
Ray Tracing Visualization Toolkit

Christiaan Gribble∗ Jeremy Fisher Daniel Eby Ed Quigley Gideon Ludwig

Department of Computer Science

Grove City College

Figure 1: Ray Tracing Visualization Toolkit. An extensible GUI, together with a ray state recording library and a collection of visualization
components, integrate existing client renderers via a flexible plug-in architecture to support visual analysis of ray-based rendering algorithms.
Here, rtVTK is used to visually debug an ill-behaved path tracer. The previously undiscovered bug is not obvious in either a low-quality image
with relatively few samples per pixel (top left) or a high-quality image with many more samples per pixel (bottom left). However, when viewing
the ray state directly with rtVTK (middle, right), the problem is immediately obvious: some shadow rays originating from diffuse surfaces
(circled) are not directed toward any light source in the scene. Once identified, the correction was trivial; however, in its previous state, the
renderer was incorrect, and likely would have remained so without the ability to visualize the ray tracing process itself.

Abstract

The Ray Tracing Visualization Toolkit (rtVTK) is a collection of
programming and visualization tools supporting visual analysis of
ray-based rendering algorithms. rtVTK leverages layered visual-
ization within the spatial domain of computation, enabling investi-
gators to explore the computational elements of any ray-based ren-
derer. Renderers utilize a library for recording and processing ray
state, and a configurable pipeline of loosely coupled components
allows run-time control of the resulting visualization. rtVTK en-
hances tasks in development, education, and analysis by enabling
users to interact with a visual representation of ray tracing compu-
tations.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Stand-Alone Systems; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Ray tracing; I.6.9 [Simula-
tion, Modeling, and Visualization]: Visualization—Visualization
Systems and Software

Keywords: ray-based rendering, ray tracing, visualization

∗e-mail: cpgribble@gcc.edu

1 Introduction

We introduce the Ray Tracing Visualization Toolkit (rtVTK), a col-
lection of programming and visualization tools supporting visual
analysis of ray-based rendering algorithms. rtVTK comprises a li-
brary for recording and processing ray state, together with a flex-
ible software architecture for visualization components, integrated
via an extensible GUI. rtVTK enables an investigator to inspect, in-
terrogate, and interact with the computational elements of the ray
tracing algorithm itself, thereby promoting a deeper understanding
of how computation proceeds.

Our goal is to employ real-time ray tracing for applications in fields
as diverse as science, engineering, history, and the arts. Many
of these applications require predictive images, or those in which
computer-generated results are identical to the photo- and radio-
metric values obtained by measuring a scene in the physical world.
Ray-based rendering algorithms are ideally suited to this task.

Typically, these algorithms simulate the behavior of photons as they
interact with objects in an environment according to the laws of
geometric optics. These interactions are often very complex, and
depend on the spatial arrangement of objects in a scene, their ma-
terial properties, and the optical effects captured by the particular
algorithm in use. Moreover, generating a high-fidelity result re-
quires computing many millions (if not billions) of ray/object inter-
actions. Thus, the complexity encountered in predictive rendering
applications limits the practicality of current approaches for real-
time image synthesis. Even with recent advances targeting highly
parallel platforms [van Antwerpen 2011], many seconds of com-
putation are required for results to converge. As such, rendering
predictive images at real-time frame rates is not yet feasible.



Importantly, predictive applications also require that advanced ray-
based rendering algorithms be physically correct for the results
to be effective—much more so than applications requiring simply
plausible or visually convincing results. Here, too, the complexity
of scene geometry, material properties, and optical effects used in
predictive rendering leads to difficulties in ensuring program cor-
rectness: traditional software debugging tools are not designed to
leverage the inherent visual nature of computer graphics computa-
tion, and thus lead to a cumbersome debugging process.

We believe that effective visualization of ray tracing state will pro-
mote deeper understanding of how computation proceeds, address-
ing a wide variety of problems in ray-based rendering. For example,
a subtle and long-standing bug related to secondary ray generation
in a batch renderer has been exposed as a result of visualization
with rtVTK, as illustrated in Figure 1. Similarly, anecdotal evi-
dence from an undergraduate computer graphics course suggests
that students of ray tracing are better able to grasp the algorithm’s
details by interacting with a visual representation of the compu-
tation. Moreover, visualization with rtVTK may enhance tasks in
ray tracing performance analysis by enabling insights beyond the
summary statistics provided by traditional analysis tools. Finally,
because of its flexibility and extensibility, we believe that rtVTK
will be well-suited to new, possibly unforeseen, problem domains
and application areas as well.

