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Rsim: Simulating 
Shared-Memory
Multiprocessors 
with ILP Processors 

G iven the complexity and associated cost
of building modern computer systems,
simulation is often the only practical way
to test architectural ideas and assess sys-
tem performance. Simulators provide the

flexibility to modify and analyze the impact of var-
ious architectural parameters and components as
well as enable more detailed statistics collection
than real hardware. These benefits make simula-
tion useful even for projects that will eventually
implement hardware. 

Prior to 1994, most academic shared-memory
multiprocessor studies largely ignored the processor
model, focusing instead on the memory system as
the most important performance bottleneck. These
studies assumed a simplistic processor model based
on in-order issue, blocking reads, and no specula-
tion. However, the early 1990s saw several
announcements of commercial shared-memory sys-
tems using processors that aggressively exploited
instruction-level parallelism (ILP) such as the MIPS
R10000, Hewlett-Packard PA8000, and Intel
Pentium Pro. These processors had the potential to
reduce memory read stalls by overlapping read
latency with other operations, possibly changing the
nature of performance bottlenecks in the system. 

Because no shared-memory ILP systems or sim-
ulators were available at that time, we designed
Rsim—originally an acronym for Rice simulator for

ILP multiprocessors—to study such systems. Two
major questions guided our efforts: 

• Does processor microarchitecture influence
shared-memory performance and design to the
extent that it justifies its detailed modeling and
associated performance costs in a shared-mem-
ory simulator?

• With simple processor-based simulators al-
ready taking a long time to run, could we build
such a detailed simulator efficiently enough to
perform substantive architecture studies in rea-
sonable time?

Our experience with Rsim demonstrates that
modeling ILP features is important even in shared-
memory multiprocessor systems. In particular, cur-
rent simple processor-based approximations cannot
model significant performance effects for applica-
tions exhibiting parallel read misses. Further, recent
shared-memory designs—for example, aggressive
implementations of sequential consistency1—
directly use the aggressive ILP-enhancing features
of modern processors that simple processor-based
simulators do not model. 

We have also demonstrated that significant mul-
tiprocessor studies can be performed with the cur-
rent speed of ILP simulators. However, improving
their speed is crucial for future workloads. Our

Rsim is a publicly available architecture simulator for shared-memory 
systems built from processors that aggressively exploit instruction-level
parallelism. Modeling ILP features in a multiprocessor is particularly 
important for applications that exhibit parallelism among read misses.
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work with Rsim suggests several promising tech-
niques in this fertile area of research. 

RSIM SYSTEM
Rsim consists of several interchangeable modules

to model a range of architectures. At the time of its
development, there were no publicly available ILP
processor simulators and only limited documenta-
tion of commercial systems. We based the processor
model primarily on a preprint version of the MIPS
R10000 architecture manual, information from
product announcements, and consultations with
colleagues. 

We based major portions of the memory and net-
work subsystems on code from a previous-genera-
tion simulator, the Rice Parallel Processing Testbed
(RPPT),2 and followed industry experts’ recom-
mendations in setting their parameters. Because
most of our development infrastructure, such as the
compilers, was based on Sun Microsystems’ proces-
sors, we used a subset of the Sparc V9 for Rsim’s
instruction set architecture.

The online reference manual (http://www.ece.
rice.edu/~rsim/manual.ps) provides comprehensive
documentation on Rsim version 1.0, which we
made publicly available in 1997 free of cost for
noncommercial use.

Processor microarchitecture
Rsim models processors that exploit varying

amounts of ILP. Possible configurations range from
single-instruction issue, in-order (static) instruction
scheduling, and blocking memory operations to
multiple-instruction issue, out-of-order (dynamic)
instruction scheduling, and nonblocking memory
operations. Other key features include

• register renaming, 
• static and dynamic branch prediction, 
• speculative memory disambiguation, 
• software-controlled nonbinding prefetching, 
• multimedia instruction set extensions, 
• support for multiple memory-consistency

models and various ILP-specific optimized
implementations of these models, and

•  simultaneous multithreading.

