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Abstract - Unlike most games which have fixed rules, the
rules for war games can contain uncertainty.  This uncertainty
makes war games difficult to address with methods typically
used for playing games by machine.   The characteristics of
war games match well with the domain for which genetic
algorithms are effective.  In this paper we explore the use of
genetic algorithms for generating war game strategies.

1  INTRODUCTION

Many problems of interest take the form of games.  Gaming
is used extensively by the military, the diplomatic corps,
and business to assist in planning for future courses of
action and decision making.  Games are often used in
research as a venue for the development of problem solving
techniques.  Studying the solutions to games, even simple
ones, is of interest since the lessons learned can be applied
to real world situations.

Game play has been a topic of research in computational
science for some time.  Problems like the eight or fifteen
tile puzzles, tic-tac-toe, and the Tower Of Hanoi have often
been used.  These are all fairly simple in nature.  More
complex games like checkers and chess have also been
addressed.  In these games, a subproblem such as an end
game strategy may be the topic of an investigation as well
as the full game itself.

 War gaming has been practiced in one form or another
since before the beginning of recorded history.  Currently, it
is widely used in various military organizations around the
world for both training and research.  A comprehensive
treatment of war gaming can be found in [1].  Included is an
extensive review of the history and development of the
subject.  Some issues and challenges in contemporary war
gaming are discussed in [2]-[4].  One of the challenges
currently faced is to better address uncertainty, which is an
important factor in actual conflicts.

Games in general, as well as war games, can contain
uncertainty.  One type of uncertainty has to do with
variables working inside of the framework of the rules of
the game.  There is uncertainty in what moves the
opposition will make, what the dice roll will be, or what
card will be turned up.  This first type of uncertainty can be
found in war games as well as many other types of games.
A second type of uncertainty, which is found in war games
but not most other games, has to do with uncertainty in the
rules of the game themselves.  In real world situations such
as those modeled by war games, the specifics of what is
required to win are generally not known.  As an example, it
is not known in advance how much punishment a military
opponent will accept before surrendering.  They may be

willing to fight to the end.  They may be only willing to
tolerate a certain level of economic and military damage
before conceding the battle in hopes of ensuring regime
survival.  Uncertainty in the rules complicates the task of
determining good strategies for playing war games.

In the field of artificial intelligence, methods have been
developed for playing a variety of games by machine.  For a
game like the eight or fifteen tile puzzles where there is no
active competitor, the problem can be represented using a
state space tree.  Heuristic search techniques like the A*
algorithm are used to search the tree for a goal node.  An
evaluation function is used to estimate the distance from the
current node to a goal node [5].  This approach is difficult
to apply to a war game with uncertain rules.  The state
space becomes ill defined since the location of the goal
nodes are not known.  Estimating the distance to a goal
node in order to assess which of several paths to take is also
made difficult.  In a war game there may be more than one
potential goal.  Reaching any one of the goals causes the
game to be won.  The values of these goals change each
time the game is played.

In games like checkers that have two players, game tree
representations have been used in playing by machine.  The
game tree is searched using a technique like the minimax
algorithm.  Evaluation functions are used to estimate the
value of a position resulting from moves and opponent’s
countermoves [5].  Most efforts to play checkers and
similar games by computer also involve the accumulation
of expert knowledge and the application of powerful
computing assets for conducting extensive searches.

The most successful computer checkers program devised
to date is Chinook [6].  This massive multi-year effort to
accumulate as much checker knowledge as possible along
with the use of powerful computing assets has produced a
world class checker playing program and has defeated the
human world checkers champion in match play.  Average
minimum search depth for a given move is 21 ply.  The
program has access to an extensive database of opening
moves from previous championship play as well as analysis
of previously unknown openings.  There is an endgame
database containing all approximately 440,000,000,000
possibilities given eight or fewer remaining pieces.  A very
similar approach was used to create the Deep Blue chess
program which defeated the world champion Gary
Kasparov in a six game exhibition match in 1997 [7]-[8].