2 Related Work

A large number of systems are designed to visualize various as-
pects of algorithms or programs, including general run-time be-
havior [Brown and Sedgewick 1984], advanced CPU state [Stolte
et al. 1999], memory system performance [Choudhury et al. 2008;
Aftandilian et al. 2010; Choudhury and Rosen 2011], and parallel
performance [Nagel et al. 1996; Shende and Malony 2006], among
others. However, the existing tools are either too low-level or too
specific for our purposes—focusing on particular algorithms, data
structures, or hardware components—and do not provide the flexi-
bility we require for tasks in development, education, and analysis.

Surprisingly, very few systems target computer graphics algorithms
generally, or ray tracing in particular. One system, described by
Russell [1999], is a web-based application that executes as a collec-
tion of Java Applets. The system renders a three-dimensional view
in the spatial domain of the ray traced image, and shows the state
of visibility and secondary rays. In a similar manner, rtVTK visu-
alizes computational elements in the spatial domain of the scene.
However, Russell’s system is intended primarily for students of ray
tracing, and does not offer users a sufficient level of control over
the resulting visualization process for our purposes.

Other systems provide more general mechanisms for visualizing
computer graphics algorithms, often employing ray tracing for il-
lustrative purposes. Goldman et al. [1996] implement a prototype
algorithm animation system that uses the so-called vector-guided
view to produce visualizations of three-dimensional graphics com-
putation. The work focuses on automatic determination of an ideal
view for visualizing such algorithms as a means to address three
specific problems: limited perception of movement, object inter-
ference, and view scale inadequacy. Whereas overcoming these is-
sues automatically is an important feature for offline visualization,
rtVTK addresses these problems via interactivity: online visualiza-
tion modes give a user comprehensive control over all aspects of
the resulting image in real-time—a difficulty for their system, due
in part to the lack of necessary processing power on contemporary
computing systems.

Briggs and Bergeron [1998] provide an object-oriented environ-
ment for rendering in which a library of C++ support classes pro-

vide hidden functionality so that objects visualize themselves. With
this approach, a programmer can focus on the development of an
algorithm using derived classes, while the inherited functionality
handles visualization. In particular, objects communicate with a vi-
sualization process that executes in parallel with the rendering pro-
cess and provides an interactive environment in which the user can
alter the view of rendering state. rtVTK also leverages interactivity
to display rendering state and provides control of the corresponding
visual elements. Similarly, rtVTK requires a programmer to instru-
ment client renderers with the calls to a ray state recording API;
however, visualization of that state is exposed to the user, which
provides a more flexible visualization process.

The AlgoViz environment [Ullrich and Fellner 2004] focuses on
visualization of fundamental computer graphics algorithms and
geometric modeling concepts. AlgoViz provides a collection of
reusable components for common graphics algorithm visualization
tasks. Using these components, applications are constructed in a
visual programming environment, which simplifies a wide range of
algorithm visualization tasks. In a similar spirit, rtVTK utilizes a
component-based visualization framework in which each compo-
nent contributes to the final image. However, rtVTK focuses on
ray tracing specifically, giving users finer control of the result by
employing algorithm-specific visualization components.

3 Ray Tracing Visualization

Effective visualization of rendering state will promote deeper un-
derstanding of ray tracing computations and help to ensure program
correctness. However, the sheer number of rays involved in predic-
tive rendering, as well as the intricacies of ray/object interactions,
lead to issues with scale and visual clutter. Such issues necessi-
tate a flexible, interactive visualization environment in which users
control results at run-time. Additionally, the wide variety of ray-
based rendering algorithms have different requirements and, there-
fore, different features of interest. This issue necessitates a flexible
process for recording ray state from within client renderers.

rtVTK satisfies these constraints via interactive visualization cou-
pled with a ray state recording and processing API and an extensi-
ble, loosely coupled plug-in architecture. The programming tools
and rendering components promote flexibility with user-controlled
features including arbitrary ray state payloads and online visualiza-
tion modes, while an interactive GUI enhances a user’s ability to
perform debugging and analysis tasks by enabling easier naviga-
tion and exploration of the data in real-time. The key components
of the rtVTK system architecture are depicted in Figure 2.

3.1 System Architecture

rtVTK provides a ray tracing visualization process that is func-
tional, flexible, and extensible. The design of rtVTK leverages the
following concepts:

• Plug-in architecture. rtVTK is built around a set of config-
urable rendering components that follow a specific design pat-
tern to create a flexible infrastructure in which to implement
ray tracing visualization. We provide a set of core compo-
nents to perform common tasks, but the plug-in architecture
enables a programmer to create new components and extend
the core facilities with arbitrary visualization functionality.