Most processor parameters are user configurable—
for example, instruction issue width, instruction
window size, and number of functional units. 

Rsim’s processor architecture, as shown in Figure
1, approximates the MIPS R10000. In particular,
Rsim models the 

• active list, which holds the currently active
instructions and corresponds to the reorder
buffer or instruction window of other proces-
sors; 

• register map table, which holds the mapping
from the logical to physical registers; and 

• shadow mappers, which allow single-cycle
state recovery on a mispredicted branch. 

Rsim fetches, decodes, and retires—removes from
the instruction window—instructions in program
order; instructions can issue, execute, and complete
out-of-order.

Rsim currently supports static branch prediction,
dynamic branch prediction using either a two-bit
history scheme or a two-bit agree predictor, and
prediction of return instructions using a return
address stack. Rsim allows multiple predicted
branches at a time as long as each outstanding
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branch has at least one shadow mapper. These
branches can resolve out-of-order as well.

The Rsim processor also supports the visual
instruction set (VIS) extensions to the Sparc V9
architecture targeted at accelerating media pro-
cessing. The processor supports all instructions
except blocked loads and stores and the array
instruction. The VIS implementation is closely
modeled after the UltraSparc-II and operates on the
floating-point register file.

Cache and memory system
Rsim supports a two-level cache hierarchy with

separate first-level data and instruction caches and
a unified second-level cache. The first-level data
cache is multiported, pipelined, and either write-
through or write-back. The first-level instruction
cache is multiported, pipelined, and write-through.
The second-level cache is pipelined and write-back.
Systems with write-through first-level caches
include a coalescing write buffer. Both data caches
are lockup-free: They store the state of outstand-
ing requests in miss status holding registers
(MSHRs) and coalesce requests to the same line.

The main memory model is simple but allows
interleaving and is accessed through a pipelined
split-transaction bus. Rsim also supports instruc-
tion and data translation lookaside buffers (TLBs)
with hardware miss handlers. Most cache and
memory system parameters—including the num-
ber of L1 cache ports, the number of L1 or L2
MSHRs, cache sizes, and all latencies—are user
configurable.

Multiprocessor system
Rsim simulates several variations on a base hard-

ware, directory-based cache-coherent nonuniform
memory access (CC-Numa) shared-memory mul-
tiprocessor. As Figure 2 shows, each of the base sys-
tem’s nodes consists of a processor and cache
hierarchy along with part of the physical memory,

its associated directory, and a network interface. A
split-transaction bus connects the secondary cache,
memory and directory module, and network inter-
face. For remote communication, Rsim supports a
wormhole-routed two-dimensional mesh network;
other configurations are possible but not tested. To
avoid deadlocks, the system includes separate
request and reply networks. Again, most network
parameters, such as network width, flit size, and
flit delay, are user configurable.

Rsim employs a full-mapped invalidation-based
directory cache-coherence protocol and can support
either a modified, exclusive, shared, invalid (MESI)
protocol or a modified, shared, invalid (MSI) pro-
tocol. Both protocols support cache-to-cache trans-
fers for requests for lines another processor holds
in modified state. Rsim supports three memory con-
sistency models—sequential consistency, processor
consistency, and release consistency—and opti-
mizations specific to ILP processors for each model.

Applications interface
Rsim simulates applications compiled and linked

for Sparc V9/Solaris using standard Sparc compil-
ers and linkers at all optimization levels, with two
exceptions. First, because Rsim models a 32-bit
architecture, it does not support 64-bit integer and
quad-precision floating-point operations. Second,
Rsim’s trap convention differs from that of Solaris,
so it cannot use standard libraries and applications
that rely on such traps. Instead, an Rsim applica-
tions library supports commonly used libraries and
functions. 

