
EUROGRAPHICS 2011 / M. Chen and O. Deussen

(Guest Editors)

Volume 30 (2011), Number 2

RTSAH Traversal Order for Occlusion Rays

Thiago Ize and Charles Hansen

SCI Institute, University of Utah

Abstract

We accelerate the finding of occluders in tree based acceleration structures, such as a packetized BVH and a single

ray kd-tree, by deriving the ray termination surface area heuristic (RTSAH) cost model for traversing an occlusion

ray through a tree and then using the RTSAH to determine which child node a ray should traverse first instead

of the traditional choice of traversing the near node before the far node. We further extend RTSAH to handle

materials that attenuate light instead of fully occluding it, so that we can avoid superfluous intersections with

partially transparent objects. For scenes with high occlusion, we substantially lower the number of traversal steps

and intersection tests and achieve up to 2× speedups.

1. Introduction

Occlusion rays can make up a significant contribution of

the ray budget of complex scenes. PantaRay, used by Weta

Digital, will cast up to a thousand occlusion rays when pre-

computing scene occlusion [PFHA10]. Boulos reports that for

recent ray traced films from Sony Pictures Imageworks, the

majority of the rays cast are shadow rays and more than half

of these shadow rays, sometimes up to 90% of them, end up

being occluded [Bou10]. Finding the occluders as efficiently

as possible can thus significantly improve performance for

scenes with many occluded rays.

Unlike radiance rays where we are interested in the closest

hit object, for occlusion rays, we are interested in whether

any hit occurs. We define occlusion rays to be rays that return

only visibility and cannot change direction; thus, scattering,

reflection, and refraction are not allowed and we consider

those rays to be radiance rays. Since we are interested in any

hit, instead of traversing a tree based acceleration structure in

a front to back order, which is the optimal order for finding

the closest hit, we can instead traverse it in any order and

terminate traversal as soon as we find any object that fully

occludes the ray. We use this to our advantage by choosing the

traversal path through the tree that is most likely to quickly

occlude the ray.

We accomplish this by developing a novel cost metric for

occlusion-ray traversal through a tree, similar to the surface

area heuristic (SAH), that gives the expected cost for termi-

nating traversal if a ray enters that node. We can then use the

cost metric to choose the traversal order of the child nodes,

with the lowest cost child traversed first. We then extend this

metric to handle partially occluding objects, such as trans-

parent materials. We show that this method works for both

kd-trees and BVHs as well as for single ray traversal and

packet traversal. It has minimal preprocess and rendering

overhead, no memory overhead, is simple to implement, and

can provide significant performance improvements (we show

up to 2× improvements in our examples).

2. Background

One method for efficiently finding occluders is to use a

shadow cache which keeps track of recent occluders that

can be tested against instead of finding them by traversing

through an acceleration structure [HG86]. This method works

well when most rays intersect the same object, but suffers for

most modern scenes which consist of finely tessellated primi-

tives. Caching an entire node subtree can help to ameliorate

this problem [PJ91]. Our method can be used alongside these

and most other shadow acceleration techniques.

Some approaches for accelerating shadows in massive

scenes will approximate the visibility of a group of small

objects by a partially transparent bounding box [PFHA10]

which could additionally have a directionally varying opac-

ity [LBB∗08]. These LOD approaches lower the amount

of work performed and amount of scene data that must be

touched for scenes with large ray differentials. RTSAH could

likely be modified to work with these LOD methods and

would of course directly handle the geometry that does not

use the LOD optimization.

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

Djeu et al. showed how shadow rays can be accelerated

when ray tracing a single watertight mesh by designating

kd-tree nodes inside the mesh as volumetric occluders which

can be cheaply intersected with the ray [DKH09]. In order

to ensure that a ray can intersect the occluder before the

mesh in front of it, they modified the traversal so that instead

of the traditional ordered depth-first kd-tree traversal they

used a breadth-first search to find the occluder which on

average allowed them to reduce the number of traversal steps

and triangle intersections performed. They further improved

performance by testing all shadow rays against a cache of

recently hit volumetric occluders. Our method could be used

in place of their breadth-first traversal.

For radiance rays it is well understood that traversing nodes

in a front to back order is ideal. For occlusion rays it is not

as clear with researchers differing on the appropriate strategy.

Smits claims that the front to back ordering did not matter

for occlusion rays and to simply traverse it in a depth first

order where the left subtree is always traversed first and then

followed by the right subtree [Smi98]. Boulos on the other

hand disagreed and claims that nodes should be traversed

front to back just as with radiance rays [BH10].

