MOBILE ROBOTICS course

KINEMATICS MODELS OF MOBILE ROBOTS

Maria Isabel Ribeiro Pedro Lima

mir@isr.ist.utl.pt pal@isr.ist.utl.pt

Instituto Superior Técnico (IST)
Instituto de Sistemas e Robótica (ISR)
Av.Rovisco Pais, 1
1049-001 Lisboa
PORTUGAL
April. 2002

All the rights reserved

References

- Gregory Dudek, Michael Jenkin, "Computational Principles of Mobile Robotics", Cambridge University Press, 2000 (Chapter 1).
- Carlos Canudas de Wit, Bruno Siciliano, Georges Bastin (eds), "Theory of Robot Control", Springer 1996.

Kinematics for Mobile Robots

- What is a kinematic model ?
- What is a dynamic model ?
- Which is the difference between kinematics and dynamics?
- Locomotion is the process of causing an autonomous robot to move.
- In order to produce motion, forces must be applied to the vehicle
- Dynamics - the study of motion in which these forces are modeled
- Includes the energies and speeds associated with these motions
- Kinematics - study of the mathematics of motion withouth considering the forces that affect the motion.
- Deals with the geometric relationships that govern the system
- Deals with the relationship between control parameters and the beahvior of a system in state space.

Notation

- $\left\{X_{m}, Y_{m}\right\}$ - moving frame
- $\left\{X_{b}, Y_{b}\right\}$ - base frame

$$
q=\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right] \quad \text { robot posture in base frame }
$$

$$
R(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation matrix expressing the orientation of the base frame with respect to the moving frame

Wheeled Mobile Robots

- Idealized rolling wheel

- If the wheel is free to rotate about its axis (x axis), the robot exhibits preferencial rollong motion in one direction (y axis) and a certain amount of lateral slip.
- For low velocities, rolling is a reasonable wheel model.
- This is the model that will be considered in the kinematics models of WMR

Wheel parameters:

- $r=$ wheel radius
- $\mathrm{v}=$ wheel linear velocity
- $\mathrm{w}=$ wheel angular velocity

Differential Drive

- 2 drive rolling wheels

- $\mathrm{v}_{\mathrm{r}}(\mathrm{t})$ - linear velocity of right wheel
- $v_{l}(t)$ - linear velocity of left wheel

control variables

- r - nominal radius of each wheel
- $\quad \mathrm{R}$ - instantaneous curvature radius of the robot trajectory, relative to the mid-point axis

$$
\left[\begin{array}{l}
\mathrm{R}-\frac{\mathrm{L}}{2} _\begin{array}{l}
\text { Curvature radius of trajectory } \\
\text { described by LEFT WHEEL }
\end{array} \\
\mathrm{R}+\frac{\mathrm{L}}{2}<\begin{array}{l}
\text { Curvature radius of trajectory } \\
\text { described by RIGHT WHEEL }
\end{array}
\end{array}\right.
$$

$w(t)=\frac{v_{r}(t)}{R+L / 2}$

$$
\mathrm{w}(\mathrm{t})=\frac{\mathrm{v}_{\mathrm{r}}(\mathrm{t})-\mathrm{v}_{\mathrm{l}}(\mathrm{t})}{\mathrm{L}}
$$

$w(t)=\frac{v_{1}(t)}{R-L / 2}$

$$
R=\frac{L}{2} \frac{\left(v_{l}(t)+v_{r}(t)\right)}{\left(v_{l}(t)-v_{r}(t)\right)}
$$

Differential Drive

Kinematic model in the robot frame

$$
\left[\begin{array}{c}
v_{x}(t) \\
v_{y}(t) \\
\dot{\theta}(t)
\end{array}\right]=\left[\begin{array}{cc}
r / 2 & r / 2 \\
0 & 0 \\
-r / L & r / L
\end{array}\right]\left[\begin{array}{l}
w_{1}(t) \\
w_{r}(t)
\end{array}\right]
$$

- $\mathrm{w}_{\mathrm{r}}(\mathrm{t})$ - angular velocity of right wheel
- $\mathrm{w}_{\mathrm{l}}(\mathrm{t})$ - angular velocity of left wheel

Useful for velocity control

Differential Drive

Kinematic model in the world frame

$$
\begin{aligned}
& \mathrm{v}(\mathrm{t})=\mathrm{w}(\mathrm{t}) \mathrm{R}=\frac{1}{2}\left(\mathrm{v}_{\mathrm{r}}(\mathrm{t})+\mathrm{v}_{1}(\mathrm{t})\right) \\
& \mathrm{w}(\mathrm{t})=\frac{\mathrm{v}_{\mathrm{r}}(\mathrm{t})-\mathrm{v}_{1}(\mathrm{t})}{\mathrm{L}}
\end{aligned}
$$

$\dot{x}(t)=v(t) \cos \theta(t)$
$\dot{y}(t)=v(t) \sin \theta(t)$
$\dot{\theta}(t)=w(t)$

$$
\begin{aligned}
& x(t)=\int_{0}^{t} v(\sigma) \cos (\theta(\sigma) d \sigma \\
& y(t)=\int_{0}^{t} v(\sigma) \sin (\theta(\sigma) d \sigma \\
& \theta(t)=\int_{0}^{t} w(\sigma) d \sigma
\end{aligned}
$$

$$
\left[\begin{array}{c}
\dot{x}(t) \\
\dot{y}(t) \\
\dot{\theta}(t)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta(t) & 0 \\
\sin \theta(t) & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v(t) \\
w(t)
\end{array}\right]
$$

