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Abstract

A finite automaton, simply referred to as arobot, has to explore a graph whose nodes are unlabeled
and whose edge ports are locally labeled at each node. The robot has no a priori knowledge of the
topology of the graph or of its size. Its task is to traverse all the edges of the graph. We first show that,
for anyK-state robot and anyd�3, there exists a planar graph of maximum degreed with at most
K +1 nodes that the robot cannot explore. This bound improves all previous bounds in the literature.
More interestingly, we show that, in order to explore all graphs of diameterD and maximum degree
d, a robot needs�(D logd) memory bits, even if we restrict the exploration to planar graphs. This
latter bound is tight. Indeed, a simple DFS up to depthD + 1 enables a robot to explore any graph of
diameterD and maximum degreed using a memory of size O(D logd) bits. We thus prove that the
worst case space complexity of graph exploration is�(D logd) bits.
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1. Introduction

1.1. Background and motivation

A mobile entity, e.g., a software agent or a robot, has toexplorean undirected graph
by visiting all its nodes and traversing all its edges, without any a priori knowledge of
the topology of the graph or of its size. The task of visiting all nodes is fundamental in
searching for data stored at unknown nodes of a network, and traversing all edges is of-
ten required in network maintenance and when looking for defective components. More
precisely, we consider the task of “perpetual” exploration in which the robot has to tra-
verse all edges of the graph but is not required to stop. That is, the robot moves from
node to node, traversing edges, so that eventually all edges have been traversed. Perpet-
ual exploration is of practical interest, e.g., if regular control of a network for the pres-
ence of faults is required, and all edges must be periodically traversed over long periods
of time.
If nodes and edges have unique labels, exploration can be easily achieved (e.g., by depth-

first search). However, in some navigation problems in unknown environments, such unique
labeling may not be available, or limited sensory capabilities of the robot may prevent it
from perceiving such labels. Hence, it is important to be able to program the robot to ex-
ploreanonymousgraphs, i.e., graphs without unique labeling of nodes or edges. Clearly,
the robot has to be able to locally distinguish ports at a node: otherwise it is impossi-
ble to explore even the star with 3 leaves (after visiting the second leaf, the robot can-
not distinguish the port leading to the first visited leaf from that leading to the unvisited
one). Hence, we make a natural assumption that all ports at a node are locally labeled
1, . . . , d, whered is the degree of the node. No consistency between those local labelings is
assumed.
In many applications, robots and mobile agents are meant to be simple, often small and

inexpensive devices. This limits the amount of memory with which they can be equipped.
As opposed to numerous papers that imposed no restrictions on the memory of the robot
and sought exploration algorithms minimizing time, i.e., the number of edge traversals,
we investigate the minimum memory size of the robot that allows exploration of graphs
of given (unknown) size, regardless of the time of exploration. That is, we want to find an
algorithm for a robot performing exploration, using as little memory as possible.
A robot with ak-bit memory is modeled as a finite automaton. The first known finite

automaton algorithm designed for graph exploration was introduced by Shannon[46] in
1951. Since then several papers have been dedicated to the graph exploration problem. In
1967, during his talk at Berkeley, Rabin [43] proposed a conjecture that no finite automaton
with a finite number of pebbles can explore all graphs (a pebble is a marker that can be
dropped at and removed from nodes). In 1971, Müller [39] gave some formal arguments to
support Rabin’s claim, in the restricted case of a robot without pebbles. In 1977, Coy [20]
presented another proof, but some parts of it are fuzzy. The first formal proof of Rabin’s
claim is generally attributed to Budach [18], in 1978, for a robot without pebbles. Actually,
the long and technical paper by Budach is concerned with labyrinths. Alabyrinth is a
two-dimensional obstructed chess-board (i.e.,Z2 with forbidden cells). The forbidden cells
in Z2 are described by a setL. If L (resp.,Z2 \ L) is finite, then the labyrinth is called
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finite (resp., co-finite). Exploring a finite labyrinth means that the automaton is able to go
arbitrarily far away from its starting position, for any starting position. The edges of the
labyrinth are consistently labeled North, South, East, West. (Budach’s result applies also to
graphs because a co-finite labyrinth is a finite graph.) The same year, Blum and Kozen[13]
improvedBudach’s result byproving that threefiniteautomatacannot cooperatively perform
exploration of all graphs. In 1979, Kozen [37] proved that four cooperative robots cannot
explore all graphs. Finally, in 1980, Rollik [45] gave a complete proof of Rabin’s claim.
More precisely, Rollik proved that no finite set of finite automata can cooperatively perform
exploration of all cubic planar graphs. Since a finite automaton is more powerful than a
pebble, Rabin’s claim is a corollary of Rollik’s theorem. In all proofs, including the one
by Budach and the one by Rollik, the size of the smallesttrap for an automaton with no
pebbles (i.e., the smallest graph that an automaton with no pebbles cannot explore) is large.
One of the objectives of the current paper is to revisit Rabin’s claim in the case of a robot
with no pebbles, specifically for improving the size of traps, and for designing traps with
specific topological properties.

