
42 DeepThought

Title: SimpleScalar CPU Simulator

Author: Rob Williams 10/05, 10/06
Grouping: Individual or pairs
Prerequisites: Knowledge of basic CPU architecture
Languages: a bit of C
Time: 2 hours.
Break-Points:

Courses: BSc CRTS/CSE yr4

Requirements: Access to the SimpleScalar simulator software
and the gcc compiler configured for the simplescalar architecture.

Summar y:
This wor ksheet uses the SimpleScalar tool set, developed originally by Doug Burger & Todd Austin at
Wisconsin Uni. Further wor k has now been carried out at Michigan and several other universities. It
compr ises a suite of powerful computer simulators which can provide both detailed and high-perfor mance
simulation for the study of modern CPU architectures.

Learning Objectives:

To be able to use the SimpleScalar tool set to test out a range of architectural parameters, such as cache
size and configuration, relative fetch/issue rates, inorder/out-of-order strategies, and load/store buffer ing
strategies. Also to gain exper ience with setting up special benchmark trials to profile the perfor mance of a
new CPU. Finally, to exper iment with dramatically different architectures, pipeline lengths, and number.

Commercial relevance:

When developing a simulator the three opposing dimensions, Perfor mance,
Flexibility and Detail need to be reconciled for the needs of the user. The sim-

outorder simulator is the most detailed CPU simulator provided with the
SimpleScalar tool set and suffer ing some reduction in perfor mance. It was
or iginally based on the MIPS-4 instruction set architecture and models a ver y
moder n superscalar microprocessor with 10 execution units (pipelines). Newer
ARM and x86 versions have also been developed by other research labs. It
attempts to maximally exploit ILP (Instruction Level Parallelism) and keep all the
execution units busy by using out-of-order instruction execution. In many ways it
realistically models the current processors found in the latest wor kstations/PCs.

Perfor mance

FlexibilityDetail

Sim-fast is a functional simulator, with a single, ser ial instr uction stream, no cahing and no command line
switches. Also it does not capture timing infor mation, unlike sim-outorder. An alter native, slower but more
detailed simulation can be carried out by sim-safe.

SimpleScalar is widely used in academic research as well as commercial product development. The
perfor mance is good, on a P4/1.6 GHz host, sim-fast will emulate 10 Mips, while sim-outorder achieves 350
kips. The ability to skillfully use a contemporar y simulator tool set provides a strength to your professional
CV. Commercial ASIC or FPGA developments frequently commence with a phase of pre-HDL simulation
using special tool sets, such as SimpleScalar, or bespoke C++ programs.

1

What you do:

Target application & O/S

SS Hardware model

Simulation ker nel

Target
ISA

Target
I/O interface

Host platfor m O/S

Perf
core

Fetch

Predictor

Pipeline

Caches

Read the SimpleScalar Tool Set Report, written by Burger & Austin. There are lots of details contained that
you will need to run the var ious simulators. The simultators are: sim-fast, sim-safe, sim-outorder, sim-cache
and sim-cheetah. Note that the simulator code is compiled to run on the little-
endian Pentium. But the simulators actually emulate the action of other
CPUs, so to produce test programs to be run by a simulator, the test code has
to be generated by a cross-compiler using a special version of gcc, simplesim-
gcc, which produces the correct machine binary for the current simulator
configuration. The simulators and the simplesim-gcc cross-compiler have
aready been down-loaded and installed on kenny at:

/usr/local/simplesim/

Take a look. All the simulators can be operated immediately sometimes using
command line flag options. The basic set are:

-h print out the help screen

-d turn on debug messages

-i run the DLite! debugger (not for sim-fast)

-q terminate immediately

-dumpconfig generate a config file from command line parameters

-config file.cfg use the flag options in config file

To carr y out a test, the chosen simulator will have to "execute" a program. This will have to be presented in a
valid executable for mat for the SimpleScalar machine architecture which is based on the MIPS 4 CPU. It is
nor mal to use standard benchmark programs for these test runs, and several have already been prepared for
use, and stored in /usr/local/simplesim/simplesim-3.0/tests/bin.little

test-fmath test-lswlr test-printf anagram test-llong test-math

To run a simulation session with the test-math benchmark try the following:

> cd /usr/local/simplesim/simplesim-3.0

> ./sim-safe test/bin.little/test-math

sim-safe: SimpleScalar/PISA Tool Set version 3.0 of August, 2003.

Copyright (c) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.