There are some unsupported traps and related
functions, and we have only tested our library for
C application programs. Further, all system calls
are only emulated, not simulated. Rsim currently
does not support dynamically linked libraries. For
multiprocessor applications, the Rsim library
includes support for synchronization with locks,
flags, and barriers through parmacs macros.
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Statistics 
Rsim provides various execution statistics. For

many metrics, these include the average value, the
standard deviation, and a histogram showing the
distribution of the metric’s values. Rsim also pro-
vides scripts that interface with a plotting utility to
graphically display statistics related to a run or set
of runs.

Overall performance. Rsim displays the total exe-
cution cycles and instructions per cycle that the
program achieves on the simulated system. It fur-
ther categorizes the execution cycles into processor
busy cycles and stalls due to various instruction
classes including arithmetic logic units ( ALUs),
floating-point units ( FPUs), data reads, data
writes, exceptions, branches, synchronization, and
up to nine user-defined classes. Rsim splits data
read and write stalls according to the level of the
memory hierarchy that resolved the memory oper-
ation: L1 cache, L2 cache, local memory, or remote
memory.

Other processor statistics. Rsim provides statistics
on the usage of various functional units in the
processor, branch prediction behavior, and instruc-
tion window occupancy. 

Cache, memory, and network statistics. Rsim classi-
fies memory operations into hits and misses, and
further classifies misses into cold, capacity, con-
flict, and coherence. It also collects the average
latency of various classes of memory operations,
MSHR occupancy, prefetch effectiveness, bus uti-
lization, write-buffer utilization, network con-
tention, traffic, and network switch buffer usage.

Implementation
Rsim interprets application executables rather

than uses traces, enabling more accurate modeling
of the effects of contention and synchronization in
multiprocessor simulations as well as speculation in
multiprocessor and uniprocessor simulations. For
speed and portability, it converts the Sparc V9
instructions into an expanded, loosely encoded
instruction set format and internally caches them.

Key Rsim subsystems include the 

• out-of-order processor scheduling engine, 
• processor memory unit, 
• cache hierarchy, 
• memory/directory module, and 
• interconnection network. 

Each of these acts as a largely independent block,
interacting with the other units through a small
number of predefined mechanisms. 

Internally, Rsim is a discrete event-driven
simulator based on RPPT’s Yacsim (Yet
Another C Simulator) library. The various
events model the processor pipelines, cache
and memory system, and network, including
contention at all resources. Most Rsim sub-
systems are activated as separate events only
to perform work; the only exceptions are the
processor and cache events, which are acti-
vated each cycle.

We wrote Rsim in modular fashion using
C++ and C for extensibility and portability.
We have thus far tested it on Sun systems run-
ning Solaris (up to version 2.8), a Hewlett-Packard
Convex Exemplar running HP-UX version 10, an
SGI Power Challenge running IRIX 6.2, and x86
systems running Linux. Porting Rsim from an ini-
tial Sun version to other big-endian systems such
as the HP PA-RISC and SGI systems was straight-
forward, but porting it to little-endian systems such
as x86 and Alpha took more effort.

The clearly defined subsystems and their inter-
faces enable significant extensions to Rsim through
modification of a limited portion of the code. Most
changes to a subsystem affect only that subsystem,
easing debugging. 

IMPORTANCE OF MODELING ILP FEATURES
Many shared-memory multiprocessor simula-

tion studies use simple processor models such as
in-order issue, single-instruction issue per cycle,
blocking-demand read misses, and no speculative
execution. To model ILP’s benefits, researchers typ-
ically speed up the simulated simple processor’s
clock rate and primary cache access time by a clock
multiplier factor N, which can range from 1 to the
issue width of the ILP processor modeled. We call
such simulators simple-Nx and have shown that
such simple approximations are currently inade-
quate.

