Українська   Русский
DonNTU   Masters' portal

Abstract

Contents

Introduction

Motor transport is one of the main indicators of technical and economic development of society, it promotes satisfaction of social requirements of the population. Exhausts of motor transport lead to ecological disruption. Daily into the air misses a huge amount of a mixture of approximately two hundred different substances. Most of the car consumes petrol engines, it was he when burned, release a sufficiently large amount of lead, carbon dioxide, carbon monoxide, nitrogen oxide, carbon dioxide. Also, misses in the atmosphere a quantity of soots and resins, which formed a technical fault in the motor points. Important is the fact that road transport is not only contributes significantly to air pollution, but also consumes large amounts of natural materials and raw materials. One passenger car absorbs from the atmosphere each year, on average more than four tons of oxygen, releasing the exhaust gases of about eight pounds of carbon monoxide, about forty pounds of nitrogen oxides and nearly two kilograms of various hydrocarbons.

According to statistics, some Ukrainian cities, motor vehicle emissions account for more than half of all emissions, including industrial. Another important factor is the fact that road transport is not a static source separation of impurities. Emissions from industrial plants often are concentrated in a certain place and harmful impurities distributed only by air masses.

Environmental monitoring tasks require the use of modern computational tools, which is due to the need to process large amounts of information, in particular, its sort, pretreatment for use in complex computational algorithms research processes associated with the transfer of pollutants in the environment.

The task of identifying relevant sources of pollution, as its solution allows to determine the contribution of individual sources (companies, cities, countries) in air pollution or soil at this point. This should be considered when creating new sources of pollution – the introduction of new industrial enterprises and the management of existing emissions to their total amount does not exceed the established norms.

1. Theme urgency

In recent years, have become especially urgent problems related to air pollution, as humanity has reached a peak in the growth and development of industrial potential of vehicles. These problems are currently considered at the international level. If humanity does not make decisive steps to eliminate the damage already done and will not do anything to prevent even more acute environmental situation , this issue will be addressed within a global scale , will turn into a global catastrophe that will be impossible to prevent already. So this study aims to consider the results of modeling of atmospheric pollution exhaust of motor transport and application of methods to assess the identification parameters.

The purpose of this study is to analyze the different approaches to modeling the environmental situation, as well as justification for the use and application of methods of parameter identification problems in environmental modeling. To achieve this goal it is necessary to solve the following problems:

– to study existing methods estimate the parameters identification;

– analyze scientific literature and developments, which give a characterization of the ecological state of the atmosphere;

– spend posing the problem of identification.

2. Identification in problems of ecological modeling

Worldwide automotive environment is becoming more intensive development: in terms of traffic, it surpasses all other modes of transport (rail, water, air). As a consequence, the contribution of road transport in total emissions of harmful substances cities in Ukraine is about 70%, and in areas of highways content of harmful components in the air exceeds the maximum permissible concentration.

Automobile as the vehicle appeared about a hundred years ago and to date has received widely disseminated, performing important functions in the economy of all countries. In the world there are more than six million vehicles, with their production of the world is increasing every year.

In Ukraine, there are a number of regulations that seek to control, accounting, prevention of air pollution and the population on the environmental situation in Ukraine.

Law of Ukraine "On Air Protection" is the main regulatory document that contains information about the standardization and normalization of the atmosphere, as well as the law contains the basic provisions for controlling emissions, monitoring the content of harmful substances in the atmosphere, measures for protection of the air in Ukraine.

3. Current and planned results

To go directly to the identification of the diffusion coefficient, it is necessary to consider the basis of the process of distribution of harmful substances from emissions from vehicles in the atmosphere. For this environment MATLAB R2009b were built graphics that reflect the dependence of the propagation of harmful substances in the atmosphere since the exhaust at a distance. Were examined in detail several cases:

1. Simultaneously, the emission of harmful substances into the atmosphere by three cars. Cars used in this same fuel (gasoline), but the emissions are produced with different power.

2. Simultaneously, the emission of harmful substances into the atmosphere by three cars. Release rate with all vehicles the same, but each uses a different vehicle fuel: first car uses gasoline, diesel uses the second and third - natural gas.

3. Simultaneously, the emission of harmful substances into the atmosphere by three cars. The power output and fuel used for all cars are different.

In the analysis of the graphs presented in the animation, we can conclude that the starting point is always the peak discharge power, then it begins to subside. Also, it should be noted that the higher the power source, the longer it will settle on the surface of harmful substances. This information, which reveals the essence of the process of distribution of harmful substances that help during the identification of the diffusion coefficient, which can help significantly in addressing the problem of air pollution.