All Rights Reserved. This version of SimpleScalar is licensed for academic

non-commercial use. No portion of this work may be used by any commercial

entity, or for any commercial purpose, without the prior written permission

of SimpleScalar, LLC (info@simplescalar.com).

sim: command line: ./sim-safe tests/bin.little/test-math

sim: simulation started @ Sat Oct 22 22:34:39 2005, options follow:

sim-safe: This simulator implements a functional simulator. This

functional simulator is the simplest, most user-friendly simulator in the

simplescalar tool set. Unlike sim-fast, this functional simulator checks

for all instruction errors, and the implementation is crafted for clarity

rather than speed.

-config # load configuration from a file

-dumpconfig # dump configuration to a file

-h false # print help message

-v false # verbose operation

-d false # enable debug message

-i false # start in Dlite debugger

-seed 1 # random number generator seed (0 for timer seed)

-q false # initialize and terminate immediately

-chkpt <null> # restore EIO trace execution from <fname>

-redir:sim <null> # redirect simulator output to file (non-interacti

ve only)

-redir:prog <null> # redirect simulated program output to file

2

-nice 0 # simulator scheduling priority

-max:inst 0 # maximum number of inst’s to execute

sim: ** starting functional simulation **

pow(12.0, 2.0) == 144.000000

pow(10.0, 3.0) == 1000.000000

pow(10.0, -3.0) == 0.001000

str: 123.456

x: 123.000000

str: 123.456

x: 123.456000

str: 123.456

x: 123.456000

123.456 123.456000 123 1000

sinh(2.0) = 3.62686

sinh(3.0) = 10.01787

h=3.60555

atan2(3,2) = 0.98279

pow(3.60555,4.0) = 169

169 / exp(0.98279 * 5) = 1.24102

3.93117 + 5*log(3.60555) = 10.34355

cos(10.34355) = -0.6068, sin(10.34355) = -0.79486

x 0.5x

x0.5 x

x 0.5x

-1e-17 != -1e-17 Worked!

sim: ** simulation statistics **

sim_num_insn 213688 # total number of instructions executed

sim_num_refs 56897 # total number of loads and stores executed

sim_elapsed_time 1 # total simulation time in seconds

sim_inst_rate 213688.0000 # simulation speed (in insts/sec)

ld_text_base 0x00400000 # program text (code) segment base

ld_text_size 91744 # program text (code) size in bytes

ld_data_base 0x10000000 # program initialized data segment base

ld_data_size 13028 # program init’ed ‘.data’ and uninit’ed ‘.bs

s’ size in bytes

ld_stack_base 0x7fffc000 # program stack segment base (highest addres

s in stack)

ld_stack_size 16384 # program initial stack size

ld_prog_entry 0x00400140 # program entry point (initial PC)

ld_environ_base 0x7fff8000 # program environment base address address

ld_target_big_endian 0 # target executable endian-ness, non-zero if

big endian

mem.page_count 33 # total number of pages allocated

mem.page_mem 132k # total size of memory pages allocated

mem.ptab_misses 34 # total first level page table misses

mem.ptab_accesses 1547345 # total page table accesses

mem.ptab_miss_rate 0.0000 # first level page table miss rate

>

3

Producing test programmes

Consider the following short program, testit.c:

// testit.c

int a[100];

int b[100];

unsigned int c = 255;

unsigned int i;

main () {

for (i = 0; i < 100; i++)

a[i] = b[i] + c;

}

Before you start using the SimpleScalar version of the gcc compiler, you may want to use the bash shell
alias facility to reduce the typing and the space taken up on your command line. You may place these
instr uctions in your .bashrc file so that it gets setup with each new shell:

> alias ssgcc=’/usr/local/simplesim/bin/sslittle-na-sstrix-gcc’

> alias sim-safe=’/usr/local/simplesim/simplesim-3.0/sim-safe’

> alias sim-ooo=’/usr/local/simplesim/simplesim-3.0/sim-outorder’

Alter natively you could insert /usr/local/simplesim/ into the PATH environment var iable, but there would still
remain the need to type complex names. ssssing aliases, you can simply type in ssgcc in place of
/usr/local/simplesim/bin/sslittle-na-sstr ix-gcc, clear ly a good thing because you can compile a test program
with:

> ssgcc -g -O testit.c -o testit

or to get n assembler file to look at:

> ssgcc -S testit.c

cat testit.s

.file 1 "testit.c"

GNU C 2.6.3 [AL 1.1, MM 40, tma 0.1] SimpleScalar running sstrix compiled by GNU C

Cc1 defaults:

-mgas -mgpOPT

Cc1 arguments (-G value = 8, Cpu = default, ISA = 1):

-quiet -dumpbase -o

gcc2_compiled.:

__gnu_compiled_c:

.globl c

.sdata

.align 2

c:

.word 255

.text

.align 2

.globl main

.comm i,4

.comm a,400

.comm b,400

.text

4

.loc 1 9

.ent main

main:

.frame $fp,24,$31 # vars= 0, regs= 2/0, args= 16, extra= 0

.mask 0xc0000000,-4

.fmask 0x00000000,0

subu $sp,$sp,24

sw $31,20($sp)

sw $fp,16($sp)

move $fp,$sp

jal __main

sw $0,i

$L2: lw $2,i

sltu $3,$2,100

bne $3,$0,$L5

j $L3

$L5: lw $2,i

move $3,$2

sll $2,$3,2

la $4,a

addu $3,$2,$4

move $2,$3

lw $3,i

move $4,$3

sll $3,$4,2

la $4,b

addu $3,$3,$4

move $4,$3

lw $3,0($4)

lw $4,c

addu $3,$3,$4

sw $3,0($2)

$L4: lw $3,i

addu $2,$3,1

move $3,$2

sw $3,i

j $L2

$L3:

$L1: move $sp,$fp # sp not trusted here

lw $31,20($sp)

lw $fp,16($sp)

addu $sp,$sp,24

j $31

.end main

>

a) Highlight the block of 5 instr uctions which builds a pointer to the a[] array.

b) Highlight a similar 5 instruction block which builds a pointer to the b[] array.

c) Highlight the 4 instruction block which adds the constant (255) into the element of a[] and placesthe
result in b[].

d) How would you write Pentium assembler to initialize a register with 255? Now, would you do the same in
MIPS assembler?

e) Where does the stack frame get set up? What doe the subu $sp,$sp,24 instr uction achieve? What is
being stored in $31? How can you confirm your idea?

5

f) How are conditional branch/jumps achieved in MIPS?

g) Is there a CPU Status Flags Register?

Tr ace out the way this code runs. Assume that a and b are arrays of words and the base address of a is held
in register $0 and the base address of b is held in register $1. Register $2 is associated with var iable i and
register $3 with c.

Using the C-code as a template, hand write your own version of the assembly code. Use the
compiler/assembler (gcc/gas) provided with the SimpleScalar tool kit translate the assembly code to
executable code for the simulator.

Cache Configuration

The two separate L1 caches are set for default sizes of 8kB with a single unified L2 of 256 kB. The TLBs
have 64 and 128 entries. Different values can be set as follows:

LRU replacement policy

1-way set

64B cache line

64 sets
Main memory

4KB pages

Cache memory

128 sets
of 4x32B

32B cache
line

sim-cache -cache:il1 il1:64:64:1:l

-cache:il2 dl2

-cache:dl1 dl1:64:64:1:l

-cache:dl2 dl2:4096:64:1:l

-tlb:itlb none

-tlb:dtlb none compress95.ss

or
-itlb:16:4096:4:1 (64 x 4-way set gives 64 entries)

-dtlb:32:4096:4:1 (32 x 4-way set gives 128 entries)

So 64 x 64 x 1 = 4kB cache size. A single 8k unified cache can be specified instead of separate data and
instr uction caches by the following:

sim-cache -cache:il1 dl1

-cache:dl1 dl1:128:64:1:l

-cache:dl2 none

-cache:il2 none

-tlb:itlb none

-tlb:dtlb none compress95.ss

or more convenenently, using a script file to hold all the flag options:

sim-cache -config test_cache.cfg compress95.ss

The cache size parameters are arranged as:

Name : #sets : cache_line_size : associative# : replacement_policy (l, f, r) (l-LRU, f-FIFO, r-random)

6

Simulation

Do a full compile and build on the testit.c code and then use the
sim-safe simulator to run the output code, collecting the monitored data in a log file:

> sim-safe testit >& /tmp/testit.out

> more

sim-safe: SimpleScalar/PISA Tool Set version 3.0 of August, 2003.

Copyright (c) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.

All Rights Reserved. This version of SimpleScalar is licensed for academic

non-commercial use. No portion of this work may be used by any commercial

entity, or for any commercial purpose, without the prior written permission

of SimpleScalar, LLC (info@simplescalar.com).

sim: command line: /usr/local/simplesim/simplesim-3.0/sim-safe testit

sim: simulation started @ Sat Sep 30 12:53:38 2006, options follow:

sim-safe: This simulator implements a functional simulator. This

functional simulator is the simplest, most user-friendly simulator in the

simplescalar tool set. Unlike sim-fast, this functional simulator checks

for all instruction errors, and the implementation is crafted for clarity

rather than speed.