• Pipelined rendering. rtVTK uses a pipeline model for ren-
dering, coupled with lazy evaluation for necessary values to
avoid recomputation in later stages. The pipeline model leads
to a layered visualization approach in which results of indi-
vidual components are combined, under control of the user
and at run-time, to achieve the desired result.



rlRenderer

glRenderer

visualization 
plug-in

write

mode

immediate

mode

read

mode

rtVTK
GUI

rendering 
configuration

Ray tracing 
visualization

rtVTK rendering 
pipeline

...

bvhRenderer

rl 

API
rl 

API

Ray-based 

rendererRay-based 

rendererRay-based 
renderer

rl 

API

ray state
data

Figure 2: rtVTK system architecture. Interactive visualization coupled with a ray state recording and processing API and a loosely coupled
plug-in architecture creates a functional, flexible, and extensible ray tracing visualization system. A set of core components perform common
ray tracing visualization tasks, but the plug-in architecture enables a programmer to extend the core facilities with arbitrary functionality.
Rendering components are integrated via an interactive GUI that enables comprehensive control of the entire visualization process.

• Extensible GUI. The visualization components are integrated
via an extensible GUI to enable comprehensive control of
the entire visualization process. Visualization components
can tailor their user interface, exposing rendering parameters
in a manner consistent with their functionality. These fea-
tures provide fine-grained control of the resulting visualiza-
tion, making rtVTK ideally suited to many visualization tasks.

This design enables layered ray state visualization within the spa-
tial domain of computation. The visualization depicted in Figure 3
illustrates this idea. In this image, the Cornell Box scene is ren-
dered interactively via a GPU path tracer. Using a 2D/3D element
composition component, a ray state renderer layers one of the ray
trees generated during rendering over the path traced result. Ad-
ditionally, a BVH visualization component shows the acceleration
structure used by the renderer to improve performance. rtVTK en-
ables ray tracing visualizations such as this one by layering results
of several components to generate the final image.

3.2 Ray State Recording

Ray state from a client renderer is captured via an API called
rl. Existing renderers are instrumented with calls to the rl en-
gine, and per-ray data—including arbitrary client payloads—are
recorded throughout rendering. The resulting state is then explored
using rtVTK.

rl supports both depth-first and breadth-first ray tree traversal, it
enables simultaneous recording of multiple trees, and it is designed
to minimize storage requirements for both in-memory and on-disk
structures. rl currently supports three modes of operation: write
mode, for clients that capture rendering state for later processing;
read mode, for data visualization and other post-processing tasks;
and immediate mode, for online renderers that export the rtVTK
plug-in interface. Common high-level operations such as ray tree
traversal are implemented easily with a collection of utility func-
tions that aggregate low-level rl operations. Currently, rl func-

Figure 3: Layered visualization. The pipeline rendering model
adopted by rtVTK enables sophisticated ray tracing visualization by
layering results of several components to generate the final image.
In this example, an interactive path tracer generates an image of
the computational domain, while the 2D/3D element composition,
ray state, and BVH visualization components combine to render the
other visual elements present in the final result.

tionality is exposed to client renderers via a procedural, C-style in-
terface, as well as via a wrapper class that provides C++ bindings
for seamless integration with object-oriented clients.



rl pseudocode

// loop over pixels

for (uint y = 0; y < height; ++y)

for (uint x = 0; x < width; ++x)

// generate visibility ray and trace

rlBeginTree(x, y);

trace(visibilityRay, ... );

rlEndTree();

trace(const Ray& r, ... )

// perform ray tracing computations

// and recurse

rlAddRay(r.o, r.d, r.t, ray.type,

&my_data, sizeof(MyData));

rlDescendTree();

trace(nextRay, ... );

rlAscendTree();

Figure 4: Basic rl example. This pseudocode demonstrates the
use of rl functionality in a recursive ray tracer. In write mode,
the ray state is written to disk for later processing, including visu-
alization with rtVTK. In immediate mode, ray state is recorded to
memory, and the visualization pipeline layers ray state primitives
on top of the computational domain.

Write mode. Using rl write mode, a client renderer can capture
ray state to disk in a compact file format for later processing. As
illustrated in Figure 4, client renderers simply instrument their core
ray tracing functionality with calls to a small collection of straight-
forward functions in the rl API.

In particular, rl state is initialized to prepare the in-memory and
on-disk data structures necessary to capture a session. To record a
ray tree, a renderer simply invokes rlBeginTreewith the current
pixel coordinates. Then, for each ray, rlAddRay records common
properties and arbitrary per-ray data, which enables a renderer to
extend the basic rl state to suit its needs. In depth-first mode, the
tree is traversed using rlDescendTree and rlAscendTree,
as in Figure 4.