1.2. Our results

Our first result is the design of a trap with at mostK+1 nodes for anyK-state automaton.
More precisely, we prove that, for anyd�3 and for anyK-state automaton, there exists a
planar graph ofK + 1 nodes and maximum degreed that the automaton cannot explore.
(We assumed�3 since, obviously, all connected graphs of maximum degreed�2 can be
explored by a robot with a constant memory size.) This construction improves—in terms
of size—the best bound known so far, i.e., 2K, due to Rollik.
More importantly, our construction methodology is quite generic and can be adapted for

the minimization of other graph parameters. In particular, we prove that, for anyd�3 and
for anyK-state automaton, there exists a planar graph of O(K) nodes, maximum degree
d, and diameter O(logK/logd) that the automaton cannot explore. This latter result has
an important corollary, namely that for anyd�3 and anyD, a robot requires�(D logd)

memory bits to explore all graphs of maximum degreed and diameterD. This bound is
tight. Indeed, a simple DFS at depthD + 1 enables a robot with O(D logd) memory bits
to explore all graphs of maximum degreed and diameterD.
To summarize, we prove that the worst case space complexity of graph exploration is

�(D logd) bits.

1.3. Related work

Exploration and navigation problems for robots in an unknown environment have been
extensively studied in the literature (cf. [30,44]). There are two groups of models for these
problems. In one of them a particular geometric setting is assumed (see, e.g., [7,12,21]).
Another approach is to model the environment as a graph, assuming that the robot may
only move along its edges. The graph setting can be further specified in two different ways.
In [1,9,10,22,28] the robot explores strongly connected directed graphs and it can move
only in the head-to-tail direction of an edge, not vice-versa. In [5,11,18,23,25–27,38,42,45]
the explored graph is undirected and the robot can traverse edges in both directions. Graph
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exploration scenarios considered in the literature differ in an important way: it is either
assumed that nodes of the graph have unique labels which the robot can recognize (as in,
e.g.,[22,26,42]), or it is assumed that nodes are anonymous (as in, e.g., [9,10,18,45]). We
are concernedwith the latter context. The efficiencymeasure adopted in papers dealing with
graph exploration is either the completion time of this task, measured by the number of edge
traversals, (cf., e.g., [42]), or the memory size of the robot, measured either in bits or by the
number of states of the finite automaton modeling the robot (cf., e.g.[23,28]). Time is not
an issue in our approach, and we address the latter efficiency measure, i.e., memory space.
Three versions of the exploration problem have been addressed in the literature: exploration
with return (in which the robot has to perform exploration and return to its starting position),
exploration with stop (in which the robot has to complete exploration and eventually stop),
and perpetual exploration (the type of exploration considered in this paper). For instance,
it is shown in [23] that exploration with stop ofn-node trees requires a robot with memory
size�(log log logn), and that exploration with return ofn-node trees can be achieved by a
robot with O(log2 n)memory bits. Minimizing the memory of the robot for the exploration
of anonymous undirected graphs has been addressed in, e.g., [13,18,23,37,45].
Also, a large part of the literature is concernedwith labyrinth exploration. The exploration