Clock multiplier
N is a measure of the average computational

parallelism that a real processor can extract from
an application. It also controls the average rate at
which the processor sends requests to the mem-
ory system. The appropriate value of N depends
on both the application and the system, and cur-
rently no known technique can determine N a pri-
ori. Educated guesses made on a case-by-case
basis would require validation on a real machine,
which may not exist, or on a detailed simulator,
which defeats the purpose of using simple-Nx
simulators.
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Read miss parallelism
The inability to model multiple outstanding read

misses, or read miss parallelism, distinguishes sim-
ple and detailed simulators for most studies.
Simple-Nx simulators can model the benefits of
overlapped computation with an appropriate N,
but in applications that exploit hardware support
for parallel read misses they can potentially pro-
duce large and unpredictable errors.3 Our previous
work showed that as processors become more
aggressive, modeling read miss parallelism becomes
increasingly important.4

To determine the extent of read miss parallelism,
we experimented with several applications from
the Stanford Parallel Applications for Shared Mem-
ory suite (Splash-2); http://www-flash.stanford.
edu/apps/SPLASH/). Surprisingly, many original
applications exhibited limited read miss parallelism
with realistic instruction window sizes.3 Because
these applications were written to exploit spatial
locality, contiguous sequences of instructions pre-
sent together in a hardware instruction window
worked on elements of a small number of cache
lines. This limited the number of distinct overlap-
ping cache misses, underutilizing the hardware
resources for parallel read misses. 

Read miss clustering. To increase read miss paral-
lelism without sacrificing spatial locality, we pro-
posed a compiler optimization, read miss
clustering, that provides significant performance
benefits by reordering instructions to pack inde-
pendent read misses together within the same
instruction window. Here, we report performance
predictions from Rsim and simple-Nx for two
applications, fast Fourier transform (FFT) and LU
matrix decomposition, with and without read miss
clustering. The results are for a multiprocessor con-
figuration similar to that in our prior work.5

Results for a uniprocessor are qualitatively simi-
lar. Because simple-Nx generally overestimates
execution time, to maximize its advantage we
chose the largest reasonable value for N: the issue
width of the modeled processor—4 in our case. To

let simple-4x best approximate out-of-order
instruction issue effects, we set both simulators’
functional unit latencies equal to one cycle. 

Execution time predictions. Figure 3 presents the
execution time predicted by Rsim and simple-4x
on the application’s original (base) and clustered
versions, normalized to the Rsim prediction for the
base version. Following previous work,3 we cate-
gorized the execution times into four components: 

• data memory stall time, 
• CPU time, 
• synchronization stall time, and 
• instruction memory stall time. 

For the base FFT, simple-4x matches Rsim well
in predicting total execution time, but it underpre-
dicts CPU time because the 4x clock multiplier is
too aggressive. It overpredicts memory time
because it does not model FFT’s read miss paral-
lelism. The under- and overpredictions balance out,
making the overall time close to that of Rsim. 

For the clustered FFT, simple-4x overpredicts
execution time by 42 percent relative to Rsim
because it cannot model the (higher) read miss par-
allelism. The clustering transformation also reduces
CPU time through scalar replacement,5 resulting in
a closer match between the CPU times predicted by
the two simulators. Thus, simple-4x’s underpre-
dicted CPU time no longer balances its memory
time overprediction, resulting in a large overpre-
diction of total time relative to Rsim.

For LU, simple-4x overpredicts execution time
relative to Rsim by 50 percent for the base version
and 132 percent for the clustered version—again,
because both LU versions contain read miss paral-
lelism, which simple-4x does not model.

Interpreting results. In addition to causing signif-
icant differences in predicted absolute execution
times, simple-4x’s inability to model read miss par-
allelism can lead to different conclusions about the
effectiveness of memory-system-related optimiza-
tions. Figure 4 illustrates the reduction in execu-
tion time or speedup from read miss clustering, as
predicted by Rsim and simple-4x and as seen on a
Convex Exemplar’s symmetric multiprocessor
(SMP) hypernode. Rsim reported a speedup of 22
percent for FFT and 44 percent for LU, with a sig-
nificant part from the data memory component.
These results make a strong case for clustering
optimization. In contrast, simple-4x reported a
slowdown for FFT and only a 13 percent
speedup—all from the CPU component from
scalar replacement—for LU. These simple-4x
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results fail to make a strong enough case to imple-
ment clustering optimization in a compiler.