-config # load configuration from a file

-dumpconfig # dump configuration to a file

-h false # print help message

-v false # verbose operation

-d false # enable debug message

-i false # start in Dlite debugger

-seed 1 # random number generator seed (0 for timer seed)

-q false # initialize and terminate immediately

-chkpt <null> # restore EIO trace execution from <fname>

-redir:sim <null> # redirect simulator output to file (non-interactive only)

-redir:prog <null> # redirect simulated program output to file

-nice 0 # simulator scheduling priority

-max:inst 0 # maximum number of inst’s to execute

sim: ** starting functional simulation **

sim: ** simulation statistics **

sim_num_insn 7136 # total number of instructions executed

sim_num_refs 4024 # total number of loads and stores executed

sim_elapsed_time 1 # total simulation time in seconds

sim_inst_rate 7136.0000 # simulation speed (in insts/sec)

ld_text_base 0x00400000 # program text (code) segment base

ld_text_size 22960 # program text (code) size in bytes

ld_data_base 0x10000000 # program initialized data segment base

ld_data_size 4096 # program init’ed ‘.data’ and uninit’ed ‘.bss’ size in bytes

ld_stack_base 0x7fffc000 # program stack segment base (highest address in stack)

ld_stack_size 16384 # program initial stack size

ld_prog_entry 0x00400140 # program entry point (initial PC)

ld_environ_base 0x7fff8000 # program environment base address address

ld_target_big_endian 0 # target executable endian-ness, non-zero if big endian

mem.page_count 12 # total number of pages allocated

mem.page_mem 48k # total size of memory pages allocated

mem.ptab_misses 12 # total first level page table misses

mem.ptab_accesses 182004 # total page table accesses

mem.ptab_miss_rate 0.0001 # first level page table miss rate

7

a) How many machine instructions are executed during the running of the code?

b) How many memor y data references are made during its execution?

c) Now use the gcc compiler provided with the SimpleScalar tool kit to compile the C code equivalent into
MIPS binary code. Use the sim-safe simulator to run your code.

What are the principal differences between the generated results from the hand coded assembler and C
code? If there is any difference, why are there different instructions, or more specificaly, different memory
references?

d) Now try downloading source code for the game go from a GNU ftp site, unzip and extract the program
from the tar ball (gnugo-3.4.tar.gz):

> ftp ftp.gnu.org

ftp> cd gnu/gnugo

ftp> get gnugo-3.4.tar.gz /tmp/gnugo.tgz

ftp> quit

> cd /tmp

> tar -zvxf gnugo.tgz

>

e) The sim-outorder module simulates, in a cycle-by-cycle mode, a pipelined, speculative, out of order (OoO)
CPU with a full memory hierarchy (L1, L2 and main memory), and computes a wide range of infor mation on
the execution time and perfor mance of each section of the processor. Sim-outorder is an execution driven
simulator, which means that it executes the program that it is given, step-by-step, reading and writing data as
it goes through the program. he alter native scheme of a trace driven simulator, uses a list of all executed
instr uctions taken from a previous run, as a trace, and determines perfor mance statistics from that. Trace
dr iven simulators are unable to track mispredicted branches, cache misses, and other execution-time events
because the instruction trace does not include them. Simplescalar is an execution-dr iven simulator and so it
gives a more complete picture of the new CPU design as it executes.

Running sim-outorder without arguments will display a few pages of parameters and flags that can be
passed to the simulator to modify its behavior. The parameters will scroll by too quickly for mere mortals to
read, so try redirecting its output to a file using:>& and then browsing that file:

> sim-outorder >& /tmp/sim.out

> more /tmp/sim_out

>

As you become more familiar with Simplescalar and with computer architectures in general, more of the
options will make sense.

The parameters you pass to sim-outorder will depend on the type of data you want to generate. For example,
say you would like to compare how the execution time of a program will change if the L1 cache latency is
doubled. In this case, you need to run two simulations, one with the baseline L1 cache latency, and a second
with twice the latency of the first. Cache configuration options will be discussed in detail later; for now, know
that we can obtain the data we need by running the following two simulations:

> sim-outorder -cache:il1lat1 -cache:dl1lat1 testit >& testit_1.out

>

> sim-outorder -cache:il1lat2 -cache:dl1lat2 testit >& testit_2.out

The final argument to sim-outorder (before the redirection) is the test program that you would like to run on
the simulated chip. Typically, you will run a few programs chosen from known benchmark suites such as
SPECint and SPECfp, which will be provided. If you need to run other benchmarks which do not have
precompiled Simplescalar binaries, the program must be compiled from source for the Simplescalar ISA

8

using the Simplescalar targeted version of gcc (which is called ss-little-na-sstrix for the Pentium host).

Some other useful sim-outorder command line options are:

-nice X Sets the simulator prior ity to X (for running in the background).

-max:inst n Executes upto n instructions, then stops.

-fastfwd n Does not calculate simulation stats for the first n instructions.

-cache:xly <config> Specifies the cache configuration.

-cache:xlylat N Specifies the cache latency in number of cycles

-mem:lat N M Specifies the DRAM latency (N: first byte, M: next bytes).