Read mode. To process previously recorded ray state, rl client
applications utilize read mode. As in write mode, a small col-
lection of straightforward calls are used to modify the rl engine
state. For example, rlReadTree returns data for the current tree,
while rlReadRay returns the current ray data and automatically
advances to the next ray. Calls to reset read state, to seek among
and within currently loaded trees, and to query various statistics are
also available.

Immediate mode. Any ray-based renderer that exposes the
rtVTK plug-in interface can interact with rtVTK via rl immediate
mode. Using a special keyboard and mouse control sequence (for
example, ctrl-click), rtVTK instructs such a renderer to generate the
ray tree corresponding to a particular pixel. The client captures ren-
dering state using rl write mode functions, which record the data
to in-memory structures. Finally, rtVTK renders the recorded state
for a comprehensive, online view of the ray tracing process.

3.3 Visualization Facilities

The combination of a plug-in architecture and pipelined rendering
enable layered visualization of ray tracing state. The configurable
pipeline enables users to create many different visualizations sim-
ply by modifying the order in which components execute. More-
over, lazy evaluation in the pipelined model enables efficient im-
plementation by avoiding recomputation of necessary values.

Figure 5: Rendering scene geometry. The glRenderer plug-
in provides a view of the computational domain, using wireframe
(left), alpha-blended (middle), or opaque (right) surfaces. Addi-
tional visualization elements can then be layered over these results.

Visualization plug-ins. Existing renderers and new visualization
components integrate by exporting the rtVTK rendering API:

// Core rendering functionality

void idle();

void render();

void resize(uint, uint);

void traceRay(uint, uint);

These functions serve to synchronize the plug-ins’ operation with
each other and with the rtVTK application. For example, render
updates the component’s rendering state in response to interactive
changes by the user—including mouse motion and changes to other
parameters exposed via the GUI—and re-renders its target.

Some components, such as a path tracer, may require several passes
to render their results. In these cases, performance would suffer by
having other components re-render from scratch when the rendering
state to which they respond has not, in fact, changed. To overcome
this issue, a component can implement the idle function to up-
date its rendering state and (possibly) its output, without requiring
invocation of the render function for the entire pipeline.

The traceRay function implements direct support for rl imme-
diate mode as discussed above, and is invoked in response to a par-
ticular keyboard and mouse control sequence. This function gener-
ates a ray tree through the corresponding pixel and updates the rl
immediate mode structures for online visualization.

In our experience, the interface outlined above enables visualiza-
tion of a wide range of computational elements, including scene
geometry, ray state, and acceleration structures. Additional func-
tionality can be exposed via the GUI, enabling fine-grained control
of a plug-in’s run-time behavior.

The core rtVTK visualization components include a basic raster-
ization component for scene geometry, an rl component for ray
state, and a 2D/3D element composition component. We also im-
plement several additional plug-ins to demonstrate the flexibility of
rtVTK, including an interactive GPU path tracer, a single ray CPU
path tracer, and a BVH visualization component.

Scene geometry. A key feature of the rtVTK approach is that
visualization occurs in the spatial domain of the actual computa-
tion. As such, we require the ability to render a view of the scene
geometry, as well as to explore interesting features of the scene
interactively. Toward this end, a basic OpenGL viewer, called
glRenderer, renders the geometry. This component exposes a
number of options to the user, including the three surface rendering
modes depicted in Figure 5.

glRenderer forms the basis for most interactive visualization
tasks; however, more advanced visualization components, such as
the interactive path tracer discussed below, can be used to visualize
the computational domain as well.



Figure 6: Ray state visualization. Existing renderers integrate with
rtVTK by exporting the rendering plug-in interface. Here, a path
tracing plug-in generates a high-quality image of the Crytek Sponza
scene (inset). A ray tree generated in the original view is then
explored interactively: glRenderer layers a wireframe view of
the scene geometry over a path traced result, while rlRenderer
adds ray state visualization. (Textures disabled for clarity.)

Ray state. We implement a visualization component specifically
for ray state gathered by a client renderer utilizing the rl API. This
component, called rlRenderer, exposes a number of options,
including the ability to navigate among ray trees; to selectively filter
rays by type and depth; to control the visual properties of ray state
primitives; and, in rl read mode, to animate the ray tracing process
using timed events provided by the GUI.

rlRenderer is a core component of rtVTK: it reveals the ray
tracing process using a visual representation of rendering state, as
depicted in Figure 6. In read mode, rlRenderer renders previ-
ously recorded state, allowing users to review that state by seeking
forward or backward using GUI controls. rlRenderer also col-
laborates with the rl engine to display ray state generated by an
online client renderer using immediate mode.