Graph of distribution of harmful substances in the atmosphere

Figure 1 – Graph of distribution of harmful substances in the atmosphere (the same fuel, different power)
(animation: 3 frames, 15 cycles of repetition, 65 kilobytes)

Graph of distribution of harmful substances in the atmosphere

Figure 2 – Graph of distribution of harmful substances in the atmosphere (the same power, different fuel)
(animation: 3 frames, 15 cycles of repetition, 49 kilobytes)

Graph of distribution of harmful substances in the atmosphere

Figure 3 – Graph of distribution of harmful substances in the atmosphere (different fuel, different power)
(animation: 3 frames, 15 cycles of repetition, 64 kilobytes)

This study is still under development, further research is planned:

1. Writing and software implementation of the identification algorithm

2. Carrying identification of the diffusion coefficient

3. Research results and justification of scientific novelty presented research

Conclusion

According to the goal in the work was the analysis of various approaches to modeling the environmental situation, and justified the use and application of methods of parameter identification problems in environmental modeling. A study was conducted of existing methods for assessing credentials, was also analyzed scientific literature and developments, which give a characterization of the ecological state of the atmosphere, was carried out the problem and are current and planned research results. The task of identifying relevant sources of pollution, as its solution allows to determine the contribution of individual sources (companies, cities, countries) in air pollution or soil at this point. This should be considered when creating new sources of pollution - the introduction of new industrial enterprises and the management of existing emissions to their total amount does not exceed the established norms. Given all of the above factors and the results of the research, we can conclude that the problem of identifying the turbulent diffusion coefficients are considered by scientists, but mainly for water masses. So, consideration of identification turbulent diffusion coefficients for pollution associated with automobile emissions, is relevant.

References


1. Алоян А.Е. Моделирование динамики и кинетики газовых примесей и аэрозолей в атмосфере. – М.: Наука, 2008. – 415 с.
2. Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы. – Л.: Гидрометеоиздат, 1975. – 448 с.
3. Марчук Г.И. Математическое моделирование в проблеме окружающей среды. – М.: Наука, 1982. – 320 с.
4. Степаненко С.Н., Волошин В.Г., Типцов С.В. Решение уравнения турбулентной диффузии для стационарного точечного источника. – О.: Украинский гидрометеорологический журнал № 3, 2008. – 24 с.
5. Бызова Н.Л., Гаргер Е.Г., Иванов В.Н., Экспериментальные исследования атмосферной диффузии и расчеты рассеяния примесей. – Л.: Гидрометеоиздат, 1991. – 273 с.
6. Овчинникова Н.Б. КАДАСТР выбросов загрязняющих веществ и парниковых газов. – К.: Гидрометеоиздат, 2009. – 45 с.
7. Фельдман Ф.Г. Гигиеническая сцена автотранспорта как источника загрязнения атмосферного воздуха. – М.: Медицина, 1975. – 20 с.
8. Парсаданов І.В. Підвищення якості і конкурентоспроможності дизелів на основі комплексно паливно-екологічного критерію. Монографія. – Х.: Видавничий центр НТУ «ХПІ», 2003. – 244 с.
9. Мищенко А.И. Применение водорода для автомобильных двигателей. – К.: Наукова Думка, 1984. – 143 с.
10. Ерохов В.И., Бондаренко Е.В. Влияние дорожных факторов на выброс вредных веществ и расход топлива автотранспортными средствами. – М.: ВЕСТНИК ОГУ № 4, 2005. – 13 с.
11. Семенчин Е.А. Кузякина М.В. Стохастические методы решения обратных задач в математической модели атмосферной диффузии: Монография. – М.: Физматлит, 2012. – 176 с.
12. Бабков В.С. Ткаченко Т.Ю. Анализ математических моделей распространения примесей от точечных источников. – Д.: Наукові праці ДонНТУ. Серія «Інформатика, кібернетика та обчислювальна техника» № 13, 2011. – 9 с.
13. Ложкина О.В. Анализ физико-математических моделей атмосферной диффузии применительно к оценкам воздействия автотранспорта на городскую среду/О.В. Ложкина, В.В. Попов, А.Д. Кузнецова. – СПб.: НПК «Атмосфера» при ГГО им. А.И. Воейкова, 2005. – 116 с.
14. Терентьев Г.А. Моторные топлива из альтернативных сырьевых ресурсов / Г.А. Терентьев, В.М. Тюков, Ф.В. Смаль. – М.: «Химия», 1989. – 271 с.
15. Корн Г., Корн Т. Справочник по математике (определения, формулы, теоремы) / Г. Корн, Т. Корн. – М.: Наука, 1973. – 450 с.
16. Лазарев Ю.Ф. Начала программирования в среде MatLAB: Учебное пособие / Ю.Ф. Лазарев. – К.: НТУУ «КПИ», 2003. – 424 с.
17. Донецкий экологический портал. Карты загрязнений атмосферы города [Электронный ресурс] - Электронные текстовые данные (28304 bytes).
18. Кочергин С.В. Идентификация коэффициентов турбулентной диффузии в модели переноса пассивной примеси / С.В. Кочергин, В.С. Кочергин // Системы контроля окружающей среды. - 2010. - Вып. 14. - С. 111-113. - Библиогр.: 4 назв. - рус.
19. Кожевникова М.Ф. Идентификация источников загрязнения: вычислительные методы [Текст] / М.Ф. Кожевникова, В.В. Левенец, И.Л. Ролик // Вопросы атомной науки и техники. - 2011. - № 6. Серия: Вакуум, чистые материалы, сверхпрово-дники (19), С. 149-156.
20. Berkowicz R., J.R. Olesen, and U. Torp, 1986, "The Danish Gaussian air pollution model (OLM): Description, test and sensitivity analysis, in view of regulatory applications," Air Pollution Modeling and Its Application, V. C. De Wispelaire, F. A. Schiermeier, and N. V. Gillani, Eds. Plemum, New York, 453-481 pp.