problem in such labyrinths is known to be strictly simpler than graph exploration [13].
In [24], Döpp proved that a robot is able to explore all finite one-component labyrinths
(i.e., where the setL of forbidden cells is finite and connected), and asked whether there
exists a universal finite automaton, i.e., one able to explore every finite labyrinth. Budach
proved (see the sketch in [16] and the complete version in [18]) that no finite automaton can
explore all finite labyrinths. The same result holds for co-finite labyrinths. In [14], Blum and
Sakoda have shown that there exists a finite automaton able to explore all finite labyrinths
using 4 pebbles (the automaton is universal for all labyrinths if 7 pebbles are allowed).
Blum and Kozen [13] proved that a finite automaton with only 2 pebbles can explore all
co-finite labyrinths. The problem was finally closed by Hoffmann [31] who showed that a
finite automaton with a unique pebble cannot explore all finite labyrinths. Again, the same
result holds for co-finite labyrinths. Furthermore, a trap for a finite automaton (using no
pebbles) can be constructed such thatL has only three connected components (cf. [40]).
Finally, for any finite set of non-cooperative automata, there exists a finite labyrinth that
these automata cannot explore [3].
It is worth mentioning that our work has connections with derandomized random walks.

There, the objective is to produce an explicit universal traversal sequence (UTS), i.e., a
sequence of port labels, such that the path guided by this sequence visits all edges of any
graph. It is known that, with high probability, a sequence of length O(n3d2 logn), chosen
uniformlyat random,producesawalk completely exploringanyd-regular (connected) graph
of nnodes. Explicit UTS constructions are known for 2-regular graphs (cf. [8,15,19,34,36]),
for 3-regular graphs (cf. [6,33,41]), for cliques (cf. [2,35]), and for expanders (cf. [32]).
Some of these sequences can be constructed in log-space, and hence can produce perpetual
explorationwith compactmemory.However, even if boundson the lengthof thesesequences
have been derived, they provide little knowledge on the minimum number of states for
graph exploration by a robot. For instance, sequences of length�(n logn) are required to
traverse all degree 2 graphs withnnodes [8], although a 2-state robot can explore all degree
2 graphs.
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2. Terminology and model

An anonymous undirected graph with locally labeled ports is a graph whose nodes are
unlabeled and where the edges incident to a nodev have distinct labels 1, . . . , dv, where
dv is the degree ofv . Thus every undirected edge{u, v} has two labels which are called its
port numbersatu and at v . Port numbering islocal, i.e., there is no relation between port
numbers atu and at v . Unless specified otherwise, all considered graphs are supposed to
be connected.
We are given a mobile entity traveling in an anonymous graph with locally labeled ports.

The graph and its size are a priori unknown to the entity. The mobile entity is referred to as
arobot. More precisely, aK-state robot is a finite Moore automatonR = (X, Y,S, �, �, S0)
whereX ⊆ N2, Y ⊆ N, S is a set ofK states among which there is a specified stateS0
called theinitial state,� : S × X → S, and� : S → Y . Initially the robot is at some
nodeu0 in the initial stateS0 ∈ S. S0 determines a local port numberp = �(S0) ∈ Y , by
which the robot leavesu0. When incoming to a nodev , the behavior of the robot is as
follows. It reads the numberi of the port through which it enteredv and the degreedv of
v . The pair(i, dv) ∈ X is an input symbol that causes the transition from stateS to state
S′ = �(S, (i, dv)). S′ determines a local port numberp = �(S′), by which the robot leaves
v . The robot continues moving in this way, possibly infinitely.
As mentioned before, we consider the task of “perpetual” exploration in which the robot

has to traverse all edges of the graph but is not required to stop. That is, it is not required
that a final state be inS. A robot is said to perform anexplorationof a graphG, if starting
at anynode ofG in the initial stateS0, it completes traversing all edges ofG in finitely
many steps.

