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Abstract. Navigation meshes are commonly employed as a practical represen-

tation for path planning and other navigation queries in animated virtual envi-

ronments and computer games. This paper explores the use of triangulations as a

navigation mesh, and discusses several useful triangulation–based algorithms and

operations: environment modeling and validity, automatic agent placement, track-

ing moving obstacles, ray–obstacle intersection queries, path planning with arbi-

trary clearance, determination of corridors, etc. While several of the addressed

queries and operations can be applied to generic triangular meshes, the efficient

computation of paths with arbitrary clearance requires a new type of triangular

mesh, called a Local Clearance Triangulation, which enables the efficient and

correct determination if a disc of arbitrary size can pass through any narrow pas-

sages of the mesh. This paper shows that triangular meshes can support the effi-

cient computation of several navigation procedures and an implementation of the

presented methods is available.
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1 Introduction

Navigation meshes are commonly used as a representation for computing navigation

procedures for autonomous characters. The term navigation mesh however has been

broadly used to refer to any type of polygonal mesh able to represent walkable areas in

a given environment, and no specific attention has been given to establishing properties

and algorithms for specific types of navigation meshes. This paper explores the use of

triangulated meshes and summarizes several operations, queries and properties which

are useful for the implementation of navigation strategies for autonomous agents.

One main advantage of relying on triangulations is that the obtained triangular cell

decomposition of the environment has O(n) cells, where n is the number of segments

used to describe the obstacles in the environment. As a result, spatial processing algo-

rithms will depend on n, which is related to the complexity of the environment (the

number of edges to describe obstacles) and not to the size (or extent) of the environ-

ment. Therefore triangulated meshes are in particular advantageous for representing

large environments where uniform grid–based methods become significantly slower.

The algorithms described in this paper target several navigation queries needed in

applications with many agents in complex and large environments. There are two main

types of obstacles which have to be addressed: 1) static objects are those describing

the environment, they typically do not move over time but it is acceptable that they

change their position from time to time (like a door which can be open or closed), and
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2) dynamic objects are those which are continuously in movement, as for example the

agents themselves.

Following the most typical approach taken with navigation meshes, the presented

triangulations are considered to only represent static objects. Even if dynamic updates

of obstacles are possible, specific approaches (based on triangulations or not) for han-

dling dynamic objects will usually be more efficient. This paper addresses the use of

triangulations for handling these issues and also for computing several additional navi-

gation queries, such as ray–obstacle intersections and path planning with clearance (see

Figure 1). The discussed data structures and algorithms have been implemented and are

available from the author’s web site1.

Fig. 1. Examples of several paths computed with arbitrary clearances in different environments.

2 Related Work

Triangulations are powerful representation structures which have been used in different

ways for the purpose of computing navigation queries. Triangulations have in particular

been used for extracting adjacency graphs for path planning from given environments.

A variety of approaches have been devised, as for example to automatically extract

roadmaps considering several layers (or floors) [16], and to hierarchically represent

environments with semantic information and agents of different capabilities [19].

Most of the previous work on the area has however focused on specific application

goals, and not on the underlying algorithms and representations. For instance, one main

drawback of reducing the path planning problem to a search in a roadmap graph is that

the obtained paths will still need to be smoothed. In addition, it also becomes difficult to

compute paths with other useful properties, such as being optimal in length and having

a given clearance from obstacles.

1 http://graphics.ucmerced.edu/software.html
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The most popular approach for computing the geometric shortest path among polyg-

onal obstacles defined by n segments is to build and search the visibility graph [3,17] of

the obstacles, what can be achieved in O(n2) time [21, 24]. The shortest path problem

is however O(n log n) and optimal [11] and near-optimal [20] algorithms are available

following the continuous Dijkstra paradigm. However, in particular when considering

arbitrary clearances from obstacles, it is difficult to achieve efficient algorithms which

are suitable for practical implementations. The visibility–voronoi complex [27] is able

to compute paths in O(n2) time and is probably the most efficient implemented ap-

proach to compute paths addressing both global optimality and arbitrary clearance. It

is possible to note that the use of dedicated structures is important and planar meshes

have not been useful for computing globally-optimal geometric shortest paths.

Nevertheless, navigation meshes remain a popular representation in practice, and

recent works have started to address properties and algorithms specifically for them.