Given the nature of war games, this approach would also
be difficult to apply.  The extensive searches conducted and
databases used are all based on the game structure and rules
being fixed.  In war games, the rules are uncertain and
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change each time a game is played.  In addition, in
professional war gaming, games are customized to
situations of interest.  A game is designed, played, and the
results are analyzed.  Though variants or similar situations
may be studied, the exact same game may never be played
again.

In this paper we present results from an investigation of
the use of genetic algorithms (GAs) to generate strategies
for war games with uncertain rules.  The general topic of
evolutionary computation methods and strategy and tactics
in warfare related problems is discussed in [9]-[10].  GAs
are effective at solving complex problems where the state
space has many local maxima and minima, discontinuities,
and noise [11].  This domain matches well with the
characteristics of war games.

The remainder of the paper is formatted as follows.  In
section 2 a description of the problem addressed in the
investigation and the approach used to solve it is given.
Sections 3 and 4 describe the GA configurations and fitness
functions used respectively.  In section 5, experimental
results obtained are described.  A brief comparison of
strategies developed using a GA to examples from military
history is included.  In section 6 a summary of the main
points is given.

2  PROBLEM DESCRIPTION AND APPROACH

The use of a GA for generating war game strategies is
explored using a naval blockade scenario as a tool.  In the
scenario, Red is the opponent and Blue is the player for
which a strategy is being determined.  The goal of the game
is for Blue to break a blockade imposed by Red.  The
number and type of ships for Blue to use and their
disposition as a function of time must be determined.  Red’s
forces and strategy are fixed.  Costs for Blue to purchase
ships as well as costs for ships lost during the conflict are
accounted for.  Naval forces are modeled using a time step
simulation.  Performance of sensor and weapons systems is
determined probabilistically.  There are multiple possible
criteria by which the game can be won.  Each criterion has
a range of values.  The threshold value needed to achieve
victory using a given criterion during a trial is selected
randomly from within the range.

There are eight ship types used in the game.  These are
listed in figure 1 along with their relative costs and the
symbol used to represent them.  The Red naval force is
fixed and only uses patrol craft, diesel submarines, and
destroyers.  The composition of the Blue naval force varies
during the evolution of solutions and can include any of the
eight ship types.  For each Blue and Red ship type, a table
of probabilities describes detection and attack performance
versus opposition ships.  Relative capability for similar
types of ships is in the same order as their costs, though not
proportional.  Nuclear submarines are more capable than
diesel submarines, destroyers are more capable than frigates
which are more capable than patrol craft, and aircraft
carriers are more capable than escort carriers.

     type of ship        relative cost    symbol

 diesel submarine             0.5           SS
 nuclear submarine            2.5           SSN
 patrol craft                 0.1           PTG
 frigate                      0.4           FFG
 destroyer                    1.0           DDG
 missile defense ship         1.0           TBMD
 escort carrier               3.0           CVE
 aircraft carrier             5.0           CV

Figure 1

Figure 2 is a depiction of the game board.  An inhabited
island referred to as White, whose ownership is contested,
lies off the coast of Red.  Red has declared a blockade and
placed naval forces around White.  The Red forces are
placed in each of the eight areas as shown in figure 2.
These forces are deployed according to a predetermined
strategy and do not change position.  In addition to naval
forces, Red has a constant land based attack capability.  Red
land based air forces can strike Blue surface targets in any
area.  The probability of a successful attack is reduced if
there is a Blue aircraft or escort carrier in the area being
attacked.  Land based antiship cruise missile (ASCM)
forces can strike Blue surface ship targets in areas 2 through
6.  The effectiveness of land based forces varies with the
type of Blue ship attacked.

Figure 2

Initially there are no Blue naval forces in any of the eight
areas.  Due to navigation constraints, Blue forces enter in
either area 1 or 7.  Once they enter they can move between
areas but can not leave the game.  Blue has up to 14 time
steps to break the blockade and restore sea access to White.
Blue forces can enter the board on any time step.  During
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each time step each Blue or Red platform has the
opportunity to detect and attack opposing platforms.  Two
opposing ships must be in the same area before an
engagement can occur.  Selection of targets is done
randomly from all opposing forces in the area.  A Red air
attack and a Red ASCM attack are also conducted in each
appropriate area during each time step.  A single Blue target
is selected randomly during each attack.

