developerWorks.

Open source physics engines

Building believable worlds with open source

M. Tim Jones 07 July 2011
Consultant Engineer

MR

Graphics give games a visual appeal, but it's the internal physics engine that gives the game's
world life. A physics engine is a software component that provides a simulation of a physical
system. This simulation can include soft- and rigid-body dynamics, fluid dynamics, and collision
detection. The open source community has a number of useful physics engines operating in
the 2D and 3D domains targeted to games and simulations. This article introduces the use and
basics of a physics engine and explores two options that exist: Box2D and Bullet.

A physics engine is a simulator used to create a virtual environment that incorporates laws from
the physical world. That virtual environment can include objects with accompanying forces applied
to them (such as gravity) in addition to interactions between objects, such as collisions. A physics
engine simulates Newtonian physics in a simulated environment and manages those forces and
interactions.

One of the most advertised applications of a physics engine is in the entertainment and game
industry (see Figure 1), where the physics engine provides a real-time simulation of the game
environment (including the player and other objects that may be present). Prior to their use in
games, physics engines found a number of applications in the scientific domain, from large-scale
simulations of celestial bodies, to weather simulations, all the way down to small-scale simulations
to visualize the behavior of nanopatrticles and their associated forces.

Figure 1. A physics engine in the context of a game application

Graphics
engine Sound

N

Physics | »| Gameloop

engine
/

User input World data

Artificial
~— intelligence
engine

10N

© Copyright IBM Corporation 2011 Trademarks
Open source physics engines Page 1 of 10

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

One key difference between these applications is that although game-focused physics engines
focus on real-time approximations, the scientific variety focuses more on precise calculations
for increased accuracy. Scientific physics engines can rely on supercomputers for their raw
processing capacity, where game physics engines can run on considerably more resource-
constrained platforms (such as handheld gaming devices and mobile phones). Game physics
engines scale back the simulation by avoiding such things as Brownian motion, which in turn
minimizes the processing complexities of the simulation. The range of mathematics and physics
concepts built into these engines is outside of the scope of this article, but you can find links to
more information in Resources.

Numerous types of game physics exist, depending upon the requirement, though all are variations
on the same theme. In games, you can find ragdoll physics (which simulate the behavior of a
complex articulated system) and particle systems (which model the behavior of many small and
large particles in response to events such as an explosion). One of the earliest software physics
engines was the ENIAC computer, which was used to simulate artillery shells given variables

of mass, angle, propulsion, and wind. Wikipedia provides an interesting introduction to this
application—see Resources for a link.

Open source options

One of the main uses of physics engines (in particular, the real-time and low-precision variety) is in
the development of game run times. Based on the popularity of these software frameworks, there
are many open source options to choose from. This article explores some of the available open
source physics engines and illustrates their use in simple applications.

Box2D

Box2D is a simple physics engine with a broad use. It was originally designed by Erin Catto as

a demonstration engine for a physics presentation given at the Game Developers Conference in
2006. Box2D was originally called Box2D Lite, but the engine has been expanded to enhance the
API in addition to include continuous collision detection. Box2D is written in c++, and its portability
is demonstrated by the platforms in which it's used (Adobe® Flash®, Apple iPhone and iPad,
Nintendo DS and Wii, and Google Android). Box2D provides the physics behind a number of
popular handheld games, including Angry Birds and Crayon Physics Deluxe.

Box2D provides a rigid-body simulation supporting geometrical shapes like circles or polygons.
Box2D can join shapes with joints and even includes joint motors and pulleys. Within Box2D,
the engine can apply gravity and friction while managing detection of collisions and the resulting
dynamics.

Box2D is defined as a rich API that provides a variety of services. These services permit the
definition of a world populated with a number of objects and attributes. With the objects and
attributes defined, you next simulate the world in discrete time steps. This sample application
(based on Erin Catto's sample application) explores a box hurled into the world with gravity.

Open source physics engines Page 2 of 10

ibm.com/developerWorks/ developerWorks®

Box2D example

Listing 1 illustrates the process of creating a simple world occupied by a box (in the with upward
momentum) and a ground plane. You define the world and a gravity vector for the world using the
gravity and world functions. The true parameter for the world simply says that it's a sleeping body
and therefore requires no simulation.