Always remember to set the DRAM latency to a reasonable value (e.g. M: 100, N:1).
A config file facility is available to hold all the configuration data. See the current status of a simulator by:

> sim-safe -dumpconfig -

load configuration from a file

-config

dump configuration to a file

-dumpconfig

print help message

-h false

verbose operation

-v false

enable debug message

-d false

start in Dlite debugger

-i false

random number generator seed (0 for timer seed)

-seed 1

initialize and terminate immediately

-q false

restore EIO trace execution from <fname>

-chkpt <null>

redirect simulator output to file (non-interactive only)

-redir:sim <null>

redirect simulated program output to file

-redir:prog <null>

simulator scheduling priority

-nice 0

maximum number of inst’s to execute

-max:inst 0

sim-safe: SimpleScalar/PISA Tool Set version 3.0 of August, 2003.

Copyright (c) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.

All Rights Reserved. This version of SimpleScalar is licensed for academic

non-commercial use. No portion of this work may be used by any commercial

entity, or for any commercial purpose, without the prior written permission

of SimpleScalar, LLC (info@simplescalar.com).

error: no executable specified

Usage: /usr/local/simplesim/simplesim-3.0/sim-safe {-options} executable {arguments}

sim-safe: This simulator implements a functional simulator. This

functional simulator is the simplest, most user-friendly simulator in the

9

simplescalar tool set. Unlike sim-fast, this functional simulator checks

for all instruction errors, and the implementation is crafted for clarity

rather than speed.

#

-option <args> # <default> # description

#

-config <string> # <null> # load configuration from a file

-dumpconfig <string> # <null> # dump configuration to a file

-h <true|false> # false # print help message

-v <true|false> # false # verbose operation

-d <true|false> # false # enable debug message

-i <true|false> # false # start in Dlite debugger

-seed <int> # 1 # random number generator seed (0 for timer seed)

-q <true|false> # false # initialize and terminate immediately

-chkpt <string> # <null> # restore EIO trace execution from <fname>

-redir:sim <string> # <null> # redirect simulator output to file (non-interactive only)

-redir:prog <string> # <null> # redirect simulated program output to file

-nice <int> # 0 # simulator scheduling priority

-max:inst <uint> # 0 # maximum number of inst’s to execute

>

To load new configuration data, either save a config file:

> sim-safe -dumpconfig sim-safe.config

Then edit the contents and reload it for the next simulation run:

>>

> sim-safe -config sim-safe_2.config testit >& testit.run-data

>

Now try to configure Simplescalar to run using a 128 4-way set, 32kB split (16kB data/16kB instruction) L1
cache with a 3 cycle latency and 32 byte line size (block size), and a 4-way, 512kB unified L2 cache with a 27
cycle latency and 64 byte block size. Assume both caches are use LRU replacement.

The solution is:

-cache:dl1 dl1:128:32:4:l -cache:dl1lat 3 -cache:il1 il1:128:32:4:l

-cache:il1lat 3 -cache:il2 dl2 -cache:il2lat 27 -cache:dl2 dl2:2048:64:4:l

-cache:dl2lat 27

10

Changing the SimpleScalar Architecture

The machine instruction definitions are held in a single file in the following for mat;

DEINST (ADDI, ;

0x41, ; opcode value

"addi", ; opcode mnemonic

"t, s, i", ; fields

IntALU, ; FU requirements

F_ICOMP | F_IMM, ; Instruction flags

GPR(RT), ; Output dependences

NA,

GPR(RS), ; Input dependences

NA,

NA,

SET_GPR(RT, GPR(RS)+IMM) ; semantics

)

The standard components comprising the simulator are:

bpred.h .c branch prediction
cache.h .c cache operation module
ev entq.h .c ev ent queue management
libcheetah Cheetah cache simulation librar y
ptrace.h .c pipetrace module
res.h .c resource manager module
sim.h main code interface definitions
textprof.pl test segment profile view (Perl)
pipeview.pl pipetrace view (Perl)

dlite.h .c lightweight debugger
eio.h .c exter nal I/O tracing module
loader.h .c program loader
memor y.h .c flat memory space module
regs.h .c register module
machine.h .c target and ISA-dependent routines
machine.def SimpleScalar ISA definition
symbol.h .c symbol table module
syscall.h .c proxy system call implementation

ev al.h .c gener ic expression evaluator
libexo EXO(-skeletal) persistent data structure librar y
misc.h .c ev erything miscellaneous
options.h .c options package
range.h .c range expression package
stats.h .c statistics package

Then the gcc compiler suite will need reconfiguring for the new ISA.