2.1. Surface area heuristic

The expected cost of intersecting a ray with a scene using a

tree based acceleration structure such as a general BSP tree

(and by extension a kd-tree), or BVH can be approximately

computed as the cost of all the primitive-ray intersection

tests performed plus the cost of all the tree traversal steps

performed by the ray. Given the assumption that rays are

uniformly distributed and ray traversal will not terminate even

if an intersection is found, the number of nodes and primitives

seen by the ray is then given by the SAH [GS87, MB90] as

follows. The probability of a node being pierced by a ray is

P(child hit|parent hit) =
SurfaceArea(child)

SurfaceArea(parent)
(1)

For convenience, let us define Px =
P(node x hit|x’s parent hit). If we assume fixed costs

for performing an intersection test and a node traversal step,

Tintersection and Tstep respectively, then the cost of intersecting

a ray with the tree is the following recursive cost.

Cnode =

�

PlCl +PrCr +Tstep if an inner node,

NparentTintersection +Tstep if a leaf.
(2)

Where Nx is the number of objects in the node x, and l and r

correspond to the left and right child nodes. This allows us

to compute an expected cost for traversing a ray through a

node provided the traversal is not terminated. When used for

building a tree based acceleration structure, in order to make

the build tractable, a greedy approximation of the SAH is

used where the child nodes, Cl and Cr , are assumed to always

be leaf nodes [WH06]. Since we will be using the expected

traversal costs for traversing an already built tree (likely built

using a greedy SAH), we are not limited to relying on a

greedy approximation for the traversal ordering.

The SAH is essential for creating high quality tree-based

acceleration structures and many authors have attempted to

improve upon the SAH. Perhaps the most common improve-

ment to the standard SAH for kd-trees is to encourage large

empty volumes to be created by lowering the cost of these

splitting planes by a constant factor. This empty space bonus

will usually result in slightly higher quality trees. Hunt mod-

ified the SAH to handle mailboxing in a kd-tree [Hun08]. His

approach is simple to implement and reduces the number of

object intersections, but also increases the number of traver-

sal steps. The result was a small performance improvement

of a few percent for the scenes he tested. Fabianowski et al.

changed the assumption in the SAH that a ray originates out-

side of the scene to the ray origin being uniformly distributed

inside the scene [FFD09]. For scenes that met this assump-

tion, this often resulted in both a reduction in traversal steps

as well as object intersections in their kd-tree based systems,

with an overall improvement of a few percent.

In a BSP tree, when a ray hits an object, ray traversal is

allowed to terminate without requiring further node traversals.

A BVH might still require some more traversals because of

overlapping nodes, but generally it too will be able to quickly

terminate traversal. This early ray termination is a powerful

optimization used in essentially all tree-based acceleration

structures. Despite its importance, the SAH does not factor

in early ray termination and instead assumes rays are never

occluded. Havran attempted to remedy this by including early

ray termination in the greedy SAH build; however, he found

that doing this resulted in a complicated and long build that

often hurt performance [Hav01]. This is likely due in part to

how the hit probabilities were determined and that the modi-

fied SAH did not work well in a greedy build. Furthermore,

his modified cost metric incorrectly computes the probability

of a ray hitting just one child node and missing the other node

(Equations 4.15 and 4.16 in [Hav01]). A simple example that

shows this is as follows: assume a parent node has dimensions

h, l, and w → 0 (a node that is essentially flat) and it is split

in the middle of its shortest dimension to form its two child

nodes with dimensions h, l, and w/2. Since the two child

nodes are practically occupying the same space, we would

expect the probability of a ray hitting one node and missing

the other to be zero. However, Havran’s equation gives this

probability as
SurfaceArea(child)− 1

2
SurfaceArea(splitting plane)

SurfaceArea(parent)
= 1

2 ,

where the splitting plane has a front and back side, so its

surface area is 2hl and the child nodes and parent node in the

limit all have the same surface areas of 2hl.

3. RTSAH

We derive the Ray Termination SAH (RTSAH) by extending

the SAH to assume that each node has a continuous visibility

function, V . For simplicity, we assume that non-empty leaf

nodes are completely opaque, V = 0, while empty leaf nodes

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

are fully transparent, V = 1, and an intersection in a node

immediately terminates traversal in the tree. An interior node

composed of some empty and some non-empty leaf nodes

would have a visibility between zero and one. Since a ray can

terminate, it is now possible for a ray to enter one child node,

but not another either because it never would have pierced

that node or because of early ray termination. We therefore

need to distinguish between these two cases. Plr is defined

to be the probability of a ray piercing both the left and right

child nodes. Pjl = Pl −Plr is defined to be the probability

of the ray piercing just the left node and missing the right

node, and similarly Pjr = Pr −Plr is the probability of the ray

just piercing the right node and missing the left node. The

probability of missing both child nodes and just traversing

empty space is Pe = 1− (Pjl +Pjr +Plr).