There are several criteria by which Blue can win.  These
are listed in figure 3.  Some or all of the criteria may be
used depending on the experiment being conducted.
Threshold values for the quantities x in figure 3 are varied
from trial to trial by selecting randomly from within some
given range.  This introduces uncertainty analogous to that
encountered in two sided games or actual situations.
Ranges of values used in the various experiments are given
in the next section of the paper.  A trial ends when one of
the Blue criteria for victory has been satisfied or after 14
times steps or if Red wins.  Red can win by destroying a
given percentage of Blue forces or a given percentage of the
total value of Blue forces.

Establish air supremacy:
keep 2 TBMD ships and (2 CVs or 4 CVEs) in any
of the 8 areas for x consecutive time steps.

Sink x % of the number of Red ships.

Sink ships totaling x %
of the total value of all Red ships.

Demonstrate overwhelming sea control:
sink x % of the Red ships in the area 4 strait.

Sink the Red command ship which can be identified
and is operating in either area 2 or 6.

Figure 3

3  GA CONFIGURATION

The Blue force is encoded as a binary string so that it can
evolve under GA control.  This encoding uses a
concatenation of a number of short, meaningful blocks.
The encoding developed is 396 bits long, consisting of 12
groups of 33 bits each.  Each group of 33 bits represents a
task or ship group.  The Blue force consists of up to 12 task
groups.  Task groups move independently without
considering how other groups are moving.  Each task group
can have up to three ships, all of which are the same type.

In a group, bits 1 through 3 designate the type of ships in
the group.  Bits 4 and 5 designate the number of ships in the
group which ranges from 0 to 3.  Bits 6 through 33 are used
to designate the movement of the group in each of the 14
possible time steps.  There are 14 pairs of bits, one of which
indicates whether the group moves in a given time step and
the other which indicates direction.  Blue ships must enter
in either area 1 (right side of the board) or 7 (left side of the
board).  Once on the board a ship can stay in its area or
move to an area either to its left or to its right.

The Blue force composition and disposition versus time
evolves under the control of the GA.  Crossover, mutation,
stochastic remainder sampling without replacement, and
linear scaling of the fitness function are used in the GA
[12].  Two parents are selected to produce two offspring
using a probability of crossover of 1.0.  The probability of
mutation is 0.001 for each bit in an offspring.  A population
size of 30 individuals is used to generate 30 offspring in
each generation.  Average performance for an individual in
a generation is estimated using the results from 100 trials.
Experiments were conducted using two different methods
for estimating the average performance of an individual.
These are described in the next section of the paper.
Experiments are run out to 5000 generations.  All
individuals in the initial generation are created using
random selection of bit values for each binary string.
Experiments were conducted with and without elitism.  The
elitism scheme replaces a randomly chosen individual from
the new generation with the best performing individual
from the previous generation.

4 FITNESS FUNCTION

The fitness function used during the investigation is shown
in equation 1.  It contains both cost and benefit terms and
follows the form developed in [13].  In [13] it was
demonstrated that including cost terms as well as benefit
terms reduced the complexity of solutions developed as
well as improved performance.  In this investigation initial
experiments were conducted with and without cost terms.
Using no costs yielded solutions which reached the goal of
achieving victory in all 100 trials but that were not well
formed.  They tended to be complex and used many times
the amount of resources used when costs were applied.
Well formed solutions that reached the goal were developed
using the cost terms.  Using the cost terms also resulted in
the reduction of complexity in the solution.

fitness  =  benefit - (Blue force cost *
   (benefit/max. poss. benefit) * weight_force)
 - (game time cost * (benefit/max. poss. benefit)

   * weight_time)                                                         (1)