2D/3D element composition. Ray tracing components, such as
the path tracers highlighted below, render a two-dimensional im-
age, and depth information is not typically retained. As a con-
sequence, layering other visual elements in a manner that retains
proper depth relationships is problematic. One way to resolve this
issue is simply to force client renderers to retain per-pixel depth
values in an auxiliary buffer. However, this approach is unnecessar-
ily intrusive, imposing potentially significant modifications to such
renderers. Instead, we implement three-dimensional composition
over a two-dimensional image by rasterizing a depth-only version
of the scene [Wachowicz 2011]. The output of this component gives
sufficient information to resolve depth relationships between ray
traced results and other, typically rasterized, visual elements.

This component, the pipelined rendering model, and lazy evaluation
are critical to the layered visualization approach. When combined
with the components described below—and indeed with any com-
ponents a user might develop—rtVTK can be used to gain a deeper
understanding of computational elements beyond ray state alone.

Figure 7: BVH visualization. The flexibility of the rtVTK plug-in
interface enables advanced features such as acceleration structure
visualization. Here, bounding volumes in levels 13-15 of the BVH
used to generate this image are layered over a ray traced result
using the bvhRenderer component.

Interactive path tracing. Using OpenCL, we implement an in-
teractive path tracing component that supports triangle-based mod-
els, uses a BVH with stackless traversal [Hapala et al. 2011] for im-
proved performance, and integrates rl immediate mode functional-
ity. Although the current implementation is essentially a brute-force
method, performance on modern GPUs already exceeds ten frames
per second for simple scenes rendered with several important visual
effects, including glossy reflection and transparency. More impor-
tantly, as shown in Figure 3, this component demonstrates the flex-
ibility of the pipelined rendering model and layered visualization
approach employed by rtVTK.

Batch-mode path tracing. Similarly, we integrate an existing
CPU batch-mode path tracer by wrapping its core functionality in
the rtVTK plug-in interface. This renderer is a simple recursive
single ray system that uses a BVH [Wald et al. 2007] for improved
performance and is instrumented to support rl immediate mode
according to the pattern outlined in Figure 4. Various GUI ele-
ments are exposed to control its configuration, demonstrating that
an existing renderer can be integrated with relative ease.

BVH visualization. We also implement a component to display a
BVH over the current geometry, as shown in Figure 7. This com-
ponent, called bvhRenderer, exposes options for controlling the
visual appearance of BVH nodes, including the starting and ending
levels of the hierarchy for which bounding volumes are rendered.

The traceRay function of this component is currently unused;
however, one could imagine an implementation that interacts with
an online client renderer to visualize only those BVH nodes that
are visited by the rays in a particular tree, for example. In this case,
even the seemingly unnecessary functionality of traceRay can be
leveraged for advanced ray tracing visualization results. In addition
to its primary function, this component demonstrates the advanced
visualization features enabled by rtVTK’s flexible design.



Figure 8: rtVTK GUI. A render window (left) provides interaction
with the visualization, while an application window (right) provides
GUI elements for controlling rtVTK itself. To expose a larger set of
functionality, each rendering component dynamically populates a
tab with appropriate GUI elements, permitting fine-grained, run-
time control of the resulting visualization.

3.4 Graphical User Interface

The visualization components described above are integrated via an
extensible GUI that provides interactive control of the visualization
process. As illustrated in Figure 8, a render window provides inter-
action with the visualization—including control of viewing param-
eters, image resolution, and so forth—while an application window
provides GUI elements for controlling rtVTK itself. In addition,
the application window acts as a liaison among pipeline compo-
nents and the render window, connecting exposed functionality of
the corresponding objects at run-time.

Additional features include timers that can be connected to the vi-
sualization components, enabling a wide range of advanced func-
tionality. For example, rather than navigate a collection of ray trees
manually, a user can instead connect a timer event to the Advance
tree functionality exposed by rlRenderer. When triggered, the
event invokes the registered function at user-defined intervals, pro-
viding an animated view of the entire ray tracing process.

4 Applications

The primary goal of rtVTK is to provide tools supporting visual
analysis of ray-based renderers, thereby enabling deeper under-
standing of how computation proceeds. We highlight the utility
of ray tracing visualization generally, and rtVTK specifically, with
two example applications:

• discovering a previously unknown bug in a batch renderer
based on Kajiya-style path tracing [Kajiya 1986], and

• teaching recursive ray tracing [Whitted 1980] in an under-
graduate computer graphics course.

rtVTK enhances these tasks by enabling users to identify and ex-
plore the salient features of the ray tracing algorithm interactively.
We also highlight the potential role of rtVTK in performance anal-
ysis tasks, for example, as a means to identify and exploit ray co-
herence on current and future hardware architectures.