We now have the terminology to solve for the improved

SAH. We first solve for the BVH and then for the general BSP

which is a special case of the BVH solution. There are several

ways to implement a BVH traversal. In our packetized ranged

traversal [WBS07], we first enter a node and then test to see if

any rays actually pierce the node. In the event that all the rays

terminate in that node’s subtree, we then do not need to enter

the sibling node and can thus perform one less bounding box

intersection test. If the rays do not pierce the first child node

or some do but not all terminate, then the other child node is

entered. For simplicity, we treat ray packets as single rays, so

the cost for entering the left node first is

le f tFirst = Tstep +PlCl +(Pjr +PlrVl)(Tstep +Cr)+PeTstep

(3)

Where the first term, Tstep, is for intersecting the left bounding

box, the second, PlCl , for the probabilistic cost of having

to traverse into the left node, and the last term, PeTstep for

the case where the ray missed the left node, tests the right

bounding box, and misses that as well. The final term gives

the cost of testing the right bounding box and traversing into

it if either the left node was missed, Pjr, or it was entered but

did not intersect any objects PlrVl .

And similarly the cost for entering the right node first is

rightFirst = Tstep+PrCr +(Pjl +PlrVr)(Tstep+Cl)+PeTstep

(4)

For radiance rays we would want to enter the near child

first. Since the order is ray dependent and the rays are as-

sumed to be random, we have to assume that half of the time

the left child might be first and the other half the right child

is first. This means that the radiance rays cost for the node is

the average of the two if the closer child is traversed first:

Cnode =
1

2
(le f tFirst + rightFirst) (5)

For occlusion rays, we always want to traverse into the lower

cost child, so we set the cost to be that of the lower cost child:

Cnode = Min(le f tFirst,rightFirst) (6)

Leaf nodes have the same cost as before, as specified in Equa-

tion 2. The visibility probability remains the same regardless

of the type of ray:

Vnode =

PjlVl +PjrVr +PlrVlVr +Pe if an inner node,

0 if nonempty leaf,

1 if empty leaf.

(7)

Plr/Pl can be viewed as a radiosity form factor expressing

the fraction of energy (or rays) that leaves the left node and

hits the right node [CW93]. Since we already know how

to compute Pl (and Pr), by finding the form factor we can

then solve to find Plr, and with that we can easily find the

remaining terms, Pjl = Pl − Plr for instance. The method

we used to compute the form factor from the left node to

the right node was to decompose the node bounding boxes

into their rectangular faces and then analytically compute

the form factors between all valid face pairs and for the

overlapped region (see [Cho02] for a good survey of the

relevant equations). Other methods should also work provided

they do not break down when two objects are very close to

each other, overlapping, or share an edge.

For BSPs, we can use the same equations as for BVHs,

with the simplifications that only one traversal step computa-

tion is performed in order to determine which of the two child

nodes are pierced by the ray, and that Pe = 0 since the two

child nodes completely fill up all space in the parent node.

Equation 6 for finding the Cnode for occlusion rays can be

substantially simplified to:

Cnode = Tstep +PjlCl +PjrCr +PlrMin(Cl +VlCr,Cr +VrCl)
(8)

Furthermore, since Pe = 0, this lets us analytically solve for

the remaining terms using just Pl and Pr so that Pjl = 1−Pr,

Pjr = 1−Pl , and Plr = Pl +Pr −1. The form factor approach

for computing probabilities is thus only needed for BVHs.

Approximate BVH RTSAH The BVH preprocess cost can

be lowered at the expense of rendering performance by ap-

proximating the probabilities instead of finding them by sam-

pling. We found that assuming that Pe = 0, which allows

us to use the same probabilities as for a BSP, still offered a

reasonable speedup, was simple to implement, and allowed

for a very fast preprocess suitable for interactively rendering

dynamic scenes.

4. Choosing Traversal Order of Occlusion Rays

Since we now have an expected cost for traversing the left

child node or right child node first, we can lower the expected

cost of occlusion rays by first entering the child node that

gives a lower overall cost. We use the costs from Equations 3

and 4 to determine which to traverse first. Note that this

can be simplified to only comparing the values in the Min

statement of Equation 6, which in the case of the BSP tree,

can be a much simpler comparison as seen in Equation 8.