Read:

http://wwww.simplescalar.com

11

MIPS Instruction Reference

Here is a descriptive listing of the MIPS registers and instructions, their meanings, syntax, semantics, and bit
encodings. The syntax given for each instruction refers to the assembly language syntax supported by the
MIPS assembler. Hyphens indicate that those bits don’t get decoded for that instruction. General purpose
registers (GPRs) are indicated with a dollar sign ($). The words SWORD and UWORD refer to 32-bit signed
and 32-bit unsigned data types, respectively. The manner in which the processor executes an instruction and
advances its program counters is as follows:

1. execute the instruction at PC
2. copy nPC to PC
3. add 4 or the branch offset to nPC

This behavior is indicated in the instruction specifications below. For brevity, the function advance_pc (int) is
used in many of the instruction descriptions. This function is defined as follows:

void advance_pc (SWORD offset)
{

PC = nPC;
nPC += offset;

}

Note: ALL immediate values should be sign extended. After that, you treat them as signed or unsigned 32 bit
numbers. For the non-immediate instructions, the only difference between signed and unsigned instructions
is that signed instructions can generate an overflow.

12

0

Register

$0

$1

retur n value$2-$3

parameters$4-$7

Callee saved
temp values

$8-$15

Caller saved
temp values

$16-$23

Caller saved
temp values

$24-$25

O/S reserved
$26-$27

Global pointer$28

Stack pointer$29

Saved regs
callee saved

$30

Retur n address$31

The instruction descriptions are given below:

ADD -- /Add/

Descr iption: Adds two registers and stores the result in a register
Operation: $d = $s + $t; advance_pc (4);
Syntax: add $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 0000|

ADDI -- /Add immediate/

Descr iption: Adds a register and a signed immediate value and stores the
result in a register
Operation: $t = $s + imm; advance_pc (4);
Syntax: addi $t, $s, imm
Encoding: |0010 00ss ssst tttt iiii iiii iiii iiii|

13

ADDIU -- /Add immediate unsigned/

Descr iption: Adds a register and an unsigned immediate value and stores
the result in a register
Operation: $t = $s + imm; advance_pc (4);
Syntax: addiu $t, $s, imm
Encoding: |0010 01ss ssst tttt iiii iiii iiii iiii|

ADDU -- /Add unsigned/

Descr iption: Adds two registers and stores the result in a register
Operation: $d = $s + $t; advance_pc (4);
Syntax: addu $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 0001|

AND -- /Bitwise and/

Descr iption: Bitwise ands two registers and stores the result in a register
Operation: $d = $s & $t; advance_pc (4);
Syntax: and $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 0100|

ANDI -- /Bitwise and immediate/

Descr iption: Bitwise ands a register and an immediate value and stores
the result in a register
Operation: $t = $s & imm; advance_pc (4);
Syntax: andi $t, $s, imm
Encoding: |0011 00ss ssst tttt iiii iiii iiii iiii|

BEQ -- /Branch on equal/

Descr iption: Branches if the two registers are equal
Operation: if $s == $t advance_pc (offset << 2)); else advance_pc (4);
Syntax: beq $s, $t, offset
Encoding: |0001 00ss ssst tttt iiii iiii iiii iiii|

BGEZ -- /Branch on greater than or equal to zero/

Descr iption: Branches if the register is greater than or equal to zero
Operation: if $s >= 0 advance_pc (offset << 2)); else advance_pc (4);
Syntax: bgez $s, offset
Encoding: |0000 01ss sss0 0001 iiii iiii iiii iiii|

BGEZAL -- /Branch on greater than or equal to zero and link/

Descr iption: Branches if the register is greater than or equal to zero
and saves the return address in $31
Operation: if $s >= 0 $31 = PC + 8 (or nPC + 4); advance_pc (offset <<
2)); else advance_pc (4);
Syntax: bgezal $s, offset
Encoding: |0000 01ss sss1 0001 iiii iiii iiii iiii|

BGTZ -- /Branch on greater than zero/

Descr iption: Branches if the register is greater than zero
Operation: if $s > 0 advance_pc (offset << 2)); else advance_pc (4);
Syntax: bgtz $s, offset
Encoding: |0001 11ss sss0 0000 iiii iiii iiii iiii|

14

BLEZ -- /Branch on less than or equal to zero/

Descr iption: Branches if the register is less than or equal to zero
Operation: if $s <= 0 advance_pc (offset << 2)); else advance_pc (4);
Syntax: blez $s, offset
Encoding: |0001 10ss sss0 0000 iiii iiii iiii iiii|

BLTZ -- /Branch on less than zero/

Descr iption: Branches if the register is less than zero
Operation: if $s < 0 advance_pc (offset << 2)); else advance_pc (4);
Syntax: bltz $s, offset
Encoding: |0000 01ss sss0 0000 iiii iiii iiii iiii|