My previous work of 2003 [14] addressed the insertion and removal of constraints in a

Constrained Delaunay Triangulation (CDT), and showed that environments can be well

represented by CDTs for the purpose of path planning. The implementation developed

in [14] has been used by other researchers [4] and significant improvements in perfor-

mance were reported in comparison to grid–based methods. Extensions to the original

method for handling clearance have also been reported [4], however without correctly

solving the problem. In a recent publication [13], I have showed how arbitrary clear-

ances can be properly addressed with the introduction of a new triangulation called a

Local Clearance Triangulation (LCT), which after a precomputation of O(n2), is able

to compute locally shortest paths in O(n log n), and even in O(n) time, achieving high

quality paths very efficiently. A summary of this approach is given in Section 7.

Other efficient geometric approaches are also available. In particular the approach

based on corridor maps [7,8] is also able to efficiently achieve paths with clearance. One

fundamental advantage of using triangulated meshes is that the environment is already

triangulated, and thus channels or corridors do not need to be triangulated at every path

query according to given clearances.

Path planning is not the only navigation query needed for the simulation of loco-

motion in complex environments. Handling dynamic agents during path execution is

also important and several approaches have been proposed: elastic roadmaps [6], multi

agent navigation graphs [26], etc. Avoidance of dynamic obstacles has also been solved

in a reactive way, for instance with the use of velocity obstacles [2, 5]. Hardware ac-

celeration has also been extensively applied [12] for improving the computation times

in diverse algorithms. Although these methods are most suitable for grid–based ap-

proaches, methods for efficiently computing Delaunay triangulations using GPUs have

also been developed [22].

Among the several approaches for computing navigation queries, this paper focuses

on summarizing techniques which are only based on triangulations.

3 The Symedge Data Structure for Mesh Representation

The algorithms presented in this paper require a data structure able to represent planar

meshes and to encode all adjacency relations between the mesh elements in constant
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time. The data structure used here follows the adjacency encoding strategy of the quad–

edge structure [9] and integrates adjacency operators and attachment of information per

element similarly to the half–edge structure [18]. The obtained data structure is called

Symedge, and its main element represents an oriented edge which is always symmetrical

to the other oriented edge adjacent to the same edge. Oriented edges in this represen-

tation are hence called symedges, and each one will always be adjacent to only one

vertex, one edge, and one face.

Each symedge keeps a pointer to the next symedge adjacent to the same face, and

another pointer to the next symedge adjacent to the same vertex. The first pointer is

accessed with the nxt() operator and the second with the rot() operator, since it has

the effect of rotating around the adjacent vertex. These operators rely on a consistent

counter-clockwise orientation encoding. In addition, three optional pointers are stored

in each symedge for quick access to the adjacent vertex, edge and face elements, which

are used to store user–defined data as needed. These pointers are accessed with opera-

tors vtx(), edg(), and fac(), respectively. Figure 2-left illustrates these operators.

Note that the two described primitive adjacency operators are enough for retriev-

ing all adjacent elements of a given symedge in constant time and additional operators

can be defined by composition. For instance operator sym() is defined as sym() =
nxt() → rot() for accessing the symmetrical symedge of a given symedge s. In-

verse operators are also defined: pri() = nxt()−1 = rot() → sym(), and ret() =
rot()−1 = sym() → nxt(). Also note that sym()−1 = sym(). Figure 2 illustrates all

the mentioned element retrieval and adjacency operators.

vtx()

nxt()

edg()

rot()

fac()
s→nxt()

s→sym()

s→pri()
s

s→ret()
s→sym→pri()

Fig. 2. Pointers are stored per symedge for fast retrieval of adjacent information (left), and several

adjacency operators are defined for accessing any adjacent symedge in constant time (right).

The described symedge structure includes many additional utilities useful for the

construction of generic meshes. In particular, construction operators are also included

as a safe interface to manipulate the structure and Mäntylä’s Euler operators [18] are

implemented as the lowest–level interface. In a previous work [15], the mentioned sim-

plified quad–edge structure is equivalent to the symedge structure described here. The

benchmark performed in this previous work indicates that the symedge structure is

among the fastest ones for describing general meshes. Although the algorithms dis-

cussed here mainly rely on triangulated meshes, using a generic structure has several

advantages, in particular for the correct description of intermediate meshes during op-

erations, and for the correct description of generic outer borders. The algorithms de-
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scribed in this paper have been implemented using the described symedge data struc-

ture, which is therefore also included in the available implementation.