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

This is slightly wrong since it is not factoring in an additional Tstep cost when a ray hits just left but is not occluded. In that case, we still need to do a Tstep to see if the ray can enter the right node (which it doesn't). Since this does not significantly affect the cost, the results in this paper are pretty much the same.a correct formulation of this (and also rewritten to make it clearer) is: leftFirst = \left(1 + P_lV_l+(1-P_L)\right)T_\text{step} + P_lC_l + (P_{jr} + P_{lr}V_l)C_rrightFirst would similarly be changed. The kd-tree cost would stay the same.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

Storage overhead These comparative costs can be com-

puted as a preprocess and stored within the tree for use during

traversal. Furthermore, since we are not interested in the ac-

tual costs, but only with which child has the smaller cost, we

store only a single flag within each parent node to specify

which child node should be traversed first in the event that

both child nodes can be traversed. This Boolean results in an

additional byte per node and can even be embedded in a bit

field shared with some other node data which permits each

node to not use any extra memory, albeit at a reduction in

space for the other shared data. This bit packing is already a

common optimization for packing kd-trees into 8 byte nodes.

4.1. Attenuated occlusion rays

Some materials do not fully occlude a ray and instead only

attenuate it. In this case an intersection does not result in ray

termination. We would therefore like to avoid intersecting

objects with transparent materials during traversal in favor of

intersecting with an object that fully occludes the ray and al-

lows for ray termination. We do this by modifying Equation 7

so that leaf nodes that contain objects with attenuating mate-

rials will have V = 1 which signifies that any ray that enters

that node will still have to continue traversal after leaving it.

While radiance rays require that the transparent materials

be evaluated in front to back order, attenuating materials can

be evaluated out of order for rays that only report occlusion,

or a fraction of occlusion, such as shadow rays. This means

that intersecting and shading transparent materials out of

order will not result in incorrect rendering.

A standard front to back ordered high performance ray

tracer should already handle transparent materials within

the acceleration structure by continuing the traversal of a

ray after it hits a transparent object instead of exiting the

acceleration structure, shading, and then casting a new ray

which must then reenter the acceleration structure and re-

intersect all the objects in the node it was just in before

continuing on. In that case, extending it to support out of order

attenuating materials is fairly straight forward. If not already

implemented, the main difficulty is for spatial partitioning

structures, such as a BSP/kd-tree, since even with a front to

back traversal order it is still possible to intersect objects out

of order since there is no ordering within a node and objects

might span multiple nodes causing them to get intersected

multiple times. If not correctly handled, this can result in over

shading of the transparent object which would produce an

overly attenuated result. The simplest solution is to keep track

of all intersections the ray has made and only shade when

a new intersection is found. This is similar to mailboxing

when the mailbox keeps track of all previously hit objects

and not just the most recent ones. Since this calculation only

occurs when an intersection is found and intersections do not

normally happen very often, this does not noticeably impact

performance.

Figure 1: Mad Science (80K triangles) rendered with 5

samples per pixel, the 14 area lights are sampled 25 times

per shading point, and 36 ambient occlusion rays are cast

per shading point. Our method gives a 2.02× speedup for

the single ray kd-tree and 1.77× for packetized BVH.

5. Results

We demonstrate RTSAH in a packetized ranged traversal

BVH and a single ray traversal kd-tree, although these results

should transfer to single ray BVHs, packetized kd-trees, and

single ray and packetized general BSPs [IWP08]. Both trees

were built using a high quality SAH build and in the case

of the kd-tree, triangle clipping (perfect splits) were used.

Measurements were taken at 1024×1024 pixels on an 8 core

Xeon X5550 running at 2.67GHz.

The Mad Science scene shown in Figure 1 uses complex

lighting and materials and tests the attenuated shadows opti-

mization of the RTSAH. Ambient occlusion, 14 area lights,

transparent materials, dielectrics (which attenuate occlusion

rays without bending the ray), and opaque materials are used.

Both the kd-tree and the BVH show large speedups, 2.02×

and 1.77× respectively, when using the RTSAH compared to

the traditional method of tracing rays from the shading point

to the light source in a front to back order. Table 1 shows

that this is due to the RTSAH halving the number of triangle

intersection tests and visiting roughly a third less nodes.

The Bedroom scene (Figure 2) shows an interactive scene

with 11 point lights. There are no attenuating materials, so Ta-

ble 2 does not differentiate between the RTSAH and RTSAH

computed without attenuation. The Carnival scene (Figure 3)

is shaded only with ambient occlusion and contains opaque,

dielectric, and transparent materials.

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

Figure 2: 11 point lights placed behind louvers in Bedroom

scene (361K triangles). Our method with a single ray kd-tree

is 1.38× faster and packetized BVH is 1.79× faster.

If we do not factor in attenuated occlusion when comput-

ing the RTSAH (RTSAH traversal no-atten in Tables 1 and

3), then as expected the performance decreases for the Mad

Science scene which makes substantial use of attenuating ma-

terials. The Carnival scene, however, has many small spheres

that attenuate light, but most occlusion rays do not hit these

small spheres so the attenuated version of the RTSAH does

not offer any improvement over the non-attenuated RTSAH.