3. Traps and lower bounds

In order to prove lower bounds for the exploration problem, we first study the maximum
size of graphs that a given robot can explore. LetR be a robot. Atrap forR is a pair(G, u0)

whereG = (V ,E) is a graph,u0 ∈ V , and starting at nodeu0 the robotR fails to exploreG,
i.e., there exists an edgee ∈ E such that, for anyt�0, the robot has not traversededuring
the firstt steps of the exploration. Given aK-state robotR (hence with�logK memory
bits), we construct a trap for this robot. Our objective is to construct small traps, or traps
with small diameter.
For the purpose of constructing traps, let us introduce some tools. A graphGofmaximum

degreed is edge-coloredif every edge ofG is given a color, every two incident edges have
different colors, and there aredcolors used in total. There is a clear correspondence between
regular edge-colored graphs and regular edge-labeled graphs in which the labels at the two
extremities of each edge are identical.

Definition 1. A finite sequenceL of labels is apseudo-palindromeif any of the following
two conditions is satisfied: (1)L = ∅, or (2)L = L′ ◦ (�, �) ◦ L′′, whereL′ ◦ L′′ is a
pseudo-palindrome,� is a label, and◦ denotes concatenation. In particular, a palindrome
(i.e., a sequence that reads the same backward as forward) is a pseudo-palindrome precisely
if its length is even.
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A sequenceL′ is a reductionof L if L′ = A ◦ B andL = A ◦ L′′ ◦ B whereL′′ is a
nonempty pseudo-palindrome, andA andB are two arbitrary sequences (possibly empty).
A sequence is saidpp-freeif it has no reduction. A sequenceL′ is thepp-reductionof a
sequenceL if L′ is pp-free and obtained fromL by successive reductions. One can easily
check that the pp-reduction of a sequence is unique (cf., e.g., Section 1.7 in[18]). For
instance the pp-reduction of 1122121121322331131332311221 is 1231. Obviously, given
anyd-regular edge-colored graphG = (V ,E) and any nodeu ∈ V , each sequenceL of
edge labels defines a pathP fromu in G. If L is a pseudo-palindrome thenP starts and ends
atu. (If G is an infinite tree,L is a pseudo-palindrome if and only ifP starts and ends atu.)

Theorem 2. For every K-state robot and everyd�3, there exists a planar graph of maxi-
mum degree d with at mostK + 1 nodes that the robot cannot explore.

Proof. Let Td be the infinite edge-colored regular tree of degreed. Let u0 be any node.
Assume that the robot starts fromu0 in stateS0. After at mostK steps (hence after visiting
at mostK + 1 nodes), the robot has been twice in the same state. LetSbe such a state, and
let u andu′ be the first occurrences of two nodes where the robot is in stateS. The robotR
is atu at stept and atu′ at stept ′. Since the robot is in an edge-colored regular graph, the
sequence of states becomes periodic aftert. Letp = t ′ − t be the period, and letu′′ be the
node reached byR at stept +2p = t ′ +p. At this step, the robot is again in stateS. Finally,
let L be the ordered sequence of labels of the edges traversed by the robot from stept + 1
to stept ′, and letL′ be its pp-reduction.
Intuitively, to construct a trap based onTd , wemodifyTd bymerging two nodes so that the

robot is trapped in a periodic movement in the modified graph. More precisely, we proceed
according to the pp-reductionL′ of the sequence of labelsL visited while going fromu to
u′ in Td . First we define an intermediate graphG′′, whose definition differs according to
the structure ofL′.

Case1: L′ is not a palindrome (in particular,L′ is not empty). ThenL′ describes the
simple path fromu to u′ in Td . SinceL′ is not a palindrome, it can be written asL′ =
(l1, . . . , lq , l, . . . , l

′, lq , . . . , l1) with l �= l′. Moreover, sinceL′ is pp-free, we have also
l′ �= lq . Let v (resp.,v′) be the node reached fromu (resp.,u′) after following the sequence
of edge labelsl1, . . . , lq (see Fig.1). Note that we may havev = u and v′ = u′, but
not v = v′. Let w be the neighbor ofv′ such that{w, v′} is labeledl′. SinceL′ is not
a palindrome, we havew �= v. We constructG′′ as follows. We delete edges labeledl′
incident tov and tow, and we replace these two edges by an edge betweenv andw. This
edge is labeledl′. Note thatG′′ has exactly three connected components.