Code development. While code development ideally refers to
creating new functionality, the ability to debug ill-behaved imple-

mentations is an extremely important consequence of ray tracing
visualization, particularly for the predictive rendering applications
in which we are interested: in this context, results must be correct
if they are to be effective.

Debugging graphics algorithms is an inherently visual process, but
traditional software debugging tools are not designed to leverage
this characteristic. As a result, diagnosing ray tracing bugs is te-
dious at best, and extremely difficult at worst. However, by visual-
izing rendering state in the spatial domain of computation, rtVTK
provides a clear advantage over traditional debugging tools.

We have used rtVTK to identify, and then correct, a previously un-
known bug related to secondary ray generation in an offline path
tracer. The bug remained undiscovered until the ray state, recorded
with rl, was used to test the visualization components of rtVTK.
As illustrated in Figure 1, the bug, which under certain conditions
generates incorrect directions for shadow rays, is not noticeable in
either a low-quality image with relatively few samples per pixel
or a high-quality image with many more samples per pixel. How-
ever, when viewing the ray state directly, the problem is immedi-
ately obvious: the circled shadow rays are not directed toward any
light source in the scene. Once identified, the correction was triv-
ial; however, in its previous state, the renderer was incorrect, and
likely would have remained so without the ability to interact with
the computational elements in the spatial domain of the scene.

Education. Algorithm animation has long been thought to help
students’ understanding of how a problem is solved. As noted in
Section 2, several existing systems have been designed with com-
puter science education in mind. In this context, rtVTK helps stu-
dents to better understand how recursive ray tracing works.

Anecdotal evidence from an undergraduate computer graphics
course indicates that students appreciate the ability to interact with
visual representations of key computational elements. In particular,
the interactive environment provided by rtVTK allows students to
quickly identify optimal views in which the most pertinent features
of the ray tracing process are visible.

For example, Figure 3 clearly illustrates the recursive ray tracing al-
gorithm. Initially, a visibility ray (green) intersects the glossy floor.
The shader spawns a shadow ray (white) and a diffuse reflection
ray (yellow) for direct and indirect illumination, respectively. This
process continues by generating additional shadow rays and reflec-
tion rays (diffuse → yellow; specular → red) until the termination
criteria are met. Interestingly, we observe that several rays intersect
the bounding volume of the tall box and are thus tested against the
enclosed geometry. However, not all of these rays actually intersect
the box, which results in false positives. These unnecessary tests
are are an important consequence of using axis-aligned bounding
volumes in a BVH and represent a potential source of inefficiency
with this implementation choice.

Similarly, Figure 9 clearly depicts the complicated ray behavior as-
sociated with total internal reflection in dielectric materials. In this
version of the Cornell Box scene, the visibility ray (green) refracts
into the tall glass box (transmission ray → blue) and undergoes
several total internal reflection events (reflection ray → red) before
finally escaping the medium and emitting a shadow ray (white) to
compute the illumination. By exploring the resulting state interac-
tively, students can better understand the complexities arising from
ray/object interactions such as the one depicted here.

Moreover, the ability to animate the process—to literally watch the
generation and tracing of rays throughout an environment—helps
students to understand implications of design decisions such as
pixel traversal order. Likewise, the ability to see the ray distribu-
tions of various reflectance models gives students a concrete rep-



Figure 9: Understanding recursive ray tracing. rtVTK integrates a batch-mode path tracer to render a version of the Cornell Box scene (left).
The resulting state is then explored interactively, enabling run-time control of the resulting visualization (middle, right). Here, rtVTK reveals
interesting behavior along the depicted path: rays undergo several total internal reflection events before finally escaping the medium.

resentation of the abstract physical and mathematical concepts be-
hind ray tracing. Additionally, rl immediate mode, together with
the simple but powerful rtVTK plug-in interface, enables students
to design, implement, and debug their own online client renderers,
enabling visualization of not only scene geometry, but the ray state
used to generate images as well.