Random order traversal Once a child node is entered, its

subtree must be fully traversed before its sibling node may

be entered; thus, a single wrong traversal choice near the top

of the tree can profoundly impact performance. We can ob-

serve this by generating random node costs in the preprocess,

measuring the resulting performance of RTSAH traversal

using the fixed random costs and then swapping the sibling

costs so that the cheap nodes are now the expensive nodes

and measuring the performance again. Note that using one of

these fixed random order traversals is essentially equivalent

to Smits’ traversal ordering of always traversing the left node

first [Smi98], except that it further ensures the removal of

any orderings created during tree construction; for instance,

always choosing the left node first could easily resort to a

front to back ordering depending on the direction of the ray.

Several of our tests scenes show a dramatic difference in per-

formance when the opposite paths are taken even though the

costs were randomly generated. In fact, the bedroom scene

rendered with a kd-tree has one of the random costs being

faster than any of the other traversal orderings and its cor-

responding flipped random order is one of the slowest. If

Figure 3: The Carnival scene (446K triangles) rendered

using 5 samples per pixel and 100 ambient occlusion rays

per shading point. Our method gives a 1.64× speedup for

the single ray kd-tree and 1.88× for packetized BVH.

the traversal order is randomly chosen each time a node is

visited instead of reusing the same fixed order generated dur-

ing the preprocess, then the work performed ends up being

an average of the two complementary preprocessed random

paths. This true random ordering is always less efficient than

the RTSAH traversal orderings, but usually more so than the

front to back ordered traversal.

SAH order traversal If we ignore early ray termination

when computing the RTSAH costs, this gives us the SAH

cost of each node which we can then use to decide which

node to first traverse. This SAH ordered traversal produces

inconsistent results. For the Mad Science scene the SAH

ordering is slower than the RTSAH ordering but faster than

the front to back, while for the Bedroom scene the SAH

ordering performs well for the kd-tree but performs poorly for

the BVH and yet the Shadow Overlap scene (Figure 4a) has

the opposite effect where SAH ordering is the slowest method

for the kd-tree but the fastest for the BVH. The Carnival scene

has the SAH being the fastest of all the orderings (even 6%

faster than the RTSAH) for the kd-tree but slower than the

RTSAH for the BVH. This suggests that the SAH is not a very

reliable metric for traversal and in fact, it is possible that some

of its very fast results could just be due to random chance

since when the SAH does very well, one of the fixed random

traversals also does correspondingly well. Just like the fixed

random ordering performance could be due to just a few

key sibling orderings, the SAH ordering could be randomly

making use of the same ordering of those key siblings.

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

For the single ray kd-tree we can compare against the opti-

mal traversal order found by exhaustively trying all traversal

paths, which indicates that our method is still about 1.5×
slower than optimal.

We measure the overhead of RTSAH traversal by render-

ing the Bedroom and Mad Science scenes with a light placed

at the camera so that no shadow rays are occluded, and by

sampling the light 10 times per shading point so that the

occlusion rays and not the radiance rays are the dominant

cost. With this setup, RTSAH traversal results in the same

number of intersections and traversal steps as the front to

back traversal and any performance differences are due solely

to the overhead incurred by the RTSAH traversal. The single

ray kd-tree ends up being about 3% slower, while the pack-

etized BVH, which was already doing a memory lookup to

determine which node is closer, shows no performance loss.

5.1. Preprocess time

Computing the probabilities is linear in the number of nodes

and respectively takes roughly 500ms and 640ms per million

triangles for the kd-tree and BVH. Though the kd-tree RT-

SAH computation is an order of magnitude faster per node

than for the BVH, because the kd-tree often has an order of

magnitude more nodes than a BVH, they end up with roughly

the same preprocess time per triangle.

Our preprocess uses just a single thread; however, paral-

lelizing the preprocess should be equivalent to a parallel BVH

refitting and could even be done during the refitting. On our 8

core system this would likely allow for using the RTSAH for

dynamic scenes. A further optimization is to trade RTSAH

accuracy for lower preprocess time by using an approximate

RTSAH cost. The approximate RTSAH that we used takes

roughly 50ms per million triangles using just one core and is

consistently faster than the front to back traversal.

Since an incorrect or outdated cost will still give a correct

rendering and likely will not be any worse than a front to

back ordering, a single thread could asynchronously compute

updated RTSAH costs while the other threads simultaneously

render using the partially updated costs, some of which might

still be out of date. This is similar in principle to the asyn-

chronous BVH rebuild of Wald et al. [WIP08] except that

there is no need to keep two copies of the tree since updates

can be made to the tree while it is being rendered. This should

further facilitate the usage of RTSAH traversal when low pre-

process times are important.