With the world defined, you specify the ground body within that world and its position. The ground
is a box that is static, which Box2D knows, because the box has zero mass (by default) and
therefore doesn't collide with other objects.

Next, create your dynamic body, which has a position, initial linear velocity, and angle. This setup
is similar to the creation of the ground body, except that you define additional attributes for the
dynamic body. These attributes include the density of the object and the friction. You add the new
dynamic body to the world by creating the fixture with createFixture.

With your world and its objects defined, you can move on to the simulation. Begin by defining

the time step of your simulation (in this case, 60Hz). You also define the number of iterations to
run, which determines how many times to iterate over velocity and position calculations (because
solving for one modifies others). The more iterations, the more accuracy is achieved— and the
more time is spent in the calculations.

Finally, you run the simulation, which involves performing a step in the simulation through a call

to the step method for the world. Once the call returns for the current time step, you clear the
forces applied to the objects from the last step, and then get the current position and angle of your
dynamic body. Those returned variables are emitted to standard output (stdout) for viewing. You
continue the simulation until your dynamic body has come to rest (that is, sleeping).

Listing 1. Simple application using Box2D (adapted from Erin Catto's
HelloWorld)

#include <Box2D/Box2D.h>
#include <cstdio>
int main()

// Define the gravity vector.
b2vec2 gravity(0.0f, -10.0f);

// Construct a world object, which will hold and simulate the rigid bodies.
// Allow bodies to sleep.
b2world world(gravity, true);

// Define the ground body.

b2BodyDef groundBodyDef;
groundBodyDef.position.Set(0.0f, -10.0f);

b2Body* groundBody = world.CreateBody(&groundBodyDef);

// Define the ground box shape.
b2PolygonShape groundBox;
groundBox.SetAsBox(50.0f, 10.0f);

// Add the ground fixture to the ground body.
groundBody->CreateFixture(&groundBox, 0.0f);

Open source physics engines Page 3 of 10

developerWorks®

// Define the dynamic body. Set its position and call the body factory.

b2BodyDef bodyDef;

bodyDef.type = b2_dynamicBody;
bodyDef.position.Set(0.0f, 4.0f);
bodyDef.linearVelocity.Set(5.0f, 5.0f);
bodyDef.angle = 0.25f * b2 _pi;

b2Body* body = world.CreateBody(&bodyDef);

// Define another box shape for your dynamic body.
b2PolygonShape dynamicBox;
dynamicBox.SetAsBox(1.0f, 1.0f);

// Define the dynamic body fixture.
b2FixtureDef fixtureDef;
fixtureDef.shape = &dynamicBox;
fixtureDef.density = 1.0f;
fixtureDef.friction = 0.3f;

// Add the shape to the body.
body->CreateFixture(&fixtureDef);

float32 timeStep = 1.0f / 60.0f;

int32 velocityIterations 6;
int32 positionIterations 2;

do {
world.Step(timeStep, velocityIterations, positionIterations);

world.ClearForces();

b2Vec2 position = body->GetPosition();
float32 angle = body->GetAngle();

printf("%4.2f %4.2f %4.2f\n", position.x, position.y, angle);
} while (body->IsAwake());

return 0;

}

ibm.com/developerWorks/

Box2D is meant to be agnostic of the renderer (graphical visualization). A simple rendering of the
box's position (from Listing 1) is shown in Figure 2. Note that behavior of the box's position as

gravity pulls it to the ground and it comes to rest and the collision.

Figure 2. Simple rendering of the box position from Listing 1

G g 03 -

Open source physics engines

Page 4 of 10

ibm.com/developerWorks/ developerWorks®

Bullet

Bullet is a 3D open source physics engine that supports rigid- and soft-body dynamics and
collision detection in 3D. Bullet was developed by Erwin Coumans while he was at Sony Computer
Entertainment. The engine is supported on a large number of platforms, such as Sony Playstation
3, Xbox 360®, iPhone, and Wii. It includes operating system support for Windows®, Linux®, and
Mac OS, as well as a number of optimizations targeted for the Cell Synergistic Processing Unit in
Playstation 3 and the OpenCL framework on the PC.