The three main components of equation 1 are a benefit
term, a term for the cost of the Blue force, and a term for
the amount of time used to reach a solution.   In the benefit
term, the more progress that is made towards the goal, the
more credit that is given.  It is also desirable for the Blue
force to be efficient in terms of ships used and ships lost as
well as the amount of time it takes to achieve the progress
that is made towards the goal.  The cost terms contain
dynamically scaled weights which increase the importance
of efficiency the farther the Blue force is able to progress
towards the goal.  Benefit is the percentage progress made
towards the goal of achieving victory in all the trials and
has a maximum value of 100.  Maximum possible benefit is
simply 100 percent.
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The benefit term in equation 1 was computed using one
of two different methods, depending on the experiment.
The first method, referred to as the criterion method, uses
calculations of the progress towards the various criteria for
victory.  For each criterion the percentage progress made
towards its threshold value is computed for each trial.  An
average for each criterion is then calculated.  The criterion
with the highest value is chosen and its value is multiplied
by 100.  The values from the other criteria are averaged and
the result is added to the result of the previous operation
with the sum not to exceed 100.  Small contributions from
these criteria can still be important since linear scaling of
scores is used during mate selection for each generation.

The second method, referred to as the count method,
looks only at the percentage of trials out of the 100 where
victory was achieved.  For an individual trial no credit is
given for partial progress towards the criteria thresholds.
Any combination of criteria can be used in reaching the
goal of achieving a win in all trials.  In some cases the
thresholds for victory are met in the same time step in a trial
for more than one criterion.  This is still scored as a single
victory.

Blue force cost and game time cost are both computed as
percentages of their maximum possible values.  In
determining Blue force cost, costs are assessed for
purchasing the ships used as well as for replacing any ships
lost.  The total cost for ships is then divided by the
maximum ship cost to get the Blue force cost.  The
maximum ship cost is 72 times the cost of the most
expensive ship.  The maximum number of ships that can be
part of the Blue force is 36 and each ship can be purchased
as well as lost.  Game time cost is the average number of
time steps a trial took to complete divided by the maximum
possible number of time steps.   The force and time weights
allow the user to designate the relative importance of the
two cost terms.

Equation 1 yields different ratios of costs and benefits
during different stages of the evolution of the solution.
During the early stages, cost is emphasized less and
progress towards the goal is rewarded.  This approach does
not overly restrict the exploration of the solution space
during the initial stages of development of potential
solutions.  In the later stages of the evolution, once the goal
has been reached improvements in ship costs and execution
efficiency are emphasized more.

5  RESULTS

A series of experiments was conducted during the
investigation using various combinations of conditions.  A
variety of criteria thresholds and cost weights were used.
For each combination of thresholds and weights,
experiments were conducted with and without elitism using
both the criterion and count methods for calculating the
benefit term.  The results showed that the most robust
configuration was the use of elitism with the count method.
This had performance better than or equal to that of the

other three configurations in almost all cases.  Regardless of
experiment conditions, the GA methodology used was able
to generate strategies that reached the goal of achieving
victory in all 100 trials in every experiment conducted.  The
strategies developed and the Blue forces used varied with
problem set up.

In the following, results are shown for three experiments
where either cost weight or victory criterion was varied.
The results demonstrate several different strategies
generated for game play.  These strategies contain some
similarities as well as significant differences produced by
varying the experiment conditions.  The victory criteria and
cost weights used are shown in figure 4.  During each trial,
the values for the various criteria for achieving victory for
both the Blue and Red sides are chosen from within the
given ranges.  Selection within the range is made randomly
using a uniform distribution.  The victory criteria are those
previously described in figure 2.  At the bottom of figure 4
are the weights used for the cost terms in the evaluation
function.

The Red command ship criterion is used only in
experiment M1.  In this criterion, either area 2 or 6 is
randomly selected with a 50 percent probability at the
beginning of each trial.  Blue can win by sinking one Red
ship in the area selected.  The scenario modeled is that the
Red force commander is at sea in one of two operating
areas directing the battle.  The command ship is identifiable
and if sunk, the Red force will be thrown into disarray and
will withdraw.

experiment:                    V1     V4     M1
Blue victory criteria   
air supremacy (days)          5-12   5-12   5-12
number Red ships sunk (%)    .2-.5  .2-.5  .2-.5
value Red ships sunk (%)     .2-.5  .2-.5  .2-.5
Red ships sunk, strait (%)   .2-.5  .2-.5  .2-.5
Red command ship sunk         n/a    n/a    yes
Red victory criteria   
number Blue ships sunk (%)   .2-.35 .2-.35 .2-.35
value Blue ships sunk (%)    .2-.35 .2-.35 .2-.35
evaluation function   
Blue force cost weight          8      8      8
game time cost weight          16      0      0