6. Limitations

To describe the limitations of the RTSAH traversal, we lined

up four laser scanned models of varying triangle resolutions,

placed a light behind all of them so that the shadows of all

the models mostly overlap so as to sometimes give several

valid traversal options, and rendered it with the kd-tree (see

(a)

(b)

(c)

(d)

Figure 4: From left to right, the Shadow Overlap scene

(a) is composed of the 1087K tri Happy Buddha, the 30K

tri Armadillo, the 69K tri Bunny, and the 871K tri Dragon

and has the very small area light sampled 10 times so as

to make the occlusion rays the dominant cost while keeping

shadows sharp for visualizing purposes. (b) and (c) visualize

the time required to render a pixel, with increasing rendering

time corresponding with increasing pixel intensity. (b) uses

the RTSAH traversal and (c) the front to back traversal. (d)

Shows the difference of (b) and (c) with cyan corresponding

to where RTSAH traversal was faster and magenta to where

it was slower.

Figure 4a). We expect that in locations where there is overlap

that our method will pick the lower cost occluder (usually the

Armadillo) and give a speedup, but when there is no overlap

it will either result in the same traversal and give no speedup

or will perform superfluous work going down wrong paths be-

fore finding the only occluder. In Figure 4b, which shows the

amount of time required to render a pixel using the RTSAH

traversal, we see that it did in fact traverse into the Armadillo

model before trying the other models and Figure 4d, which

shows which traversal method was faster, confirms that for

rays that were occluded by the Armadillo model, the RTSAH

traversal was almost always faster (cyan regions). However,

for rays that are only occluded by the Dragon, traversing

towards the Armadillo resulted in the expected superfluous

work and slower performance as noticed by the magenta re-

gions which tend to correspond with where only the Dragon

was the occluder. It is possible for a single decision near the

top of the tree to have a significant performance impact, so if

that one decision is wrong for the set of rays being rendered,

then performance can dramatically change. The rays that erro-

neously chose to traverse towards the Armadillo exhibit this

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

kd-tree BVH

render tri int node trvs leaves preprocess render tri int node trvs leaves preprocess

time(s) per ray per ray per ray time(ms) time(s) per ray per ray per ray time(ms)

front to back 339 8.64 47.0 9.3 0 276 24.0 125.2 13.9 0

RTSAH traversal 168 4.27 33.2 5.4 38 156 11.8 81.0 6.9 54

RTSAH traversal no-atten 207 5.20 34.1 5.6 38 169 12.1 82.4 7.1 52

approx RTSAH traversal - - - - - 182 14.5 92.9 8.6 3.7

SAH traversal 229 5.43 37.0 7.1 34 221 15.3 104.6 10.4 1.5

fixed random 237 5.83 38.1 6.7 46 189 15.0 94.1 9.1 2.8

fixed random opp 222 5.34 37.7 6.7 46 256 20.6 123.0 12.3 2.8

optimal - 2.94 23.3 3.2 - - - - - -

Table 1: The Mad Science scene (80K triangles). 73% of the 2596M occlusion rays are occluded.

kd-tree BVH

render tri int node trvs leaves preprocess render tri int node trvs leaves preprocess

time(s) per ray per ray per ray time(ms) time(s) per ray per ray per ray time(ms)

front to back 0.870 10.4 43.5 8.8 0 0.413 13.1 101.4 7.0 0

RTSAH traversal 0.629 8.8 31.9 5.7 214 0.231 7.4 66.5 3.8 250

approx RTSAH traversal - - - - - 0.226 6.9 65.3 3.4 9.1

SAH traversal 0.680 8.8 35.0 7.7 187 0.377 11.3 98.3 6.1 5.7

fixed random 0.840 9.5 45.2 8.0 220 0.398 12.6 96.1 6.7 7.5

fixed random opp 0.629 9.1 29.7 5.4 220 0.229 7.6 63.8 3.6 7.5

optimal - 5.4 19.4 1.6 - - - - - -

Table 2: The Bedroom scene (361K triangles). 93% of the 11M occlusion rays are occluded.

since they must traverse many nodes in that subtree before

being able to leave and enter the correct sibling node contain-

ing the Dragon. This effect can also be seen with how the

preprocessed fixed random traversal orders can sometimes

have widely different performance. Any optimized traversal

ordering can only accelerate completely occluded occlusion

rays. For areas or scenes that are predominantly radiance rays

or unoccluded occlusion rays, there is little work that can

be accelerated and so of course our method will see only a

minor speedup. All the lit surfaces in Figure 4a cannot be

speedup for this reason and Figure 4d shows that there is

in fact no noticeable performance difference. Finally, due to

the logarithmic time complexity of ray tracing, though there

might be an order of magnitude difference in number of trian-

gles between the largest and smallest model in this scene, the

cost savings of rendering the lower res model will be much

smaller. For these reasons, the kd-tree RTSAH traversal still

gives a speedup, but only a modest one of 1.15× (the BVH

performed better at 1.45×).