We prove that the behavior of the robot becomes periodic inG′′. For that purpose, let
us first recompute a starting node of the robotR such thatR is atu in stateSat stept in
G′′. (Note that the original starting nodeu0 may be in a connected component different
from the one ofu and v . However,u andv are in the same component becauselq �= l′.)
To do that, letL′′ be the sequence of edge labels corresponding to the walk of the robot
from u0 to u in Td . Starting fromu, let v0 be the node reached when the robot traverses
the edges labeled byL′′ in the reverse order. The robot starts inv0 and, by construction,
reachesu in stateSat stept. Let us consider the nextp steps of the exploration. Since the
connected component ofG′′ containingu is a regular graph of degreed, the sequence of
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Fig. 1. Construction ofG′′ in the case whereL′ is not a palindrome. The dotted edges(v, z) and (w, v′) are
removed and the dashed edge(v,w) is added instead.

robot’s states is the same inG′′ as inTd . Thus, at stept ′ the robot is in stateS in G′′. Any
pseudo-palindrome defines a closed walk inG′′. Recall that the pp-reductionL′ of L can
be writtenL′ = (l1, . . . , lq , l, . . . , l

′′, l′, lq , . . . , l1). The sequence(l1, . . . , lq) leads from
u to v, and the sequence(l, . . . , l′′) leads fromv to w. Indeed, the modification ofTd does
not modify the path fromu to w becausel′ �= lq andl′ �= l. Fromw, the robot takes the
edge labeledl′, which is the edge that was added betweenv andw during the construction
of G′′. Hence, the robot is back atv in G′′. Finally (lq , . . . , l1) leads back fromv to u, and
R is in stateSatu at stept ′. The robot’s behavior is thus periodic inG′′, as claimed.
LetG′ be the graph consisting of all edges traversed by the robot inG′′ when starting from

v0. More precisely,G′ is the graph composed of all nodes and edges that the robot traverses
at least once during its journey fromv0 inG′′. Since the robot’s behavior is periodic inG′′,
G′ is a finite graph. Actually,G′ has at mostK nodes. Indeed, aftert ′ steps, the robot is
trapped in a cycle. Thus, it does not visit new nodes after stept ′. During the firstt ′ steps, the
robot visits at mostt ′ + 1 nodes. However, it is at the same nodeu at stept andt ′. Hence,
the robot visits at mostt ′ �K nodes.
To complete the construction of the trap, we add edges to make the degrees of every node

inG′ exactlyd, so that the sequence of robot’s states is the same inG′ as inTd . SinceG′′ is
infinite andd-regular, andG′ is a finite subgraph ofG′′, there are necessarily some nodes in
G′ with degree less thand. Thus, we now completeG′ by pairing nodes (possibly including
self-loops) until every node ofG′ (i.e., visited by the robot) is of degree exactlyd.
More precisely, letx be a node that needsr additional incident edges. Ifr is even, we

creater/2 self-loops aroundx. If r is odd, we create(r − 1)/2 self-loops aroundx. Then
every node needs at most one additional edge.G′ is a tree, so one can match these nodes,
adding one edge for each pair, so that the resulting graph remains planar. After that, there
remains at most one unmatched node. We connect this node to an additional (new) node
y of degree 1. (Asy is never visited by the robot, its degree is immaterial). Therefore, we
obtain a planar graphG with at mostK + 1 nodes (recall thatG′ has at mostK nodes).
The added edges are labeled locally. This labeling can be chosen arbitrarily because these
edges are not traversed by the robot anyway (the robot only traverses edges ofG′). Since
exploration means traversing all edges, the robot fails to explore G, and thus(G, v0) is a
trap forR.