Although there are significant differences
between the Exemplar and the Rsim model, we
measured the benefits of clustering on the real
machine to ensure that our results are not simply an
artifact of our simulation models. Figure 4 shows
that the Exemplar also experiences significant ben-
efits from clustering. The benefits are less than with
Rsim because its CC-Numa system has a higher
bandwidth than the Exemplar’s SMP hypernode.
Nevertheless, the results illustrate simulators’ abil-
ity—or lack thereof—to capture phenomena that
are important on real hardware. 

Prefetching 
Prefetching also can improve memory parallelism

in a program. Simple-Nx simulators can model
prefetches and miss parallelism because they do not
return values to the processor or block instruction
retirement. Simple-Nx simulators can potentially
predict execution times well for application ver-
sions that use prefetches to exploit all available
memory parallelism. 

Our recent work examining the interaction
between clustering and prefetching6 found that
clustering alone often outperformed prefetching
alone, but combining the two techniques achieved
the best performance. Comparing simple-4x, Rsim,
and the Exemplar for FFT and LU with and with-
out both prefetching and clustering, we again found
that simple-Nx is close to Rsim in some, but not
all, cases. Interestingly, prefetching degraded per-
formance on all LU versions on the Exemplar,
underscoring the difficulty of relying on this tech-
nique to justify using simple-Nx simulators.

Other ILP features
Some multiprocessor architecture research inher-

ently requires modeling aggressive ILP features. For
example, researchers have proposed using specula-
tion and out-of-order issue to remove the perfor-
mance gap between strict and relaxed memory
consistency models.1 It is not clear how to use sim-
ple-Nx simulators to determine if such techniques
are successful because simple-Nx does not model the
features that the techniques exploit. Using real
machines for this kind of study is also difficult—we
are not aware of any that are similar in all respects
other than their consistency model implementations. 
As processors exploit ILP more aggressively, it is

also possible that other effects such as the impact
of memory references generated from mispredicted
paths will increase in importance.

Reconciling results: The Flash study
A recent study by Jeffrey S. Gibson and col-

leagues7 that validated various simulators against
the Flexible Architecture for Shared Memory (Stan-
ford Flash) machine (http://www.flash.stanford.
edu/), which uses MIPS R10000 processors, con-
cluded that a detailed simulator with capabilities
similar to Rsim is no more accurate than simple-
Nx simulators with an appropriate N value.

The Flash study used four original Splash-2 codes
enhanced with prefetching, including FFT and LU.
Most original Splash-2 codes have little read miss
parallelism, and prefetching can capture some of
what is available. However, our work shows that
modeling detailed ILP features becomes increas-
ingly important with read miss parallelism—for
example, with read miss clustering. Further,
because applications are expected to perform best
when transformed to increase read miss parallelism
and run on modern ILP processors, considering
these forms of the applications is important.
Simple-Nx cannot model the benefits of read miss
parallelism in such applications.

Consistent with our work, the Flash study found
that the clock multiplier is a key factor for simple-Nx
simulators and that determining an appropriate N
value a priori is difficult. The study used three differ-
ent values for N and showed significant differences
in predicted execution times for each value. For exam-
ple, too large a value for FFT resulted in significant
underpredictions of multiprocessor speedups. The
final conclusion about the adequacy of simple-Nx
simulators was based on results obtained using the
best of the three values studied for N.

Finally, the Flash study did not consider research
on optimizations that directly make use of a proces-
sor’s aggressive ILP features—for example, using
speculation for strict consistency models.