Performance analysis. Over the past several years, numerous
techniques based on coherent ray tracing [Wald et al. 2001] have be-
come attractive alternatives for interactive rendering [Benthin 2006;
Boulos et al. 2007; Günther et al. 2007; Wald et al. 2007; Boulos
et al. 2008; Overbeck et al. 2008]. Identifying and tracing coher-
ent rays is critical to achieving high performance with these tech-
niques. However, understanding the behavior of rays, either in-
dividually or in aggregate, is confounded by the sheer number of
rays involved. Additionally, other properties, such as nodes vis-
ited during traversal of an acceleration structure; geometry tested
for intersection; textures queried during shading; and indeed the
execution paths for traversal, intersection, and shading, are often
shared among many rays, even those that are not spatially similar.
These properties have been used to improve performance in various
ray-based renderers [Pharr et al. 1997; Navratil et al. 2007; Aila and
Karras 2010], so any use of ray coherence as a means to improve
performance must also include such properties.

Reasoning about coherence, particularly non-spatial coherence, can
be difficult: intuition alone can fail to identify all such properties,
and trial-and-error is time-consuming and often ineffective. An ap-
proach that enables programmers to define, extract, and exploit co-
herence [Gribble and Ramani 2008] may help, but such an approach
is only beneficial if the anticipated coherence actually exists.

Although a comprehensive analysis of ray coherence is beyond
the scope of this work, our hope is that ray tracing visualization
will succeed where intuition may fail. Just as rtVTK enhances
debugging and learning tasks, we believe that visualization with
rtVTK may expose new opportunities to exploit ray coherence in
the broadest sense, further demonstrating the utility of ray tracing
visualization across a variety of problems in computer graphics.

5 Conclusions and Future Work

The Ray Tracing Visualization Toolkit provides an interactive vi-
sualization environment coupled with a flexible, extensible system
architecture to create effective visualizations of ray tracing state. In
particular, layered visualization within the spatial domain of com-

putation enables users to visualize elements of any ray-based ren-
dering algorithm, while a configurable pipeline allows users to con-
trol the resulting visualization at run-time. Moreover, rtVTK en-
hances tasks in ray tracing development, education, and analysis by
enabling users to visually identify and explore key computational
elements of the algorithm.

The current bottleneck in the rtVTK visualization process is data
collection for offline ray-based renderers, such as the one described
in Section 4. Although rl is explicitly designed to minimize the
storage required by in-memory and on-disk structures, the resulting
state still consumes significant storage for predictive image synthe-
sis applications. Using data compression techniques and an appro-
priate on-disk file structure that enables random access to both ray
tree metadata and actual ray state may alleviate data management
problems imposed by visualization for a wide range of applications.

The extensibility of the rtVTK programming tools and visualization
components enables a number of techniques not yet implemented.
Of particular interest is the addition of a component that provides
a so-called source code orientation [Brown and Sedgewick 1984;
Choudhury et al. 2008], wherein lines of code corresponding to cur-
rent ray tracing operations are highlighted. Such a component may
better orient a user within the overall ray tracing algorithm by com-
bining the familiar environment of traditional software debuggers
with the visual process enabled by rtVTK.

Finally, immediate mode visualization of ray state generated by
client renderers is likely to be of value in many development, learn-
ing, and analysis tasks. As such, even the relatively simple require-
ments that client renderers expose the rtVTK plug-in interface and
utilize rl to record ray state may be unnecessarily intrusive. Meth-
ods that increase the transparency of collecting, storing, processing,
and ultimately analyzing ray state from arbitrary ray-based render-
ers are of particular interest.

Its role as a visual debugger for advanced ray-based rendering al-
gorithms that must be physically correct to be effective, and as an
educational tool for new generations of graphics students, make
rtVTK an important addition to the collection of tools supporting
modern computer graphics research. In addition, we expect that
the flexibility of rtVTK as a framework for ray tracing visualization
will permit application to more advanced rendering and visualiza-
tion problems—for example, real-time Monte Carlo path tracing
and meaningful representations for large quantities of ray tracing
state. Using interactivity, rtVTK enables both thorough and rapid
investigation of problems such as these.



Acknowledgments

This work was funded by grants from the II-VI Foundation and
the Grove City College Swezey Research Fund. The GPUs used
in this research were donated by NVIDIA through their Professor
Partnership Program. We are indebted to A.N.M. Imroz Choudhury
(SCI Institute, University of Utah) and the anonymous reviewers for
insightful and detailed comments regarding this work.

References

AFTANDILIAN, E. E., KELLEY, S., GRAMAZIO, C., RICCI, N.,
SU, S. L., AND GUYER, S. Z. 2010. Heapviz: Interactive heap
visualization for program understanding and debugging. In Pro-
ceedings of the 5th ACM Symposium on Software Visualization,
53–62.

AILA, T., AND KARRAS, T. 2010. Architecture considerations
for tracing incoherent rays. In Proceedings of High Performance
Graphics 2010, 113–122.