$$
\dot{\mathrm{q}}(\mathrm{t})=\mathrm{S}(\mathrm{q}) \xi(\mathrm{t})
$$

Differential Drive

- Particular cases:

$$
-v_{l}(t)=v_{r}(t)
$$

- Straight line trajectory

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{r}}(\mathrm{t})=\mathrm{v}_{1}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \\
& \mathrm{w}(\mathrm{t})=0 \Rightarrow \dot{\theta}(\mathrm{t})=0 \Rightarrow \theta(\mathrm{t})=\mathrm{cte} .
\end{aligned}
$$

$$
-v_{l}(\mathrm{t})=-\mathrm{v}_{\mathrm{r}}(\mathrm{t})
$$

- Circular path with ICC (instantaneous center of curvature) on the mid-point between drive wheels

$$
\begin{aligned}
& \mathrm{v}(\mathrm{t})=0 \\
& \mathrm{w}(\mathrm{t})=\frac{2}{\mathrm{~L}} \mathrm{v}_{\mathrm{R}}(\mathrm{t})
\end{aligned}
$$

Synchronous drive

- In a synchronous drive robot (synchro drive) each wheel is capable of being driven and steered.
- Typical configurations
- Three steered wheels arranged as vertices of an equilateral triangle often surmounted by a cylindrical platform
- All the wheels turn and drive in unison
- This leads to a holonomic behavior

- Steered wheel

- The orientation of the rotation axis can be controlled

Synchronous drive

- All the wheels turn in unison
- All of the three wheels point in the same direction and turn at the same rate
- This is typically achieved through the use of a complex collection of belts that physically link the wheels together
- The vehicle controls the direction in which the wheels point and the rate at which they roll
- Because all the wheels remain parallel the synchro drive always rotate about the center of the robot
- The synchro drive robot has the ability to control the orientation θ of their pose diretly.
- Control variables (independent)

$$
-\quad v(t), w(t)
$$

$$
\begin{aligned}
& x(t)=\int_{0}^{t} v(\sigma) \cos (\theta(\sigma) d \sigma \\
& y(t)=\int_{0}^{t} v(\sigma) \sin (\theta(\sigma)) d \sigma \\
& \theta(t)=\int_{0}^{t} w(\sigma) d \sigma
\end{aligned}
$$

- The ICC is always at infinity
- Changing the orientation of the wheels manipulates the direction of ICC

Synchronous Drive

- Particular cases:
- $v(t)=0, w(t)=w=c t e$. during a time interval Δt
- The robot rotates in place by an amount $w \Delta t$
- $\mathrm{v}(\mathrm{t})=\mathrm{v}, \mathrm{w}(\mathrm{t})=0$ during a time interval $\Delta \mathrm{t}$
- The robot moves in the direction its pointing a distance
$v \Delta t$

Tricycle

- Three wheels and odometers on the two rear wheels
- Steering and power are provided through the front wheel
- control variables:
- steering direction $\alpha(\mathrm{t})$
- angular velocity of steering wheel $\mathrm{w}_{\mathrm{s}}(\mathrm{t})$

If the steering wheel is set to an angle $\alpha(\mathrm{t})$ from the straight-line direction, the tricycle will rotate with angular velocity $\mathrm{w}(\mathrm{t})$ about a point lying a distance R along the line perpendicular to and passing through the rear wheels.
$r=$ steering wheel radius

$$
V_{s}(t)=W_{s}(t) r \quad \text { linear velocity of steering wheel }
$$

$$
\mathrm{R}(\mathrm{t})=\mathrm{dtg}(\pi / 2-\alpha(\mathrm{t}))
$$

$$
w(t)=\frac{w_{s}(t) r}{\sqrt{d^{2}+R(t)^{2}}}
$$

angular velocity of the moving frame relative to the base frame

$$
w(t)=\frac{v_{s}(t)}{d} \sin \alpha(t)
$$

Tricycle

Kinematic model in the robot frame

$$
\begin{aligned}
& v_{x}(t)=v_{s}(t) \cos \alpha(t) \\
& v_{y}(t)=0 \\
& \dot{\theta}(t)=\frac{v_{s}(t)}{d} \sin \alpha(t)
\end{aligned}
$$

$$
\mathrm{v}_{\mathrm{y}}(\mathrm{t})=0 \quad \longrightarrow \text { with no splippage }
$$

Kinematic model in the world frame

$$
\begin{aligned}
& \dot{x}(t)=v_{s}(t) \cos \alpha(t) \cos \theta(t) \\
& \dot{y}(t)=v_{s}(t) \cos \alpha(t) \sin \theta(t) \\
& \dot{\theta}(t)=\frac{v_{s}(t)}{d} \sin \alpha(t)
\end{aligned}
$$

$\left[\begin{array}{l}\dot{x}(t) \\ \dot{y}(t) \\ \dot{\theta}(t)\end{array}\right]=\left[\begin{array}{cc}\cos \theta(t) & 0 \\ \sin \theta(t) & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}v(t) \\ w(t)\end{array}\right]$

$$
\begin{aligned}
& v(t)=v_{s}(t) \cos \alpha(t) \\
& w(t)=\frac{v_{s}(t)}{d} \sin \alpha(t)
\end{aligned}
$$

Omnidireccional

Kinematic model in the robot frame
Swedish wheel

$$
\left[\begin{array}{c}
V_{x} \\
V_{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\frac{1}{\sqrt{3}} r & \frac{1}{\sqrt{3}} r \\
-\frac{2}{3} r & \frac{1}{3} r & \frac{1}{3} r \\
\frac{r}{3 L} & \frac{r}{3 L} & \frac{r}{3 L}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

$\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}-$ angular velocities of the three swedish wheels