4 Mesh Construction and Maintenance

Let S = {s1, s2, ..., sn} be a set of n input segments describing the polygonal obstacles

in a given planar environment. Segments in S may be isolated or may share endpoints

forming closed or open polygons. The input segments are also called constraints, and

the set of all their endpoints is denoted as P .

A suitable navigation mesh can be obtained with the Constrained Delaunay Trian-

gulation (CDT) of the input segments. Let T be a triangulation of P , and consider two

arbitrary vertices of T to be visible to each other only if the segment connecting them

does not intercept the interior of any constraint.

Triangulation T will be the CDT of S if 1) it enforces the constraints, i.e., all

segments of S are also edges in T , and 2) it respects the Delaunay Criterion, i.e., the

circumcircle of every triangle t of T contains no vertex in its interior which is visible

from all three nodes of t.

The first step to build a CDT therefore consists of identifying the segments de-

limiting obstacles in a given environment. Sometimes these segments will already be

available, but very often designers will specify them by hand. One main difficulty in

the process is that most CDT implementations will require a clean input segment set.

Instead, the implemented solution chooses to handle self–intersections, overlaps, and

duplicated vertices automatically as constraints are inserted in the triangulation. For ex-

ample, Figure 3 shows the segments modeled by a designer to represent the walls of

an apartment. The segments were intuitively organized in rectangles but with several

intersections and overlapping parts. Nevertheless a correct CDT can still be obtained.

Fig. 3. Given the input set S of segments delimiting a given environment (left), CDT (S) pro-

vides a suitable navigation mesh for several queries (center). Note that included validity tests [14]

are able to automatically handle overlapping and intersecting constraints. Additional obstacles in

the environment can also be incrementally inserted in the CDT as needed (right).

The employed corrective incremental insertion of constraints is described in a previ-

ous work [14]. Note that the alignment problem is in particular important. For instance
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if two adjacent walls do not precisely share common vertices, a non–existing gap will

be formed. In order to automatically detect and fix such possible gaps, the whole CDT

construction uses a user–provided ǫ value and performs two specific corrective tests

for each new segment inserted in the CDT : 1) if the distance between a new vertex

and an existing one is smaller than ǫ, the new vertex is not inserted and instead the

existing one becomes part of the input segment currently being inserted, and 2) if the

distance between a new vertex and an already inserted segment (a constrained edge in

the current CDT ) is smaller than ǫ, the vertex is projected to the segment and its in-

sertion precisely subdivides the segment in two collinear sub–segments. This ǫ–based

approach for cleaning the input data also represents a way to improve the robustness

of the geometric algorithms involved during the CDT construction. However robust-

ness cannot be guaranteed for all types of input sets only using these two tests. Still,

it seems to be possible to extend the approach to handle any possible situation. Note

that this corrective approach for robustness is fundamentally different than addressing

robustness only in the involved geometric computations, which is the usual approach in

CDT implementations targeting mesh generation for finite element applications [23].

Given that the input segment set S can be correctly handled, the mesh obtained with

CDT (S) will always well conform to the obstacles. If only closed obstacles are rep-

resented, each triangle of the mesh will be either inside or outside each obstacle. Note

that it is also possible to represent open polygons or simple segments, and therefore the

representation is flexible to be used in diverse situations (see Figure 7). The obtained

CDT (S) is suitable for all operations described in this paper, except for the determi-

nation of paths with clearance, which will require additional properties leading to the

introduction of the Local Clearance Triangulation LCT (S), as discussed in Section 7.

Obstacles can also at any point be removed and re–inserted in CDT (S). This is pos-

sible by associating with each inserted segment an id which can be later used to identify

segments to be removed. The correct management of ids is described in detail in [14].

Removal of segments only involves local operations, however if the segment is long and

connects to most of other segments in the triangulation, the removal may be equivalent

to a full re–triangulation of the environment. In any case, the ability to efficiently update

the position of small obstacles is often important. For example, Figure 3-right shows the

apartment environment with additional obstacles representing some furniture. The abil-

ity to update the position of furniture or doors as the simulation progresses is important

in many situations.

