http://www.sworld.com.ua/index.php/ru/conference/the-content-of-conferences/archives-of-individual-conferences/oct-2013

SCIENTIFIC RESEARCH AND THEIR PRACTICAL APPLICATION. MODERN STATE AND WAYS OF DEVELOPMENT '2013

Доклад/Транспорт - Техническая эксплуатация и ремонт средств транспорта

УДК 656.13

Морозовский А.А.

СЕТЕВОЕ ПЛАНИРОВАНИЕ КАК МЕТОД ОПТИМИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ ПРИ УТИЛИЗАЦИИ ТРАНСПОРТНО-ТЕХНОЛОГИЧЕСКИХ МАШИН (ТТМ)

БГТУ им. В.Г. Шухова, Белгород, Костюкова 46, 308012

UDC 656.13

Morozovskiy A.A.

NETWORK PLANNING AS A METHOD OF OPTIMIZATION OF PRODUCTION PROCESSES AT THE DISPOSAL OF TRANSPORT AND TECHNOLOGICAL MACHINES

Belgorod Shukhov State Technology University Belgorod, Kostyukova 46, 308012

В данной работе рассматривается метод оптимизации производственных процессов при утилизации ТТМ.

Ключевые слова: сетевое планирование, оптимизация, разборочные работы.

In this paper we describe the method of optimization of production processes at the disposal of TTM.

Key words: network planning, optimization, dismantling.

Моделирование методами сетевого планирования широко используется во многих отраслях народного хозяйства. На автомобильном транспорте данным методом описываются процессы технического обслуживания и ремонта ТТМ. Так как технологический процесс утилизации техники является близким по своему составу к текущему ремонту ТТМ, то данную методику можно использовать для оптимизации технологического процесса утилизации ТТМ [1].

Данная методика имеет ряд преимуществ:

-обеспечивает наглядность всего технологического процесса, последовательности работ;

-позволяет выявить скрытые временные и материальные ресурсы, повысить эффективность производственного процесса.

Чтобы приступить к сетевому планированию необходимо иметь перечень, последовательность и продолжительность работ, соответствующих производственному процессу.

На сетевом графике будет представлена последовательность работ и событий, отражающих их технологическую взаимосвязь.

Рассмотрим принцип построения сетевого графика на примере проведения разборочных операций грузового автомобиля с целью его дальнейшей утилизации.

В (табл.1) приведены нормативы на проведение работ по разборке автомобиля на узлы и агрегаты.

Таблица 1 Трудоемкость работ по разборке и дефектовке грузового автомобиля

No॒	Вид работ	Условное	Предшеству	Продолжитель
п/п		обозначе	ющий вид	ность работ
		ние работ	работ	чел-ч
1	Подготовка автомобиля к ремонту	a_1	-	2
2	Снятие АКБ	a 2	a 1	0,1
3	Слив технических жидкостей	a 3	a ₂	0,3
4	Разборка автомобиля на основные узлы	a 4	a 3	8
5	Разборка и дефектовка деталей двигателя	a 5	a 4	6
6	Разборка и дефектовка деталей	a 6	a 4	6
	транемиссии			
7	Разборка и дефектовка деталей рулевого	a 7	a 4	4
	управления и ходовой части			

8	Комплектовка деталей двигателя	a 8	a 5	5
9	Комплектовка деталей трансмиссии	a 9	a 6	4
10	Комплектовка деталей ходовой части и	a ₁₀	a 7	3
	рулевого управления			
11	Приемка разукомплектованного	a ₁₁	a 8	0,5
	автомобиля			

Часть работ выполняется последовательно, что означает, что начало каждой последующей работы зависит от окончания предшествующей.

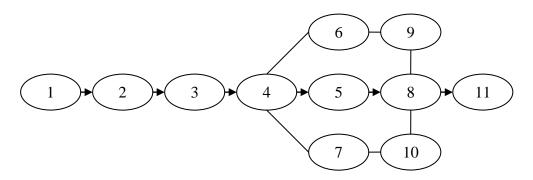


Рис. 1. Упрощенный сетевой график разборки автомобиля

Работы (4-5), (4-6), (4-7) могут начинаться в один и тот же момент времени с наступлением события 4. Эти работы могут выполняться параллельно.

Найдем критический путь, имеющий максимальную продолжительность:

$$T_B = a_1 + a_2 + a_3 + a_4 + a_6 + a_9 + a_{11} = 2 + 0, 1 + 0, 3 + 8 + 6 + 4 + 0, 5 = 20, 9$$
 (y)

$$T_{cp} = a_1 + a_2 + a_3 + a_4 + a_5 + a_8 + a_{11} = 2 + 0, 1 + 0, 3 + 8 + 6 + 5 + 0, 5 = 21, 9$$
 (ч)

$$T_{H} = a_1 + a_2 + a_3 + a_4 + a_7 + a_{10} + a_{11} = 2 + 0, 1 + 0, 3 + 8 + 4 + 3 + 0, 5 = 17,9$$
 (4)

Наибольшее время выполнения работ получили на средней ветви графика, этот путь и является критическим.

Работам, лежащим на критическом пути, уделяется особое внимание, поскольку всякая задержка в выполнении любой из этих работ приводит к срыву окончания всего комплекса работ.

После построения сетевого графика и расчета параметров сетевой модели, дается оценка полученным результатам. Если критический путь больше установленного срока, то необходимо осуществить оптимизацию сетевого графика.

Под оптимизацией понимают процесс улучшения сетевого графика путем:

- а) уменьшения общего времени выполнения работ критического пути;
- б) обеспечения выполнения всего комплекса работ при ограниченных ресурсах.

Если исходный вариант сетевого графика имеет продолжительность критического пути, соответствующего директивному сроку или не превышает этот срок, то он считается оптимальным и может быть рекомендован к выполнению.

Литература:

1. Коновалов, С.И. Моделирование производственных процессов автомобильного транспорта. Учебн. пособие / Владим. гос. ун-т; Владимир, 2005. – 244 с.

References:

1. Konovalov, S.I. Modeling of production processes road transport. Manual / Vladim. state Univ; Vladimir, 2005. – 244 p.