CHALLENGES
Besides the overall effort required to develop

such a large software system, we faced two key
challenges in designing and using Rsim: a relatively
slow simulation speed and lack of real hardware
for validation. 
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Simulation speed
Rsim’s detail comes at the cost of simulation speed,

a limitation shared by most detailed simulators.
Although we could design the simulator efficiently
enough to perform substantive architecture studies,
it is about an order of magnitude slower than sim-
ple-processor-based multiprocessor simulators.4

To overcome part of the speed penalty, we
enhanced Rsim with Rabbit, a fast functional sim-
ulator. We modeled Rabbit after Embra, a fast
binary-translation-based simulator that SimOS uses
to fast forward workloads to interesting points and
to checkpoint state.8 In Rabbit mode, Rsim accel-
erates initialization and other portions of the code
when collecting timing statistics is unimportant. It
uses binary translation to let the host processor run
sections of the code natively, invoking simple cache
simulation as a user-specified option.

Table 1 gives some performance results for Rsim
in normal and Rabbit mode on a Sun Ultra 5 with
a 400-MHz UltraSparc II for applications repre-
senting pointer-intensive, scientific, and multime-
dia codes. All runs simulated a 1-GHz, out-of-order
uniprocessor with an issue width of 4, and 64-
Kbyte L1, and 1-Mbyte L2 caches. In normal mode,
Rsim’s speed is relatively constant across different
classes of applications, averaging about 26,000
instructions simulated per second. The slowdown
over native execution is more varied—4,300 times
to 15,300 times, with an average of 8,900 times—
and depends on how fast the host machine executes
the applications in native mode; it is lower for more
memory-intensive applications.

Rabbit mode without cache simulation is on aver-
age 310 times faster than normal mode, with only
a 32 times slowdown from native execution; with
cache simulation, Rabbit mode is 40 times faster.
Rabbit’s speed varies depending on the types of
instructions in the simulated application. With

cache simulation, the speed varies with the number
of cache misses as Rsim enters normal mode to han-
dle such misses. 

Open questions remain about how to use Rabbit
effectively for sampling on general workloads, par-
ticularly for multiprocessor systems. Also, its cur-
rent implementation is not as highly optimized as
Embra.8  Likewise there are questions about how
to integrate other complementary speed-enhancing
approaches such as direct-execution for uniproces-
sors9 and multiprocessors4 and statistical simula-
tion for uniprocessors.10 Overall, improving ILP
simulation speed without losing accuracy remains
an important object of research. 

Validation
Another challenge at the time we started devel-

oping Rsim was the lack of real hardware to guide
the design. Consequently, Rsim does not model any
one real system and lacks validation against exist-
ing hardware. As the “Performing Valid Studies
with Unvalidated Simulators” sidebar indicates, this
is a pervasive problem in computer architecture
research as the complexity of designing real hard-
ware leads to an increasing reliance on simulation. 

We made some deliberate modeling abstractions
in Rsim’s design to reduce programming complex-
ity or time, or simply because we did not have
detailed information. Newer internal versions have
more realistic models, but some abstractions
remain—for example, the memory model and parts
of the processor pipeline. Current high-frequency
ILP processors now face constraints not seen in the
then state-of-the-art MIPS R10000, and the Rsim
processor does not model the implementation deci-
sions due to those constraints.

Validating Rsim on the basis of absolute execu-
tion time was difficult when aggressive ILP 
uniprocessors and multiprocessors became com-

Table 1. Rsim performance in normal and Rabbit mode, with and without cache simulation.

Application Description Instructions Execution speed (application Slowdown versus native
(millions) instructions per second) 

Normal Rabbit mode Normal Rabbit mode
mode mode

Cache No cache Cache No cache 
simulated simulated simulated simulated

Minimum spanning tree Pointer-intensive 206 27K 33K 3,070K 4,300 3,400 37
LU matrix decomposition Scientific 484 24K 70K 11,100K 7,100 2,400 15
MPEG-2 encode Multimedia 1,070 28K 2,900K 10,000K 15,300 150 43
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Two recent studies concluded that
execution times predicted from simula-
tion deviate significantly from real hard-
ware results and that tuning the
simulators to match the hardware
requires considerable effort. 