BENTHIN, C. 2006. Realtime Ray Tracing on Current CPU Archi-
tectures. PhD thesis, Saarland University.

BOULOS, S., EDWARDS, D., LACEWELL, J. D., KNISS, J.,
KAUTZ, J., WALD, I., AND SHIRLEY, P. 2007. Packet-based
Whitted and distribution ray tracing. In Graphics Interface 2007,
177–184.

BOULOS, S., WALD, I., AND BENTHIN, C. 2008. Adaptive ray
packet reordering. In 2008 IEEE/Eurographics Symposium on
Interactive Ray Tracing, 131–138.

BRIGGS JR., E. S., AND BERGERON, R. D. 1998. A self-
visualizing rendering support environment. Computers and
Graphics 22, 4, 547–555.

BROWN, M. H., AND SEDGEWICK, R. 1984. A system for algo-
rithm animation. Computer Graphics 18, 3, 177–186.

CHOUDHURY, A.N.M. I., AND ROSEN, P. 2011. Abstract visual-
ization of runtime memory behavior. In Proceedings of the 6th

IEEE International Workshop on Visualizing Software for Un-
derstanding and Analysis, 22–29.

CHOUDHURY, A.N.M. I., POTTER, K. C., AND PARKER, S. G.
2008. Interactive visualization for memory reference traces.
Computer Graphics Forum 27, 3 (May), 815–822.

GOLDMAN, D. A., ECKERT, R. R., AND COHEN, M. S.
1996. Three-dimensional computation visualization for com-
puter graphics rendering algorithms. In Proceedings of the 27th

SIGCSE Technical Symposium on Computer Science Education,
358–362.

GRIBBLE, C. P., AND RAMANI, K. 2008. Coherent ray tracing
via stream filtering. In 2008 IEEE/Eurographics Symposium on
Interactive Ray Tracing, 59–66.

GÜNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Realtime ray tracing on GPU with BVH-based packet
traversal. In IEEE/Eurographics Symposium on Interactive Ray
Tracing, 113–118.

HAPALA, M., DAVIDOVIC, T., WALD, I., HAVRAN, V., AND

SLUSALLEK, P. 2011. Efficient stack-less BVH traversal for
ray tracing. In 27th Spring Conference on Computer Graphics
(SCCG 2011).

KAJIYA, J. T. 1986. The rendering equation. In Siggraph 1986,
143–150.

NAGEL, W. E., ARNOLD, A., WEBER, M., HOPPE, H.-C., AND

COLCHENBACH, K. 1996. VAMPIR: Visualization and analysis
of MPI resources. Supercomputer 12, 1, 69–80.

NAVRATIL, P., FUSSELL, D., LIN, C., AND MARK, W. R. 2007.
Dynamic ray scheduling for improved system performance. In
2007 IEEE Symposium on Interactive Ray Tracing, 95–104.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2008.
Large ray packets for real-time Whitted ray tracing. In Proceed-
ings of IEEE Symposium on Interactive Ray Tracing, 41–48.

PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P.
1997. Rendering complex scenes with memory-coherent ray
tracing. Computer Graphics 31, Annual Conference Series, 101–
108.

RUSSELL, J. A., 1999. An interactive web-based ray tracing vi-
sualization tool. Undergraduate Honors Program Senior Thesis,
Department of Computer Science, University of Washington.

SHENDE, S. S., AND MALONY, A. D. 2006. The Tau parallel
performance system. International Journal of High Performance
Computing Applications 20, 287–331.

STOLTE, C., BOSCH, R., HANRAHAN, P., AND ROSENBLUM,
M. 1999. Visualizing application behavior on superscalar pro-
cessors. In Proceedings of the 1999 IEEE Symposium on Infor-
mation Visualization, 10–17.

ULLRICH, T., AND FELLNER, D. W. 2004. AlgoViz – a computer
graphics algorithm visualization toolkit. In Proceedings of the
World Conference on Educational Multimedia, Hypermedia and
Telecommunications, 941–948.

VAN ANTWERPEN, D. 2011. Improving SIMD efficiency for par-
allel Monte Carlo light transport on the GPU. In Proceedings of
High Performance Graphics 2011, 41–50.

WACHOWICZ, P. 2011. Accelerating Photon Mapping with Photon
Flipping and Invalidity Photons. Master’s thesis, University of
Amsterdam.

WALD, I., BENTHIN, C., WAGNER, M., AND SLUSALLEK, P.
2001. Interactive rendering with coherent ray tracing. Computer
Graphics Forum 20, 3 (September), 153–164.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (January), 6.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6, 343–349.