The RTSAH is derived with the assumption of random

ray distributions and for scenes that have a truly random

ray distribution, it should always outperform any competing

traversal method. However, useful renderings do not usually

use completely random rays and so for a specific sets of rays,

the lower cost child could end up requiring more work than

its higher cost sibling node. For instance, inside the lower

cost child node’s subtree there could be a grandchild node

with very low probability of being reached but with a very

expensive cost if it does get traversed. If all the rays enter

that expensive grandchild (perhaps a light source is in that

node) then the lower cost child node will end up being more

expensive than its sibling for those specific rays. This can

lessen the performance gain of the RTSAH traversal or, albeit

rare, even make it slower than the front to back traversal.

Another reason the RTSAH traversal might not be signifi-

cantly faster than a front to back traversal is that the front to

back traversal might already be doing the optimal traversal

order. In this situation, RTSAH traversal clearly can not do

any better and can only hope to match performance. In prac-

tice this does not usually occur for all rays and so our method

will usually end up outperforming the front to back traversal,

although sometimes it will only be slightly faster.

7. Future Work

The RTSAH assumes random rays that completely pierce

the node. This of course is usually not true since the rays

could have fixed sources (shading points) and destinations

(light sources). Removing or lessening the assumption on rays

being completely random could lead to further performance

benefits. For instance, if we know a ray will not go past the

light, then it would be nice to use a cost metric that ignores

objects behind the light. Likewise, objects behind a shading

point should be ignored when computing the cost.

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

kd-tree BVH

render tri int node trvs leaves preprocess render tri int node trvs leaves preprocess

time(s) per ray per ray per ray time(ms) time(s) per ray per ray per ray time(ms)

front to back 72.5 11.2 56.4 11 0 112.1 33.4 398.8 35.7 0

RTSAH traversal 44.1 4.8 38.2 6.7 181 59.6 18.1 214.2 20.5 364

RTSAH traversal no-atten 43.9 4.8 43.2 6.7 181 59.6 18.1 214.2 20.5 345

approx RTSAH traversal - - - - - 60.6 17.2 220.4 20.7 33.9

SAH traversal 41.5 3.8 35.3 7.7 159 82.6 19.6 316.3 27.4 8.4

fixed random 58.1 8.4 45.8 8.6 186 128.9 32.4 463.5 41.2 11

fixed random opp 43.3 4.4 36.4 7.3 186 69.4 18.7 254.0 23.6 11

optimal - 2.5 24.3 3.3 - - - - - -

Table 3: Carnival (446K triangles) shaded with only ambient occlusion. 81% of the 539M occlusion rays are occluded.

kd-tree BVH

render tri int node trvs leaves preprocess render tri int node trvs leaves preprocess

time(s) per ray per ray per ray time(ms) time(s) per ray per ray per ray time(ms)

front to back 0.185 2.59 43.2 8.9 0 0.157 4.38 128.5 17.3 0

RTSAH traversal 0.161 2.57 39.0 7.3 382 0.108 3.85 86.6 10.1 1312

approx RTSAH traversal - - - - - 0.115 3.97 93.5 11.7 78

SAH traversal 0.194 2.36 45.9 10.8 335 0.111 3.89 89.0 10.5 51

fixed random 0.191 2.50 44.2 9.2 393 0.163 4.46 133.1 17.5 66

fixed random opp 0.200 2.47 44.8 9.3 393 0.129 4.01 103.1 12.1 66

optimal - 1.42 25.9 3.8 - - - - - -

Table 4: The Shadow Overlap Scene (2056K triangles). 56% of the 2.5M occlusion rays are occluded.

The RTSAH is used in this paper for choosing the traversal

order for occlusion rays; however, it can also be used for

measuring tree quality for radiance rays (see equation 5).

Building a tree that minimizes the RTSAH cost for radiance

rays should result in a higher quality tree. The RTSAH can

easily be used to measure the build quality of already built

trees, but using it to guide the build is more challenging and

an area of future research.

We demonstrated the RTSAH traversal for trees with two

children; however, it could be extended to trees with an ar-

bitrary number of children as used with the mBVH/QBVH

varients [DHK08, EG08, WBB08]. Furthermore, with more

child nodes to choose from, m-ary trees should benefit even

more from RTSAH traversal.