Case2:L′ is a palindrome. There are two subcases.
Subcase2.1:L′ is empty (i.e.,L is a pseudo-palindrome). Thenu = u′. The behavior of

the robotR becomes periodic inTd becauseu = u′ and the robot is in the same state atu
in stepst andt ′. Hence,G′ is defined as in the previous case, i.e., as the graph consisting of
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all edges traversed by the robot inTd when starting fromu0.G′ is then transformed intoG
as before. Since, for the same reasons as for the general case,G′ has at mostK nodes, we
get thatG has at mostK + 1 nodes. Not all edges ofG are visited. Thus(G, u0) is a trap
for R.

Subcase2.2:L′ is a nonempty (odd length) palindrome. ThenL′ concatenated with itself
is a pseudo-palindrome, and thusu = u′′. As in the previous cases, the behavior of the robot
becomes periodic inTd . However, unlike what happened in the previous cases, the period
is 2p, and the end of the first period occurs at stept ′ +p, instead of stept ′. Hence, a graph
G′ defined as in the previous cases may have more thanK nodes. To keepG′ small, we
slightly change the definition ofG′′ compared to the previous cases. During the 2p steps
following stept, the robot starts and ends atu in Td . SinceTd is a tree, the robot visits every
edge at least twice, and thus it visits at mostp edges andp + 1 nodes. Thus in total, the
robot visits at mostt +p+1 = t ′ +1 nodes. Sincet ′ �K, at mostK +1 nodes are visited.
If the robot actually visits at mostK nodes ofTd , then we setG′′ = Td . If R visits exactly
K +1 nodes ofTd , then wemodifyTd as follows. LetL̂ be the sequence of edge labels seen
by the robot during the firstt + 2p steps of its journey. Note that̂L contains at least two
different labels (i.e., it is not a sequence(l, l, . . . , l)). Indeed,K�d�3 and thus a sequence
L̂ = (l, l, . . . , l) would imply that some edge is visited at least three times. Therefore the
robot would have visited at mostK nodes, a contradiction with our assumption thatR
visits exactlyK + 1 nodes. LetL̂ = (l̂1, l̂2, . . . , l̂t+2p). Choose the firsti�1 such that
l̂i �= l̂i+1. For everyj, let ûj be the node reached by the robot at the end of stepj. We merge
ûi−1 and ûi+1 by constructing two parallel edges betweenûi−1 and ûi , one of which is
labeledl̂i , while the other is labeled̂li+1. The resulting graph is denotedG′′. Clearly, the
robot visits at mostK nodes inG′′. We now defineG′ andG as in the previous cases.G′
has at mostK nodes, and thusG has at mostK + 1 nodes. In spite of the double edge, the
behavior of the robot is periodic inG′′ because the sequenceLL is a pseudo-palindrome
and thus it defines a closed walk in any edge-colored graph. For the same reasons as in the
previous cases, not all edges ofGare traversed byR, and thus(G, u0) is a trap forR, which
completes the proof of Theorem2. �

Remark. The graph constructed in the proof above may have self-loops, and multiple
edges. It is, however, possible to design, for anyK-state robot, and for anyd�3, a sim-
ple graph with maximum degreed, and at mostK + d + 2 nodes, that the robot cannot
explore.

We can rephrase Theorem 2 as follows:

Corollary 3. A robot that explores all n-node planar graphs requires at least�logn mem-
ory bits.

The next result links the number of states of a robot with the maximum diameter of the
graphs that it can explore.

