

, it follows that there exists such that
. Hence,

.
Since is chosen arbitrarily, it follows that if

then , is monotoni-
cally decreasing.

Now, with
, define the Lyapunov function candidate

(54)

with Lyapunov derivative

(55)

Since for , if we choose
, , such that , it follows that

, for , which
proves local asymptotic stability of the origin.

Now, to construct a globally stabilizing controller it
need only be noted that if

and
otherwise, where is given by (53). However,
this control law may be discontinuous at the boundary
of . Alternatively, a continuous control law which
globally stabilizes the origin of the system can be ob-
tained by setting if

and letting the state trajecto-
ries enter the domain before switching the control
law to , where

is given by (53).

The equation , which implicitely defines
, cannot be easily solved. An alternative approach

for updating can be obtained by noting that the condition
must be satisfied for all , and hence its

time derivative must also be satisfied for all . In particular,
using (55) and noting that

we obtain

(56)

with such that . Note that
(56) along with provides a non-
linear first-order dynamic compensator equivalent to the orig-
inal condition which now needs to only be
solved once to compute the initial condition . Note that the
compensator dynamics given by (56) characterize the admis-
sible rate of the compensator state such that the switching non-
linear controller guarantees that

.
Finally, since all control actuation devices are subject to am-

plitude and rate saturation constraints that lead to saturation
nonlinearities [28], we discuss how the proposed switching non-
linear controller can be incorporated to address such practical
limitations. Specifically, since the dynamic compensator state

is related to the throttle opening (actuator) and since the dy-
namics given by (56) indirectly characterize the fastest admis-
sible rate at which the control throttle can open while main-
taining stability of the controlled system, it follows that by con-
straining the rate at which the dynamics of can evolve on the
equilibrium branch effectively places a rate constraint on the
throttle opening. Mathematically, this corresponds to the case
where the switching rate of the nonlinear controller is decreased
so that the trajectory is allowed
to enter . Additionally, amplitude saturation constraints
and state constraints can also be enforced by simply choosing

such that is contained in
the region where the system is constrained to operate. In this
case, the stability-based switching nonlinear controller provides
a local stability guarantee with domain of attraction given by

. Of course, in practice it is sufficient to implement con-
trollers with adequate domains of attraction and a priori satura-
tion constraint guarantees rather than implementing global con-
trollers without realistic actuator limitations. It is important to
note that the proposed amplitude and rate saturation scheme is
specific to the centrifugal compressor model developed herein.
A related but different control scheme for an electrostatically
shaped membrane with state and control constraints is given in
[29].

V. SWITCHING NONLINEAR CONTROL FOR CENTRIFUGAL

COMPRESSORS

In this section we apply the stability-based switching
controller developed in Section IV to a centrifugal
flow compressor problem. Specifically, we use the
three-state centrifugal compressor model derived in Sec-
tion II with
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Fig. 3. Phase portrait of pressure-flow map.

Fig. 4. Pressure rise versus time.

and . Since the torque calculated in (22) is for
forward mass flow in the compressor, and since the compressor
may enter deep surge, there is a need to derive an expression for
the compressor torque for negative mass flow. Hence, assuming
that a centrifugal compressor in reverse flow can be viewed as
a throttling device and hence can be approximated as a turbine,
it follows that in this case

(57)

Now, combining (22) and (57) gives [19]

(58)

Using the initial conditions
, the design parameters

and , the diffeomorphism

Fig. 5. Mass flow versus time.

Fig. 6. Compressor spool speed versus time.

, and , the
closed-loop system response with and without a
rate saturation constraint on the throttle opening is compared
to the open-loop response when the compression system is
taken from an operating speed of 20 000 r/min to 25 000
r/min. Fig. 3 shows the - phase portrait of the state tra-
jectories. The pressure rise, mass flow, and spool speed
variations for the open-loop and controlled system are shown
in Figs. 4, 5, and 6, respectively. Fig. 7 shows the control
effort versus time. This comparison illustrates that open-loop
control drives the compression system into deep surge while
the proposed stability-based switching controller drives the
system to the desired maximum pressure-flow equilibrium
point . Note that the
switching controller with a rate saturation constraint guarantees
stability with minimal degradation is system performance.
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Fig. 7. Control effort versus time.

VI. CONCLUSION

A three-state centrifugal compressor surge model involving
pressure and mass flow compression system dynamics as well as
spool dynamics to account for the influence of speed transients
on the compression surge dynamics was developed. Using Lya-
punov stability theory, a nonlinear globally stabilizing switching
control law based on equilibria-dependent Lyapunov functions
was developed. The proposed stability-based switching non-
linear control law was shown to be directly applicable to cen-
trifugal compression systems with actuator amplitude and rate
saturation constraints.
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