Figure 4

In the results that follow, the score listed for an
experiment is the best score achieved by an individual
during the 5000 generations.  In estimating the score for an
individual, there is some variability involved.  Conditions
for achieving victory as well as performance of platform
sensors and weapon systems are determined
probabilistically.  Differences between estimates of score
for an individual could be several points.  The difference
varied with strategy and how close it was to reaching the
goal.  The best strategies are robust and have less
variability.  Strategies described in the following had stable
performance and were not the product of  a single set of
fortunate probabilistic draws.  The population had stabilized
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around the strategy, though not converging due to the
variability involved in the game.

In experiment V1, the best score achieved by an
individual was 95.97.  Blue achieved victory in all 100
trials.  The value of Red sunk ships criterion was satisfied
in all 100 trials and the number of Red ships sunk criterion
was satisfied in 1.  Average number of time steps in a trial
was 2.92.  The Blue force consisted of 36 ships.  Total cost
to purchase the Blue force was 28.8.  On average, 2.85 Blue
ships were lost during a trial with a total value of 2.49.  The
strategy used by Blue is demonstrated in figure 5.  It shows
the positions of the Blue force ships during each of the first
four time steps.

Figure 5

In experiment V1 a time weight that was twice that of the
force weight was used.  This placed more emphasis on
reducing the amount of time used than on the number of
ships used.  Given these conditions, the best strategy
developed for Blue was to use overwhelming force and
concentrate on the Red destroyers in areas 2 and 6.
Destroyers are the most valuable Red ship.  The Blue force
consisted primarily of destroyers augmented with a few
frigates and patrol craft.  Blue had a firepower advantage of
at least 3 to 1 in both areas.  The Blue forces entered
through areas 1 and 7 and moved to areas 2 and 6
respectively.

In experiment V4 the conditions were the same as in V1
except that the time weight in the evaluation function was
set to zero.   This placed an emphasis on reducing Blue
force cost.  The best score achieved by an individual was
99.75.  Blue achieved victory in all 100 trials.  The value of
Red sunk ships criterion was satisfied in all 100 trials.  The
Blue force consisted of 18 diesel submarines and 17 patrol
craft.  Total cost to purchase the Blue force was 10.7.  On
average, 3.52 Blue ships were lost during a trial with a total
value of 0.7.  The average number of time steps per trial,
5.72, is well short of the 14 step maximum.  In this game,
pressure to reduce the time to reach the solution exists even
without a direct time cost.  This is because the longer the
game runs, the more Blue ships will be lost since Red has
the opportunity to attack during each turn.

The best strategy developed for Blue was to make
concentrated attacks both on the diesel submarines in areas
1 and 7 as well as the destroyers in areas 2 and 6.  Blue
forces entered through areas 1 and 7, concentrating there for
two to three time steps.  Most of the ships then concentrated
in areas 2 and 6 during time steps 3 and 4.  A few Blue
ships remained in areas 1 and 7.  Averaged over the first 6
time steps, 56 percent of the Blue force was in areas 2 and
6.

Removing the time cost from the evaluation function
resulted in the development of a two phased attack.  It also
resulted in the use of less expensive Blue ships.  The Blue
force used in V4 is less susceptible to Red destroyers and
diesel submarines than Blue destroyers are.  The Blue force,
however, is less effective versus the Red ships encountered
than Blue destroyers are.  Because of this it takes longer to
achieve victory than when using Blue destroyers, but Blue
force cost is reduced.  The Blue force from experiment V4
cost approximately a third of the Blue force from
experiment V1.

In experiments V1 and V4, overwhelming force was used
to defeat the opponent.  This was achieved using a strategy
of attrition, destroying enough of the opposing force to
cause withdrawal.  Blue forces concentrated in order to
achieve an overwhelming advantage.  This reduces the
amount of time required to destroy the opposing force and
reduces own force losses.  The strategy and the results are
consistent with Lanchester’s square law [14].  Lanchester’s
square law is a set of differential equations that describe
attrition warfare given the assumption that each unit can
engage any opposing unit.  The equations compute the
changes in the number of combatants on each side as a
function of time for given relative combat effectiveness of
the units involved.