8. Conclusion

We presented an improved version of the SAH, which we

call the RTSAH, that takes into account ray termination and

gives the expected traversal cost of radiance and occlusion

rays through a tree. We then showed how the RTSAH can be

used to guide the traversal of occlusion rays through a tree

so that an intersection can be more efficiently located. The

RTSAH traversal can try to avoid attenuating materials for

a further improvement in traversal efficiency. The RTSAH

can be computed faster than the tree can be built and there is

practically no storage or rendering overhead for using it. For

scenes that comprise mostly of occluded rays, the RTSAH

traversal can give a substantial performance increase.

9. Acknowledgements

This publication is based on work supported by Award No.

KUS-C1-016-04, made by King Abdullah University of Sci-

ence and Technology (KAUST), DOE VACET, NSF OCI-

0906379, and NSF CRI-0551724. Pete Shirley wrote code to

compute the BVH RTSAH using Monte Carlo sampling. We

are extremely grateful for the anonymous reviewer’s sugges-

tion to use form factors to solve the BVH RTSAH. The Mad

Science scene is by Dan Konieczka and Giorgio Luciano;

the Carnival by Dan Konieczka, the Bedroom was modeled

by David Vacek and designed by David Tousek; all three

scenes are available from the 3dRender.com Lighting Chal-

lenges. The Happy Buddha, Bunny, Dragon, and Armadillo

are courtesy of the Stanford Computer Graphics Laboratory.

References

[BH10] BOULOS S., HAINES E.: Sorted BVHs. Ray Tracing

News 23, 1 (2010). 2

[Bou10] BOULOS S.: How often do shadow rays hit? Ray Tracing

News 23, 1 (2010). 1

[Cho02] CHOI A.-S.: Practical applications of form factor com-
putation in lighting calculations. Building and Environment 37,
11 (2002), 1107–1115. 3

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Thiago Ize & Charles Hansen / RTSAH Traversal Order for Occlusion Rays

[CW93] COHEN M. F., WALLACE J. R.: Radiosity and Realistic

Image Synthesis. Morgan Kaufmann Publishers, 1993. 3

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of inco-
herent rays. In Eurographics Symposium on Rendering (2008),
pp. 1225–1234. 8

[DKH09] DJEU P., KEELY S., HUNT W.: Accelerating shadow
rays using volumetric occluders and modified kd-tree traversal. In
High Performance Graphics (2009), ACM, pp. 69–76. 2

[EG08] ERNST M., GREINER G.: Multi bounding volume hierar-
chies. In Symposium on Interactive Ray Tracing (2008), pp. 35–40.
8

[FFD09] FABIANOWSKI B., FOWLER C., DINGLIANA J.: A
cost-metric for scene-interior ray origins. In Eurographics Short

Presentations (2009). 2

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graphics and

Applications 7, 5 (1987), 14–20. 2

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Faculty of Electrical Engineering, Czech Technical Univer-
sity in Prague, 2001. 2

[HG86] HAINES E. A., GREENBERG D. P.: The light buffer: A
ray tracer shadow testing accelerator. IEEE CG&A 6, 9 (Sept.
1986), 6–16. 1

[Hun08] HUNT W.: Corrections to the surface area metric with
respect to mail-boxing. In Symposium on Interactive Ray Tracing

(2008), pp. 77–80. 2

[IWP08] IZE T., WALD I., PARKER S. G.: Ray tracing with
the BSP tree. In Symposium on Interactive Ray Tracing (2008),
pp. 159–166. 4

[LBB∗08] LACEWELL D., BURLEY B., BOULOS S., SHIRLEY

P., STUDIOS W., BURBANK C.: Raytracing prefiltered occlusion
for aggregate geometry. In Symposium on Interactive Ray Tracing

(2008), pp. 19–26. 1

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Visual Computer 6, 6 (1990),
153–65. 2

[PFHA10] PANTALEONI J., FASCIONE L., HILL M., AILA T.:
PantaRay: fast ray-traced occlusion caching of massive scenes. In
SIGGRAPH (2010), ACM, pp. 1–10. 1

[PJ91] PEARCE A., JEVANS D.: Exploiting shadow coherence in
ray tracing. In Graphics Interface (1991), pp. 109–116. 1

[Smi98] SMITS B.: Efficiency issues for ray tracing. Journal of

Graphics Tools 3, 2 (1998), 1–14. 2, 5

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets—efficient SIMD single-ray traversal using multi-
branching BVHs. In Symposium on Interactive Ray Tracing

(2008), pp. 49–58. 8

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (2007), 1–18. 3

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for
ray tracing, and on doing that in O(N logN). In Symposium on

Interactive Ray Tracing (2006), pp. 61–70. 2

[WIP08] WALD I., IZE T., PARKER S. G.: Fast, parallel, and
asynchronous construction of BVHs for ray tracing animated
scenes. Computers & Graphics 32, 1 (2008), 3–13. 6

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