Jeffrey S. Gibson and colleagues used
their results to underscore the impor-
tance of building real hardware as a final
validation of architectural ideas,1 but
expecting all research groups to build
hardware is unfeasible given the increas-
ing complexity of current systems.
Rajagopalan Desikan, Doug Burger, and
Stephen W. Keckler2 advocate that sim-
ulation studies use community-sup-
ported sets of parameters and compare
results against a reference hardware
platform or validated simulator. They
also recommend that experimental stud-
ies be reproducible and demonstrate that
optimization benefits are stable—
demonstrable on a range of architectural
parameters. 

This is excellent guidance when real
hardware is too expensive to build.
However, we believe that these recom-
mendations set an impractically high
and sometimes insufficient standard for
much research, and that simulators such
as Rsim can continue to provide valu-
able insights into architectural phenom-
ena and relative trends.

Building validated simulators 
For studies based on significantly new

architecture paradigms, validating sim-
ulators is difficult because no base hard-
ware exists. For research based on local
changes to existing architectures, build-
ing base architecture simulators and val-
idating them against a reference machine
is conceptually feasible, but much sys-
tem information is proprietary. For
example, Desikan and colleagues could
not validate their simulator’s memory
system because it lacked documentation.
Although they achieved remarkable
accuracy validating the processor model

with microbenchmarks, significant and
widely varying errors occurred in the
execution times predicted for the full
applications—up to 43 percent, with a
mean of 18 percent and coefficient of
variance of 73 percent.

Selecting reference hardware
Even if building an open source sim-

ulator that validates well against refer-
ence hardware were possible, choosing
such hardware would be controversial
even for research on localized optimiza-
tions for three reasons:

• Technology evolves very quickly. By
the time the reference hardware
appropriate for the research hori-
zon of a specific project becomes
available and is validated, a new
architecture may become the
desired reference point. 

• There is often no clear consensus on
the ideal reference architecture. For
example, there is currently no con-
sensus on the architecture of either
the future high-performance or
embedded system. 

• Most machines have one or more
performance-inhibiting features that
in hindsight are considered incorrect
decisions; conversely, every machine
has relatively aggressive perfor-
mance-enhancing features that are
not implemented in other contem-
porary systems. A broad scientific
evaluation requires considering the
impact of the proposed research
independent of machine-specific
constraints.

Choosing the right workload
Regardless of the simulator’s accu-

racy, experimental results also depend
on the workload choice. Workloads
evolve as architectures change, but stan-
dard benchmark suites typically used in
architectural studies evolve much more
slowly. Having only an accurate simula-

tor is not enough—we must interpret
results from such a simulator on non-
representative workloads with as much
care as the results of an unvalidated sim-
ulator.

Emphasizing analysis
Following previous studies, we sup-

port efforts to validate simulators and
make them as close to real hardware as
possible. Even with a validated simula-
tor, however, understanding the pro-
posed ideas’ impact beyond the specific
machine and workload studied is impor-
tant. Architects will therefore inevitably
continue to use a multitude of unvali-
dated simulators and previous-genera-
tion workloads to evaluate their ideas.

For such studies to remain relevant,
researchers should emphasize analysis
to determine the architectural and work-
load characteristics under which a pro-
posed technique is expected to provide
both a performance benefit and loss. The
insights obtained from such analyses will
likely have more relevance than absolute
performance improvement numbers.
Practitioners can use both analytic
insights and simulation data to deter-
mine whether a proposed technique is
worth further exploration in their spe-
cific environment. 

References
1. J. Gibson et al., “FLASH vs. (Simulated)

FLASH: Closing the Simulation Loop,”
Proc. 9th Int’l Conf. Architectural Sup-
port for Programming Languages and
Operating Systems (ASPLOS 00), ACM
Press, New York, 2000, pp. 49-58.