5 Agent Placement and Avoidance

Once the mesh representation of the environment is available, one particular problem

which often appears is to efficiently place several agents in valid initial locations. Usual

approaches will often make use of spatial subdivisions to keep track of the agents al-

ready inserted in different parts of the environment, in order to locally verify the validity

of new agents being inserted. An efficient approach only based on the maintenance of a

Delaunay triangulation of the agents as they are inserted is also possible.

Let r be the radius of the circle representing the agent location and let T be a

Delaunay triangulation (of points) being built. First, T is initialized with (usually four)
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points delimiting a region containing the entire environment, with a margin of 2r space.

Candidate locations are then sampled at random or following any scripted distribution

strategy. Each candidate location p is only inserted in T if no vertices of T are closer

to p than 2r. The triangle t containing p is then determined by efficient point location

routines [14,23], and all edges around t are recursively visited for testing if their vertices

respect the distance of 2r from p. Adjacency operators are used to recurse from the seed

edges (the edges of t) to their neighbor edges, and marking of visited vertices will avoid

overlaps. When all edges closer to p than 2r are visited with no illegal vertices found,

then p is inserted as a new vertex of the triangulation and a new agent of radius r can be

safely inserted at p without intersection with other agents. If the environment also has

obstacles, an additional similar recursive test is performed to check if the circle centered

at p with radius r does not intersect any constrained edge represented in the navigation

mesh of the environment. See Figure 4 for examples.

Agents of different sizes can also be handled by storing the size of each agent in the

vertices of the triangulation and performing vertex–specific distance tests during the

recursive procedures described above. Alternatively, the recursive test can be avoided

by first inserting each candidate point as a new vertex v in T , and then if an adjacent

vertex v is too close, v is removed from T and a new candidate location is processed.

Fig. 4. The placement of non-overlapping agents with a given radius can be efficiently performed

with a Delaunay triangulation tracking the inserted locations. Each location is also tested against

the obstacles represented in the navigation mesh in order to achieve valid placements in the given

environment.

After agents are correctly placed in valid locations navigation modules can then

take control of the agents. The described Delaunay placement strategy can also be ex-

tended to efficiently perform collision avoidance strategies between the agents. One

typical scenario is when agents are following given free paths in respect to the static

environment while reactively avoiding the other agents on the way. For that, each agent

needs to know the location of the closest agents around it at all times. The vertices of

the initial Delaunay triangulation used to place the agents can then be updated as the

agents move, such that each agent can quickly query the location of all agents around it.

The key element of this strategy is to efficiently update the vertices of the triangulation.

Fortunately there are several known algorithms able to track the position of moving

vertices and only perform topological changes (of O(n log n) cost) when needed [1].
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6 Ray–Obstacle Intersection Queries

Another important class of navigation queries is related to the simulation of sensors.

Sensors are useful in a number of situations: for simulating laser sensors attached to

robotic agents, for obtaining a simplified synthetic vision module, for querying visibility

length along given directions, for aiming and shooting actions, etc. Figure 5 shows the

example of a generic ray–obstacle intersection query. In this example a ray direction is

given, and the ray query can be computed as follows. First, the edge e0 first crossing

the ray is determined by testing among the three edges of the triangle containing the

ray source point. Then, the other edges on the next triangle adjacent to e0 are tested for

intersection and the next intersection edge e1 is determined. The process continues until

a given number of constrained edges are crossed or until a given ray length is reached.

In most cases only the first crossing is important, but the algorithm can compute any

number of crossings, as showed in Figure 5. Several extensions can be easily designed,

for example for covering a cone sector, or a full circular region around the agent.

Fig. 5. In both examples, the illustrated ray–obstacle intersection query starts at the marked bot-

tom location and identifies the first three obstacle intersections. All traversed edges are marked

in black and the final top location represents the length of the query.

7 Path Planning and Paths with Clearance

Although CDT (S) is already able to well represent environments, an additional prop-

erty is required for enabling the efficient computation of paths with arbitrary clearance.

This property is called the local clearance property [13] and will guarantee that only

local clearance tests are required during the search for paths with clearance. Its con-

struction starts with the CDT (S), and then refinement operations are performed until
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the local clearance property is enforced for all triangle traversals in the mesh. The ob-

tained mesh is a Local Clearance Triangulation (LCT ) of the input segments.