Naval attrition warfare and concentration of forces was
the primary method for conducting surface ship warfare in
and around the time of World War I.  During this period in
history the premier warship was the battleship.
Characterized by heavy armor and heavy armament,
battleships were designed for attrition warfare.  The number
of battleships each country possessed was of considerable
importance.  The goal was to have a force that outnumbered
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and outgunned an opponent.  Ship formations and
maneuvers were designed to concentrate fire on exposed
ships in enemy formations.  Detailed naval history of this
time period, as well as discussions of tactics and warfare
principles can be found in [15]-[16].

Experiment M1 had the same conditions as experiment
V4 except that the Red command ship criterion was added
to the list of possible Blue victory conditions.  The best
score achieved by an individual was 99.86.  Blue achieved
victory in all 100 trials.  The Red command ship criterion
was satisfied in 83 trials and the value of Red ships sunk
criterion was satisfied in 36.  Average number of time steps
in a trial was 4.45.  The Blue force consisted of 28 patrol
craft augmented with 6 diesel submarines.  Total cost to
purchase the Blue force was 5.8.  This is approximately half
the cost of the Blue force used in experiment V4.  On
average, 2.36 Blue ships were lost during a trial in
experiment M1 with a total cost of 0.28.

The best strategy developed for Blue relied primarily on
attacking the Red command ship in either area 2 or 6.
Approximately half the Blue forces entered area 1 in time
step 1 and moved almost in unison to area 2 in time step 2.
The remaining forces entered area 7 in time step 1 and
moved nearly in unison to area 6 in time step 3.  This one
time step delay is the reason that the Red command ship
criterion and the value of Red ships sunk criterion are
pursued in parallel in this strategy.  The Red command ship
criterion was satisfied in 51 trials in area 2 but only in 36
trials in area 6.  In the remaining trials, the value of Red
ships sunk criterion was satisfied by the time the Blue
forces moved in and sank the command ship.  The threshold
for the value of Red ships sunk criterion is determined
probabilistically at the start of each trial.  This lead to the
partial overlap with the Red command ship criterion.

The strategy developed relied in a large part on achieving
a specific effect.  This result is similar to a strategy
demonstrated by Great Britain during the Falklands War.
Using a single nuclear submarine the British attacked and
sank the Argentine cruiser General Belgrano which was
accompanied by several escorts.  The British ship was
unharmed during the encounter.  This attack had the effect
of demonstrating to the Argentine Navy that the British
could sink their surface ships anywhere at will.  The
Argentine surface fleet, which also included an aircraft
carrier and escorts,  returned to their territorial waters where
they remained for the duration of the conflict.  The British
were able to neutralize the entire Argentine surface fleet
using a single ship [15]-[16].

6  SUMMARY

During this investigation we have demonstrated that a GA
can be used to generate strategies for a war game in which
the rules are uncertain.  The methodology used, including
the encoding and fitness function developed, were
described.  Use of cost terms in the fitness function was
found to reduce the resources required and complexity of

solutions.  Two methods for estimating the benefit term in
the evaluation function were developed.  Both methods
successfully generated strategies that could reach the goal
of achieving victory in all trials, though the strategies are
not considered optimized.  Overall, the combination of the
count method and elitism produced better strategies than the
other combinations of elitism use and benefit term
computation method.

The strategies developed demonstrated general principals
observed in real world naval strategies.  The type of
solutions developed varied with experiment conditions.  In
some cases a single criterion for victory was used.  In other
cases the conditions drove the strategy to pursue multiple
victory criteria in parallel.  Strategies that used niche
solutions such as the Red command ship criterion from
experiment M1 were able to develop.  In the strategies
developed, the various ship groups moved in a coordinated
fashion even though movement information was not
exchanged.  Future efforts in the area of determining
strategies for war games with uncertain rules will consider
optimization of strategies, the potential use of variance
directly in the objective function, and adaptive opponents.
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