BLTZAL -- /Branch on less than zero and link/

Descr iption: Branches if the register is less than zero and saves the
retur n address in $31
Operation: if $s < 0 $31 = PC + 8 (or nPC + 4); advance_pc (offset <<
2)); else advance_pc (4);
Syntax: bltzal $s, offset
Encoding: |0000 01ss sss1 0000 iiii iiii iiii iiii|

BNE -- /Branch on not equal/

Descr iption: Branches if the two registers are not equal
Operation: if $s != $t advance_pc (offset << 2)); else advance_pc (4);
Syntax: bne $s, $t, offset
Encoding: |0001 01ss ssst tttt iiii iiii iiii iiii|

DIV -- /Divide/

Descr iption: Divides $s by $t and stores the quotient in $LO and the
remainder in $HI
Operation: $LO = $s / $t; $HI = $s % $t; advance_pc (4);
Syntax: div $s, $t
Encoding: |0000 00ss ssst tttt 0000 0000 0001 1010|

DIVU -- /Divide unsigned/

Descr iption: Divides $s by $t and stores the quotient in $LO and the
remainder in $HI
Operation: $LO = $s / $t; $HI = $s % $t; advance_pc (4);
Syntax: divu $s, $t
Encoding: |0000 00ss ssst tttt 0000 0000 0001 1011|

J -- /Jump/

Descr iption: Jumps to the calculated address
Operation: PC = nPC; nPC = (PC & 0xf0000000) | (target << 2);
Syntax: j target
Encoding: |0000 10ii iiii iiii iiii iiii iiii iiii|

JAL -- /Jump and link/

Descr iption: Jumps to the calculated address and stores the return
address in $31
Operation: $31 = PC + 8 (or nPC + 4); PC = nPC; nPC = (PC & 0xf0000000)

15

| (target << 2);
Syntax: jal target
Encoding: |0000 11ii iiii iiii iiii iiii iiii iiii|

JR -- /Jump register/

Descr iption: Jump to the address contained in register $s
Operation: PC = nPC; nPC = $s;
Syntax: jr $s
Encoding: |0000 00ss sss0 0000 0000 0000 0000 1000|

LB -- /Load byte/

Descr iption: A byte is loaded into a register from the specified address.
Operation: $t = MEM[$s + offset]; advance_pc (4);
Syntax: lb $t, offset($s)
Encoding: |1000 00ss ssst tttt iiii iiii iiii iiii|

LUI -- /Load upper immediate/

Descr iption: The immediate value is shifted left 16 bits and stored in
the register. The lower 16 bits are zeroes.
Operation: $t = (imm << 16); advance_pc (4);
Syntax: lui $t, imm
Encoding: |0011 11-- ---t tttt iiii iiii iiii iiii|

LW -- /Load word/

Descr iption: A word is loaded into a register from the specified address.
Operation: $t = MEM[$s + offset]; advance_pc (4);
Syntax: lw $t, offset($s)
Encoding: |1000 11ss ssst tttt iiii iiii iiii iiii|

MFHI -- /Move from HI/

Descr iption: The contents of register HI are moved to the specified
register.
Operation: $d = $HI; advance_pc (4);
Syntax: mfhi $d
Encoding: |0000 0000 0000 0000 dddd d000 0001 0000|

MFLO -- /Move from LO/

Descr iption: The contents of register LO are moved to the specified
register.
Operation: $d = $LO; advance_pc (4);
Syntax: mflo $d
Encoding: |0000 0000 0000 0000 dddd d000 0001 0010|

MULT -- /Multiply/

Descr iption: Multiplies $s by $t and stores the result in $LO.
Operation: $LO = $s * $t; advance_pc (4);
Syntax: mult $s, $t
Encoding: |0000 00ss ssst tttt 0000 0000 0001 1000|

MULTU -- /Multiply unsigned/

Descr iption: Multiplies $s by $t and stores the result in $LO.

16

Operation: $LO = $s * $t; advance_pc (4);
Syntax: multu $s, $t
Encoding: |0000 00ss ssst tttt 0000 0000 0001 1001|

NOOP -- /no operation, SLL $0, $0, 0/

Descr iption: Perfor ms no operation.
Operation: advance_pc (4);
Syntax: noop
Encoding: |0000 0000 0000 0000 0000 0000 0000 0000|

OR -- /Bitwise or/

Descr iption: Bitwise logical ors two registers and stores the result in
a register
Operation: $d = $s | $t; advance_pc (4);
Syntax: or $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 0101|

ORI -- /Bitwise or immediate/

Descr iption: Bitwise ors a register and an immediate value and stores
the result in a register
Operation: $t = $s | imm; advance_pc (4);
Syntax: ori $t, $s, imm
Encoding: |0011 01ss ssst tttt iiii iiii iiii iiii|