2. R. Desikan, D. Burger, and S.W. Keckler,
“Measuring Experimental Error in
Microprocessor Simulation,” Proc. 28th
Ann. Int’l Symp. Computer Architecture
(ISCA 01), ACM Press, New York, 2001,
pp. 266-277.

Performing Valid Studies with Unvalidated Simulators



48 Computer

mercially available. We configured our model
to match an R10000 and UltraSparc-II as
much as possible and used microbenchmarks
to compare the execution times that Rsim
predicted to real times on each of these
machines. In many cases, Rsim closely
matched one of the processors but not the
other, and in some cases it did not match
either processor. This was not unexpected
because the MIPS R10000 has a different
instruction set, the UltraSparc-II has a dif-
ferent core pipeline, and both processors have
different memory hierarchies than Rsim. 

Nevertheless, we have validated relative
performance benefits predicted by our work

with Rsim. Although the Convex Exemplar and
Rsim have different architectures, when compar-
ing the benefits of read miss clustering and prefetch-
ing, the simulator predicted the same overall
phenomena and trends that we observed on the real
machine.5,6

Further, to increase confidence in our results, we
have focused on the insights obtained from our
results rather than the absolute numbers them-
selves. We have also correlated insights obtained
with detailed behavior of the hardware and specific
application patterns to help identify and fix errors
in our simulator that may have occurred due to
inadvertent bugs, poor abstraction of the real sys-
tem, or omissions of real system constraints.

EXPERIENCE
We have used Rsim extensively in multiproces-

sor and uniprocessor research on scientific, data-
base, and multimedia workloads. 

We initially theorized that aggressive ILP proces-
sors’ ability to overlap read miss latency would
make synchronization time relatively more impor-
tant, but our first experiments quickly showed this
to be incorrect. ILP features were effective in speed-
ing up the CPU component but not in addressing
data memory stall times, which continue to be a
dominant performance bottleneck.3

However, our results conclusively indicated that
modeling aggressive features of ILP processors is
important even for multiprocessor studies.
Previous-generation simple-processor simulators
often led to erroneous and inconsistent results. We
therefore initiated a broader research study on the
impact of ILP processors on shared-memory sys-
tems, concentrating on performance, programma-
bility, and evaluation techniques. This work led to
several performance-enhancing and evaluation
techniques targeted at ILP-based systems. 

Detailed ILP simulators are clearly necessary for
multiprocessor studies in which aggressive ILP fea-
tures play a direct role, such as evaluating specula-
tion-based memory consistency implementations.1

For other studies, modeling the processor to the
extent that it generates memory references at the
correct rate—determined by the amount of ILP in
the computation and the amount of memory paral-
lelism—is important. Currently, no known tech-
niques can correctly model these effects in a
simple-processor-based simulator without knowl-
edge of application behavior determined from
detailed simulation or real hardware. As processors
exploit increasing amounts of ILP, these effects will
become increasingly relevant.4 Other effects such as
impact of memory references generated from mis-
predicted paths may also become more important.

A s microprocessor systems become more com-
plex, we believe that the availability of shared
infrastructure source code will become

increasingly crucial. Since we made Rsim version
1.0 publicly available, several groups worldwide
have used it for research and education. While dis-
tributing and supporting Rsim has required a sig-
nificant time commitment, the experience has been
very positive. We have used feedback from other
research groups to identify bugs in the simulator
and further refine its model. 

We plan to release a new version shortly that will
include instruction caches, TLBs, multimedia exten-
sions, simultaneous multithreading, Rabbit fast
simulation mode, and ports to Linux platforms. A
current limitation is that Rsim does not support full
system simulation—specifically the effects of sys-
tem calls, I/O, and virtual memory. Simulators such
as SimOS (http://simos.stanford.edu/) and Simics
(http://www.simics.com) have the ability to run an
unmodified operating system, making them easier
to use on workloads that use OS features exten-
sively. Future editions will address this limitation
as well as improve performance and ease of use. �
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