Once T = LCT (S) is computed, T can be efficiently used for computing free paths

of arbitrary clearance. Let p and q be two points in R
2. A non–trivial free path between

p and q will cross several triangles sharing unconstrained edges, and the union of all

traversed triangles is called a channel. A path of r clearance is called locally optimal if

1) it remains of distance r from all constrained edges in T and 2) it cannot be reduced

to a shorter path of clearance r on the same channel. Such a path is denoted πr, and

its channel Cr. Note that a given path πr joining two points may or not be the globally

shortest path. If no shorter path of clearance r can be found among all possible channels

connecting the two endpoints, the path is then the globally optimal one.

The key issue for finding a path πr is to search for a channel Cr which guarantees

that there is enough clearance in all traversed triangles. A graph search over the ad-

jacency graph of the triangulation is then performed, starting from the initial triangle

containing p, and until reaching q. For each triangle traversed during this search, a pre-

computed clearance value will determine if that single triangle traversal is guaranteed to

have clearance r. The refinement operations performed to build a LCT will guarantee

that each traversal can be locally tested for clearance and thus enabling the precompu-

tation of two clearance values per edge for testing the clearance of all possible triangle

traversals. Figure 6 shows a typical problem which can occur in CDTs but which will

not occur in LCTs. Note that if a channel Cr is not found, the goal is not reachable.

Fig. 6. Local clearance tests in CDT s cannot guarantee the correct clearance determination of

paths (left). The corresponding LCT (right) will always lead to free paths with correct clearances.

Once a channel Cr of arbitrary clearance is found, its locally optimal path πr can

be computed in linear time in respect to the number of triangles in the channel. This is

achieved with an extended funnel algorithm [10] handling clearances, which is detailed

in [13].

The result is a flexible and efficient approach for path planning. The LCT can

be precomputed in O(n2), and then paths of arbitrary clearance can be retrieved in

O(n log n) by using a standard A* search (as implemented in [13]), or even in O(n)
time as the generated structure is suitable for the application of linear time planar search

algorithms [25]. Figures 1 and 7 show several examples.
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Fig. 7. The LCT of the input segments is required for computing paths with arbitrary clearance

(left). Alternatively, if the clearance is constant, the environment can be inflated and paths without

clearance can be extracted from the CDT of the inflated input segments (right). Also note that

triangulated meshes can well represent environments described by input segments which do not

form closed obstacles (left).

8 Determination of Corridors and Extensions

Note that the search for free channels (with or without clearances) during the described

path planning procedure automatically determines free corridors around the computed

paths. A channel C is the union of all traversed triangles and therefore the boundary of

the channel will be a polygon representing a corridor containing the path. See Figure 8

for an example. Figure 8 also illustrates the computation of extra clearances, which

deform the path in order to achieve higher clearance than the minimum required. Extra

clearances can be computed with post-optimization of obtained paths and can model

a variable range of locomotion behaviors, from attentive in passages with minimum

clearance to safe navigation in higher clearance areas.

Many other extensions can be devised. For instance the corridor search procedure

can be optimized (significantly in certain cases) by introducing a smaller connectiv-

ity graph which excludes the triangles inside corridors, which are those that have two

constrained edges and thus have only one way of being traversed. Hierarchical repre-

sentations of several levels (common in grid–based approaches) can also be translated

to triangle meshes.

Note that efficient path planning queries are also important for decision modules.

For example, the ability to query goal reachability with different clearances and to com-

pute lengths of obtained paths may be important for deciding which target locations to

visit first in case of several choices. Many other uses of the proposed methods exist.

For instance, the handling of intersections and overlaps in the input segment set can be

used to perform Boolean operations with obstacles, what is useful for optimizing the

navigation mesh. Finally, one important extension in many applications is the ability
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to model uneven terrains. Due to their irregular decomposition nature, triangulations

are well suited for the representation of terrains, however each geometric test in the

described procedures would have to be generalized for handling non-planar surfaces.

Fig. 8. Three paths with same minimum clearance but with extra clearances of 0, 0.45, and 0.9.

9 Final Remarks

This paper presented several triangulation–based methods for the efficient computation

of diverse navigation queries for autonomous agents. With the growing research activity

in the area and the appearance of several new development tools, triangulation–based

navigation meshes can be expected to become increasingly popular.
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