SB -- /Store byte/

Descr iption: The least significant byte of $t is stored at the specified
address.
Operation: MEM[$s + offset] = (0xff & $t); advance_pc (4);
Syntax: sb $t, offset($s)
Encoding: |1010 00ss ssst tttt iiii iiii iiii iiii|

SLL -- /Shift left logical /

Descr iption: Shifts a register value left by the shift amount listed in
the instruction and places the result in a third register. Zeroes are
shifted in.
Operation: $d = $t << h; advance_pc (4);
Syntax: sll $d, $t, h
Encoding: |0000 00ss ssst tttt dddd dhhh hh00 0000|

SLLV -- /Shift left logical var iable/

Descr iption: Shifts a register value left by the value in a second
register and places the result in a third register. Zeroes are shifted in.
Operation: $d = $t << $s; advance_pc (4);
Syntax: sllv $d, $t, $s
Encoding: |0000 00ss ssst tttt dddd d--- --00 0100|

SLT -- /Set on less than (signed)/

Descr iption: If $s is less than $t, $d is set to one. It gets zero
otherwise.
Operation: if $s < $t $d = 1; advance_pc (4); else $d = 0; advance_pc (4);
Syntax: slt $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 1010|

17

SLTI -- /Set on less than immediate (signed)/

Descr iption: If $s is less than immediate, $t is set to one. It gets
zero otherwise.
Operation: if $s < imm $t = 1; advance_pc (4); else $t = 0; advance_pc
(4);
Syntax: slti $t, $s, imm
Encoding: |0010 10ss ssst tttt iiii iiii iiii iiii|

SLTIU -- /Set on less than immediate unsigned/

Descr iption: If $s is less than the unsigned immediate, $t is set to
one. It gets zero otherwise.
Operation: if $s < imm $t = 1; advance_pc (4); else $t = 0; advance_pc
(4);
Syntax: sltiu $t, $s, imm
Encoding: |0010 11ss ssst tttt iiii iiii iiii iiii|

SLTU -- /Set on less than unsigned/

Descr iption: If $s is less than $t, $d is set to one. It gets zero
otherwise.
Operation: if $s < $t $d = 1; advance_pc (4); else $d = 0; advance_pc (4);
Syntax: sltu $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 1011|

SRA -- /Shift right arithmetic/

Descr iption: Shifts a register value right by the shift amount (shamt)
and places the value in the destination register. The sign bit is
shifted in.
Operation: $d = $t >> h; advance_pc (4);
Syntax: sra $d, $t, h
Encoding: |0000 00-- ---t tttt dddd dhhh hh00 0011|

SRL -- /Shift right logical/

Descr iption: Shifts a register value right by the shift amount (shamt)
and places the value in the destination register. Zeroes are shifted in.
Operation: $d = $t >> h; advance_pc (4);
Syntax: srl $d, $t, h
Encoding: |0000 00-- ---t tttt dddd dhhh hh00 0010|

SRLV -- /Shift right logical var iable/

Descr iption: Shifts a register value right by the amount specified in $s
and places the value in the destination register. Zeroes are shifted in.
Operation: $d = $t >> $s; advance_pc (4);
Syntax: srlv $d, $t, $s
Encoding: |0000 00ss ssst tttt dddd d000 0000 0110|

SUB -- /Subtract/

Descr iption: Subtracts two registers and stores the result in a register
Operation: $d = $s - $t; advance_pc (4);
Syntax: sub $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 0010|

18

UBU -- /Subtract unsigned/

Descr iption: Subtracts two registers and stores the result in a register
Operation: $d = $s - $t; advance_pc (4);
Syntax: subu $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d000 0010 0011|

SW -- /Store word/

Descr iption: The contents of $t is stored at the specified address.
Operation: MEM[$s + offset] = $t; advance_pc (4);
Syntax: sw $t, offset($s)
Encoding: |1010 11ss ssst tttt iiii iiii iiii iiii|

SYSCALL -- /System call/

Descr iption: Generates a software interrupt.
Operation: advance_pc (4);
Syntax: syscall
Encoding: |0000 00-- ---- ---- ---- ---- --00 1100|

XOR -- /Bitwise exclusive or/

Descr iption: Exclusive ors two registers and stores the result in a
register
Operation: $d = $s ˆ $t; advance_pc (4);
Syntax: xor $d, $s, $t
Encoding: |0000 00ss ssst tttt dddd d--- --10 0110|

XORI -- /Bitwise exclusive or immediate/

Descr iption: Bitwise exclusive ors a register and an immediate value and
stores the result in a register
Operation: $t = $s ˆ imm; advance_pc (4);
Syntax: xori $t, $s, imm
Encoding: |0011 10ss ssst tttt iiii iiii iiii iiii|

19