Bullet is a production physics engine that has wide support both in games and in movies. Some

of the games that have used Bullet include Rockstar's Red Dead Redemption and Sony's Free
Realms (MMORPG). Bullet has also been used for special effects in a number of commercial films,
including "The A-team" (Weta Digital) and "Shrek 4" (DreamWorks).

Bullet includes rigid-body simulation with both discrete and continuous collision detection, including
support for soft bodies (such as cloth or other deformable objects). As a production engine, Bullet
includes a rich APl and SDK.

Bullet example

The Bullet example shown in Listing 2 is the "Hello World" program from the Bullet distribution. It
implements a similar simulation as that demonstrated with the Box2D example (but in this case,
instead of a box, a sphere is used as the falling object). As you would expect, this implementation
is quite a bit more complex than the prior example because of the increased richness and variety
of the API.

This sample application is split into three segments: setup, simulation, and cleanup. The setup
phase creates the world that the simulation phase works with. The cleanup phase simply
deallocates the various objects in the world.

To create the world, you need the definition of a broad-phase algorithm (an optimization for
identifying objects that should not collide), a collision configuration, and a constraint solver (which
incorporates gravity and other forces as well as collisions and defines how objects interact). You
also define gravity as the y-axis through a call to setGravity. With elements these defined, you
create your world. The next two segments in the setup phase define the static ground body and
the dynamic sphere body.

The simulation is performed through a call to method stepsimulation. This method defines an
interval of 60Hz and simulates the physics behind the sphere falling to the ground under the
influence of gravity. After each simulation step, the sphere's height (the y parameter) is emitted.
Looping through the simulation allows the sphere to collide with the ground, and then come to rest.

The final phase is simply cleanup, which frees the objects and other elements from memory.

As shown, although there's a considerable amount of setup required for the simulation, once
you've defined the environment of the simulation, the engine does all of the heavy lifting behind
the scenes for you. Bullet includes a massive API, permitting fine-tuning of the environment and its

Open source physics engines Page 5 of 10

developerWorks® ibm.com/developerWorks/

behavior as well as a large number of callbacks for events that occur within the simulation (such as

collision and overlap).

Listing 2. Simple falling sphere simulation using Bullet
#include <iostream>
#include <btBulletDynamicsCommon.h>

int main (void)

{
// Setup
btBroadphaseInterface* broadphase = new btDbvtBroadphase();

btDefaultCollisionConfiguration* collisionConfiguration =
new btDefaultCollisionConfiguration();
btCollisionDispatcher* dispatcher = new btCollisionDispatcher(collisionConfiguration);

btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver;

btDiscreteDynamicsWorld* dynamicsWorld = new btDiscreteDynamicsWorld(
dispatcher, broadphase, solver,collisionConfiguration);

dynamicsWorld->setGravity(btVector3(0,-10,0));

btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),1);

btCollisionShape* fallShape = new btSphereShape(1);

btDefaultMotionState* groundMotionState = new
btDefaultMotionState(btTransform(btQuaternion(0,0,0,1),btVector3(0,-1,0)));
btRigidBody: :btRigidBodyConstructionInfo

groundRigidBodyCI(0, groundMotionState, groundShape, btVector3(0,0,0));
btRigidBody* groundRigidBody = new btRigidBody(groundRigidBodyCI);
dynamicsWorld->addRigidBody(groundRigidBody);

btDefaultMotionState* fallMotionState =
new btDefaultMotionState(btTransform(btQuaternion(0,0,0,1),btVector3(0,50,0)));
btScalar mass = 1;
btVector3 fallInertia(0,0,0);
fallShape->calculatelLocalInertia(mass, fallInertia);
btRigidBody: :btRigidBodyConstructionInfo
fallRigidBodyCI(mass, fallMotionState, fallShape, fallInertia);
btRigidBody* fallRigidBody = new btRigidBody(fallRigidBodyCI);
dynamicsWorld->addRigidBody(fallRigidBody);