Theorem 4. For every K-state robot and everyd�3, there exists a planar graph of maxi-
mum degree d and diameter at most4�logd−1K + 2 that the robot cannot explore.
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Proof. We start from the intermediate graphG′ defined in the proof of Theorem2. We
completeG′ so that all nodes ofG′ are of degreed as follows.G′ has at mostK nodes and
for each node there are at mostd−1missing edges. Hence, we consider thed-regular treeB
of depthh = �logd−1K.Bhas at leastd(d −1)h−1 > K leaves. We add edges from every
node ofG′ to different leaves ofB, so that all visited nodes (the nodes ofG′) are of degree
exactlyd. The added edges are labeled locally arbitrarily. The resulting graph is denoted by
G. Clearly, the pairing between the nodes ofG′ and the nodes ofB can be done so thatG is
planar (there may be however multiple edges). To compute an upper bound on the diameter
of G, let us consider an arbitrary nodex of G′. During the construction ofG′, we usedTd ,
and we constructedG′′ in which at most two nodes were modified. Therefore, sinced�3,
at least one edge leads inG′′ from x to a noder which is the root of an unmodified infinite
subtreeT of Td . At distance at mosth from noder, there are at least(d − 1)h nodes inT.
Since(d − 1)h�K, we get that there is a node ofT, at distance at mosth from r, that is
in G′′ but not inG′. Therefore, there exists a node inG′, at distance at mosth − 1 from r,
that has degree smaller thand in G′. This node is connected to the treeB in G. Thus, any
node ofG′ is at distance at mosth + 1 from a node ofB. The diameter ofB is 2h. Thus,
the diameter ofG is at most(h + 1) + 2h + (h + 1) = 4h + 2, which completes the proof.
(As in Theorem 2, the graphG is a trap forR because the nodes ofB are not visited by the
robot.) �

Remark. We used thed-ary treeB in the proof of Theorem 4 for the sake of generality.
However, for some specific values ofd, there are(d −1)-regular graphs of diameter smaller
than that of thed-ary tree. For instance, the undirected de Bruijn graphB(b, q) is defined on
the setVof words of lengthq in baseb, and the nodex1 . . . xq of B(b, q) is connected to (at
most) 2b nodesyx1 . . . xq−1 andx2 . . . xqy, y ∈ {0, . . . , b−1}. Construct a graph obtained
by adding an undirected de Bruijn graph toG′, instead of ad-ary tree. Choose the base
b = �(d − 1)/2� so that thedegree2b remains smaller thandwhile thediameterq � logb K
is kept small. More specifically, chooseb such thatd − 2b�1, and, sinceG′ has at most
(d − 1)K missing edges, chooseq as the smallest integer satisfyingbq �(d − 1)K, i.e.,
q = �logb((d −1)K). Hence, consider the de Bruijn graphB(b, q)with at least(d −1)K
nodes. Add an edge from every node ofG′ to a different node ofB(b, q), so that all nodes of
G′ become of degree exactlyd. The diameter of the de Bruijn graphB(b, q) isq. Therefore,
the diameter of the resulting graphG is at most 2h+ 2+ q whereh = �logd−1K. Hence,
for everyK-state robot andd�5, there exists a graph of maximum degreedand diameter at
most 2�logd−1 K+2+�log�(d−1)/2�((d −1)K) that the robot cannot explore. However,
in this case the trap is not planar.

As a direct consequence of Theorem 4, we have

Corollary 5. A robot that explores all graphs of diameter D and maximum degree d requires
at least�(D logd) memory bits.

By Corollary 5, the best that ak-bit memory robot can do is to explore all graphs of
diameterD and maximum degreed such thatk = �(D logd). In the next section, we show
that this goal can be achieved.
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4. An exploration algorithm

In this section, we present an algorithm calledIncreasing-DFS , that enables a robot
to explore all graphs of sufficiently small diameter and maximum degree. The algorithm is
given in Fig.2. Roughly speaking, exploration is achieved by using a sequence ofdepth-first
search(DFS) operations at increasing depths from the initial positionu0 of the robot. The
robot keeps in memory the current sequence of port numbers leading back tou0 in the
DFS tree. At Phasei, i�1, the robot performs a DFS of depth bounded byi. In the case
where one is given a robotRwith kmemory bits, we use the variantk-Increasing-DFS ,
that isIncreasing-DFS in which the robot perpetually checks the size of the currently
allocated memory. If this size exceedsk bits, then the robot stops.

Theorem 6. AlgorithmIncreasing-DFS allows a robot to explore every graph. More-
over, Algorithm k-Increasing-DFS explores all graphs of diameter D and maximum
degree d, wheneverk��D logd, for some positive constant�.