// Simulation

for (int i=0 ; i<300 ; i++) {
dynamicsWorld->stepSimulation(1/60.f,10);

btTransform trans;
fallRigidBody->getMotionState()->getWorldTransform(trans);

std::cout << "sphere height: " << trans.getOrigin().getY() << std::endl;
}

// Cleanup

dynamicsWorld->removeRigidBody(fallRigidBody);
delete fallRigidBody->getMotionState();

Open source physics engines

Page 6 of 10

ibm.com/developerWorks/ developerWorks®

delete fallRigidBody;

dynamicsWorld->removeRigidBody(groundRigidBody);
delete groundRigidBody->getMotionState();
delete groundRigidBody;

delete fallShape;
delete groundShape;

delete dynamicsWorld;

delete solver;

delete collisionConfiguration;
delete dispatcher;

delete broadphase;

return 0;

Open source physics engines list

Box2D and Bullet are two examples of useful and widely used physics engines. But there are
many other examples that focus on different aspects of physics simulation (performance or
accuracy) in addition to using many different licenses. Box2D and Bullet both use the Zlib license
(which supports their use in commercial applications). Table 1 provides a list of some of the more
common open source physics engines along with the licenses that they use. In addition, although
most of the engines support c++ or ¢, many also support bindings to other languages, such as
Ruby or Python.

Table 1. Open source physics engines

Engine Type License
Box2D 2D Zlib
Bullet 3D Zlib
Chipmunk 2D Massachusetts Institute of Technology (MIT)
Chrono::Engine 3D GPLv3
DynaMo 3D GPL
Moby (Physsim) 3D GPLv2
Newton Game Dynamics 3D Zlib
Open Dynamics Engine 3D BSD
Open Physics Abstraction Layer N/A BSD/LGPL
OpenTissue 3D Zlib
Physics Abstraction Layer (PAL) N/A BSD
Tokamak 3D BSD/Zlib

Chipmunk, developed by Scott Lembcke based on Box2D, includes several features for 2D
physics, including direct support for ¢ as well as an Objective-Chipmunk to support iPhone
bindings. Other bindings include Ruby, Python, and Haskell.

Open source physics engines Page 7 of 10

developerWorks® ibm.com/developerWorks/

Tokamak is a 3D physics engine SDK written in c++ by David Lam. It includes a number of
optimizations that minimize memory bandwidth and therefore make it ideal for smaller, portable
devices. One interesting feature of Tokamak is support for model breakage, where composite
objects can break on collision, then creating multiple objects in the simulation.

Although listed under physics engines, the abstraction layers provide an interesting capability that
should not be ignored. The PAL provides a unified interface over multiple physics engines within a
single application, which allows a developer to easily use the right physics engine for the particular
application without the porting effort. PAL's plug-in architecture supports several leading open
source physics engines, such as Box2D, Bullet, Newton Game Dynamics, OpenTissue, Tokamak,
and numerous others. It also supports commercial physics engines like Havok, which is popular in
games development. The downside of PAL is that it can restrict functionality offered by a particular
physics engine, because its focus is on a common abstraction.

Hardware acceleration

Hardware acceleration for physics has been evolving over the past few years, following a trend in
graphics processing units (GPU). A GPU is a hardware coprocessor that accelerates computations
for computer graphics applications. GPUs have evolved into general-purpose computing on
graphics processing units (GPGPU), permitting them to be used in more general-purpose
acceleration tasks. A movement for a physics processing unit (PPU) to accelerate physics engine
computations has potentially been diverted by the use of more accessible GPGPUs. Examples

of GPGPUs include ATI's Stream technology and NVIDIA's Common Unified Device Architecture
(CUDA) architecture.

Going further

Physics engines free you from having to develop the complex software to implement physics and
collision detection in software. Instead, you can invest your time in your particular application
(game or simulation). Although it helps to understand the math behind these engines, it's not
necessary to use and enjoy them. The Resources section includes links to a number of open
source physics engines that are easily usable on both Linux and Windows systems. Each includes
sample illustrative demos to help you understand their APIs and concepts so that you can bring
physics into your application.

Open source physics engines Page 8 of 10

ibm.com/developerWorks/ developerWorks®

Resources

Learn

Wikipedia: Physics engines: Learn about how physics engines are being segregated into
classes of engines for their particular problem domain. Wikipedia is a great resource for
learning more about physics engines, ragdoll physics, particle systems, and computer
simulation. You can also learn about the physics engine used in Second Life in addition to
some of the trade-offs for the virtual environment.

Rigid Body Dynamics: Read this series by Chris Hecker if you're interested in the nuts and
bolts within a physics engine. This series appeared first in Game Developer Magazine.
John Van Der Burg's Building an Advanced Particle System at Gamasutra: Learn more about
the development of a particle system. Particle systems are an interesting application of a
physics engine, and particles are commonly a difficult problem based on the scale required.
Real-Time Collision Detection: To learn more about collision detection, check out Christer
Ericson's book, which covers the details of building believable simulations.

developerWorks on-demand demos: Watch video demos ranging from product installation
and setup demos for beginners to advanced functionality for experienced developers.
Open source zone: Visit the developerWorks Open source zone for extensive how-to
information, tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

developerWorks technical events and Webcasts: Stay current with the latest technology.
developerWorks podcasts: Listen to interesting interviews and discussions for software
developers.

Get products and technologies

A number of physics engines focused on 2D can be found in the open source domain.
Options include Box2D from Erin Catto (available under the Zlib license) as well as Chipmunk
from Scott Lembcke (available under the MIT license). To understand their APIs, check out
the Box2D documentation and Chipmunk documentation.

A large number of physics engines focused on 3D are available as open source. Options
include DynaMo, OpenTissue, Chrono::Engine, and Tokamak. You can also take advantage
of an abstraction layer (such as the PAL) to support more than one physics engine without a
porting effort.

Hardware acceleration is a growing area of research and development. From GPUs to
GPGPUs (and PPUs), there's a considerable amount of effort to increase both the accuracy
and speed of physics simulations. You can find commercial acceleration in NVIDIA's PhysX,
CUDA, and AMD/ATI's Stream technology.

Evaluate IBM products in the way that suits you best: Download a product trial, try a product
online, use a product in a cloud environment, or spend a few hours in the SOA Sandbox
learning how to implement service-oriented architecture efficiently.

Discuss

Get involved in the My developerWorks community. Connect with other developerWorks
users while exploring the developer-driven blogs, forums, groups, and wikis.

Open source physics engines Page 9 of 10

http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Ragdoll_physics
http://en.wikipedia.org/wiki/Particle_system
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Computer_simulation
http://wiki.secondlife.com/wiki/Physics_engine
http://chrishecker.com/Rigid_Body_Dynamics
http://www.gdmag.com/homepage.htm
http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php
http://www.gamasutra.com/
http://realtimecollisiondetection.net/books/rtcd/
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/developerworks/podcast/?S_TACT=105AGX06&S_CMP=tut
http://www.box2d.org/
http://code.google.com/p/chipmunk-physics/
http://www.box2d.org/manual.html
http://files.slembcke.net/chipmunk/release/ChipmunkLatest-Docs/
http://home.iae.nl/users/starcat/dynamo/
http://www.opentissue.org/wikitissue/index.php/Main_Page
http://www.chronoengine.info/chronoengine/
http://www.tokamakphysics.com/
http://www.adrianboeing.com/pal/index.html
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/Physics_processing_unit
http://developer.nvidia.com/technologies/physx
http://www.nvidia.com/object/cuda_home_new.html
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/soasandbox/index.html
http://www.ibm.com/developerworks/community/

developerWorks® ibm.com/developerWorks/

About the author

M. Tim Jones

M. Tim Jones is an embedded firmware architect and the author of Artificial
Intelligence: A Systems Approach, GNU/Linux Application Programming (now in

its second edition), Al Application Programming (in its second edition), and BSD
Sockets Programming from a Multilanguage Perspective. His engineering background
ranges from the development of kernels for geosynchronous spacecraft to embedded
systems architecture and networking protocols development. Tim is a platform
architect with Intel and author in Longmont, Colo.

© Copyright IBM Corporation 2011
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/iom/trademarks/)

Open source physics engines Page 10 of 10

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Open source options
	Box2D
	Box2D example
	Bullet
	Bullet example

	Open source physics engines list
	Hardware acceleration
	Going further
	Resources
	About the author
	Trademarks