Proof. Let the robotR start from nodeu0 in graphG. After R has performed a DFS of
depthi, it has visited all nodes at distance at mosti from u0. Let i = D + 1 whereD is the
diameter ofG. Thus, after theith phase of AlgorithmIncreasing-DFS , all edges have
been traversed, and thus exploration has been completed. Ifk��D logd, then a stack of
D + 1 elements on logd bits, and a constant number of scalar variables, can be stored in
the robot’s memory, for� = O(1) large enough. Thus, wheni = D + 1, the exploration is
completed using no more thankbits. Hence any graph of diameterD and maximum degree
d can be explored. �

A direct consequence of Theorem6 is the following:

Corollary 7. All graphs of diameter D and maximum degree d can be explored by a robot
usingO(D logd) memory bits.

Remark. The bound of Corollary7 is tight (cf. Corollary 5).

Asa final observation, notice that algorithmIncreasing-DFS usesan infinitememory
to explore somegraphsof boundedsize.Nevertheless, this phenomenoncannot beovercome
by any exploration algorithm. Indeed, surprisingly, any infinite automaton that explores all
graphs is required to use an infinite amount of memory to explore some finite graphs. In
particular, ford�0, let Gd be the set of all edge-coloredd-regular graphs (Gd �= ∅ as
witnessed by, e.g., the hypercubeQd , or two nodes linked byd parallel edges). We have
the following:

Theorem 8. For any(infinite deterministic) automatonR that explores all graphs, and for
anyG ∈ Gd , R uses infinitely many memory states when exploring G.

Proof. LetR be an automaton that explores all graphs, and letG ∈ Gd . As a consequence
of Theorem2,R is aninfiniteautomaton(X, Y,S, �, �, S0), i.e.,|S| is unbounded. Assume,
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Fig. 2. AlgorithmIncreasing-DFS .

for the purpose of contradiction, thatR usesK states ofS when executed inG, starting
from some node, sayu0. LetR′ be the automaton obtained by restrictingR to the diagram
induced by theseK states ofS. More precisely,R′ = (X, Y,S ′, �′, �′, S0) whereS ′ is the
set of theK states used byR when exploringG starting fromu0, �

′ is � restricted toS ′, and
�′ is � restricted toS ′ × X. LetGd(R′) be the set of pairs(H, v0) whereH = (V ,E) is an
edge-labeled graph andv0 ∈ V , such that, starting atv0 in H,R′ visits only nodes of degree
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d and traverses only edges that have identical labels at their two extremities. Let(H, v0)

be the trap forR′ constructed in the proof of Theorem2. By our construction, we have
(H, v0) ∈ Gd(R′). Moreover, sinceG ∈ Gd , we also have(G, u0) ∈ Gd(R′). Let (Si)i�0
be the sequence of states ofR′ when exploringG starting fromu0. By the construction
of R′, (Si)i�0 is also the sequence of states ofR when exploringG starting fromu0. In
fact, we have{Si, i�0} = S ′, andSi+1 = �′(Si, �

′(Si, d)) = �(Si, �(Si, d)). Therefore,
the sequence(Si)i�0 is independent of any instance(graph, starting node) ∈ Gd(R′),
and is independent of which automatonR or R′ is exploring that instance. In particular,
the sequence(Si)i�0 is the same forR andR′ in (H, v0). Therefore, the sequences of
nodes visited byR andR′ when exploringH starting fromv0 are identical. Since(H, v0)

is a trap forR′, this latter fact is in contradiction with the fact thatR is universal, and
thus explores all graphs, includingH. HenceR uses an infinite number of states when
exploringG. �

5. Conclusion and future work

We have proved that�(D logd) memory bits are necessary and sufficient to explore all
graphs of diameterD and maximum degreed. We have also proved that�(logn) memory
bits are necessary to explore alln-node graphs. An interesting open problem is to decide
whether this latter bound is tight, or if, for anyK-state robot, there exists a graph of size
o(K) that this robot cannot explore.
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